
First In-Class Exam Solutions
Math 410, Professor David Levermore

Friday, 4 October 2019

No books, notes, calculators, or any electronic devices. Indicate your answer to each
part of each question clearly. Work that you do not want considered should be crossed out.
Your reasoning must be given for full credit. Good luck!

1. [10] Let {bk}k∈N be a sequence in R and let A be a subset of R.
Write the negations of the following assertions.

(a) [5] “For some ε > 0 we have |bj − 5| ≥ ε frequently as j →∞.”

(b) [5] “Every sequence in A has a subsequence that converges to a limit in A.”

Solution (a). “For every ε > 0 we have |bj − 5| < ε eventually as j →∞.”

Solution (b). “There exists a sequence in A such that every subsequence of it either
diverges or converges to a limit outside A.” �

Remark. The answer “There exists a sequence in A such that no subsequence of it
converges to a limit in A.” does not fully carry the negation through.

Remark. Assertion (a) is that the sequence {bk} does not converge to 5. Assertion
(b) is the definition that the set A is sequentially compact.

2. [15] Give a counterexample to each of the following false assertions.

(a) [5] If a real sequence {bk}k∈N diverges then the subsequence {b2k}k∈N diverges.

(b) [5] If lim
k→∞

ak = 0 then
∞∑
k=0

ak converges.

(c) [5] A countable union of closed subsets of R is closed.

Solution (a). A simple counterexample is bk = (−1)k. Clearly {bk}k∈N diverges but
{b2k}k∈N = {1}k∈N converges.

Solution (b). The harmonic series or any p-series for some p ∈ (0, 1] are simple
counterexamples. For example,

∞∑
k=1

1

k
, or

∞∑
k=1

1√
k
.

Solution (c). A simple counterexample is the countable collection of closed intervals
given by [0, 1− 2−n] for every n ∈ N. Each [0, 1− 2−n] is closed but their union⋃

n∈N

[0, 1− 2−n] = [0, 1) is not closed .
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3. [10] Let {ck}k∈N be a real sequence that diverges to ∞ as k → ∞. Show that every
subsequence {cnk

}k∈N of {ck}k∈N also diverges to ∞ as k →∞.

Remark. To show that {ck}k∈N diverges to ∞ as k → ∞, we must show for every
b ∈ R that cnk

> b eventually.

Solution. Let b ∈ R. Because {ck}k∈N diverges to ∞ as k →∞, there exists m ∈ N
such that

k ≥ m =⇒ ck > b .

Because nk ≥ k for every k ∈ N, we see that

k ≥ m =⇒ nk ≥ m =⇒ cnk
> b .

Hence, cnk
> b eventually. Therefore {ck}k∈N diverges to ∞ as k →∞. �

4. [15] Let a0 > 0 and define {ak}k∈N by ak+1 = 1
2
(ak + 3/ak) for every k ∈ N.

(a) [10] Prove that {ak}k∈N converges.

(b) [5] Evaluate lim
k→∞

ak.

Remark. We will show that {ak}k∈N is contracting, whereby it will converge.

Solution (a). First, from the fact a0 > 0 and the recursion relation

ak+1 =
1

2

(
ak +

3

ak

)
for every k ∈ N ,

it is evident by induction that

ak > 0 for every k ∈ N .
Next, upon squaring the recursion relation we see that

a 2
k+1 =

1

4

(
ak +

3

ak

)2

=
1

4

(
a 2
k + 6 +

9

a 2
k

)
=

1

4

(
12 + a 2

k − 6 +
9

a 2
k

)
=

1

4

(
12 +

(
ak −

3

ak

)2
)
≥ 3 for every k ∈ N .

This shows that
ak ≥

√
3 for every k ≥ 1 .

From the recursion relation we obtain

ak+1 − ak =
1

2

(
ak +

3

ak

)
− 1

2

(
ak−1 +

3

ak−1

)
=

1

2
(ak − ak−1)

(
1− 3

ak−1ak

)
for every k ≥ 1 .

Because ak ≥
√

3 for every k ≥ 1, we see that

ak−1ak ≥ 3 for every k ≥ 2 ,

whereby
|ak+1 − ak| ≤ 1

2
|ak − ak−1| for every k ≥ 2 .

Therefore {ak}k∈N is a contracting sequence, which thereby converges. �
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Alternaitve Solution (a). As was done in the solution above, first show that

ak ≥
√

3 for every k ≥ 1 .

Then the recursion relation implies that

ak+1 − ak =
1

2

(
ak +

3

ak

)
− ak =

1

2

(
3

ak
− ak

)
=

3− a 2
k

2ak
≤ 0 for every k ≥ 1 .

Therefore {ak}k∈Z+ is a nonincreasing sequence that is bounded below, whereby it
converges by the Monotonic Sequence Theorem. �

Solution (b). By Part (a) we know that for some a ≥ 0 we have

lim
k→∞

ak = a .

Moreover, because ak ≥
√

3 for every k ≥ 1, we know that

a = lim
k→∞

ak ≥
√

3 .

By passing to the limit in the recursion relation we find that a satisfies

a = lim
k→∞

ak+1 =
1

2
lim
k→∞

(
ak +

3

ak

)
=

1

2

(
a+

3

a

)
.

This simplifies to a2 = 3. Therefore

lim
k→∞

ak =
√

3 .

�

Remark. The sequence {ak}k∈N is the sequence of Newton approximations to
√

3.
We will return to them later in the course.

5. [10] Let A and B be any subsets of R. Prove that Ac ∪Bc ⊂ (A ∪B)c.
(Here Sc denotes the closure of any S ⊂ R.)

Remark. One proof can be built around the fact that if C ⊂ D then their closures
satisfy Cc ⊂ Dc. (This fact follows directly from the definition of closure.)

Solution. Because A ⊂ (A ∪ B) and B ⊂ (A ∪ B), we know Ac ⊂ (A ∪ B)c and
Bc ⊂ (A ∪B)c. We conclude that Ac ∪Bc ⊂ (A ∪B)c. �

Remark. Another proof shows directly from the definition of closure that every
element of Ac ∪Bc is also an element of (A ∪B)c.

Alternate Solution. Let x ∈ Ac ∪ Bc be arbitrary. Then either x ∈ Ac or x ∈ Bc.
(Both can be true.) Without loss of generality we can assume that x ∈ Ac. Then
by the definition of closure there exists a sequence {xn} ⊂ A such that xn → x as
n→∞. Because A ⊂ (A∪B) we have {xn} ⊂ A∪B and xn → x as n→∞. By the
definition of closure, we have x ∈ (A ∪ B)c. But because x ∈ Ac ∪ Bc was arbitrary,
we conclude that Ac ∪Bc ⊂ (A ∪B)c. �
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6. [10] Let {ak} be a nondecreasing sequence in R. Show that it converges if it has a
convergent subsequence.

Remark. Our proof will use the Monotonic Sequence Theorem, which says that a
nondecreasing real sequence converges if and only if it is bounded above.

Solution. Let {ank
} be a convergent subsequence of {ak}. Because any subsequence

of a nondecreasing sequence is also nondecreasing, {ank
} is nondeceasing. Because

{ank
} is a nondeceasing sequence that converges, the Monotonic Sequence Theorem

implies that it is bounded above. Let M ∈ R be an upper bound of {ank
}, so that

ank
≤M for every k .

Because k ≥ nk for every k and {ak} is nondecreasing, we have

ak ≤ ank
for every k .

By putting the above two inequalities together, we see that

ak ≤ ank
≤M for every k .

Therefore the nondecreasing sequence {ak} is also bounded above by M . The Mono-
tonic Sequence Theorem thereby implies that it converges. �

Remark. In fact, a monotonic sequence converges if and only if it has a convergent
subsequence.

7. [10] Let {bk} be a nonzero real sequence. Prove that

lim inf
k→∞

log(|bk|)
log( 1

k
)
> 1 =⇒

∞∑
k=0

bk converges absolutely .

(This is the convergence conclusion of the Log Test.)

Solution. Because

lim inf
k→∞

log(|bk|)
log( 1

k
)
> 1 ,

there exists p > 1 such that

lim inf
k→∞

log(|bk|)
log( 1

k
)
> p .

By Proposition 2.17 we have

log(|bk|)
log( 1

k
)
> p eventually .

Because log( 1
k
) < 0 eventually, we see that

log(|bk|) < p log

(
1

k

)
= log

(
1

kp

)
eventually .

Because log is an increasing function we see that

|bk| <
1

kp
eventually .
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The Direct Comparison Test with the p-series shows that because
∞∑
k=1

1

kp
converges for every p > 1 ,

we know that
∞∑
k=0

|bk| converges .

The definition of absolute convergence then implies that
∞∑
k=0

bk converges absolutely .

�

8. [20] Determine the set of all x ∈ R for which
∞∑
k=2

2kxk

log(k)
converges .

Give your reasoning. (The set is an interval. Be sure to check its endpoints!)

Solution. Let ak denote the kth term in the sum, namely let

ak =
2kxk

log(k)
.

We have

lim sup
k→∞

|ak+1|
|ak|

= lim sup
k→∞

2k+1|x|k+1

log(k + 1)

log(k)

2k|x|k
= 2|x| lim sup

k→∞

log(k)

log(k + 1)
.

By the l’Hôpital Rule

lim
k→∞

log(k)

log(k + 1)
= lim

k→∞

1

k
1

k + 1

= lim
k→∞

k + 1

k
= 1 .

Therefore

lim sup
k→∞

|ak+1|
|ak|

= 2|x| lim
k→∞

log(k)

log(k + 1)
= 2|x| .

The Ratio Test then concludes that the series converges absolutely when 2|x| < 1 and
diverges when 2|x| > 1. The Ratio Test says nothing when 2|x| = 1.

When 2x = −1 the series becomes
∞∑
k=2

(−1)k
1

log(k)
.

Because the terms 1/ log(k) are positive and decreasing with

lim
k→∞

1

log(k)
= 0 ,

the Alternating Series Test can be applied to show that the series converges.
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When 2x = 1 the series becomes
∞∑
k=2

1

log(k)
.

Because log(x) ≤ (x− 1) for every x ∈ R+, we see that

1

k − 1
≤ 1

log(k)
for every k ∈ {2, 3, · · · } .

Then because the harmonic series
∞∑
k=2

1

k − 1
diverges .

the Direct Comparison Test shows that the series diverges. Alternatively, because
the terms 1/ log(k) are positive and decreasing, the Cauchy 2k Test can be applied
to show that the series diverges.

Therefore the set of all x ∈ R for which the series converges is the interval[
− 1

2
, 1

2

)
.

�

Remark. It is not enough to argue that the series converges in the interval [−1
2
, 1
2
).

You also have to argue that it diverges outside the interval.

Remark. Rather than using the l’Hôpital Rule above, we could have argued that

log(k + 1) = log(k) + log

(
1 +

1

k

)
< log(k) +

1

k
,

whereby
1

1 +
1

k log(k)

<
log(k)

log(k + 1)
< 1 .

It follows that

lim
k→∞

log(k)

log(k + 1)
= 1 .


