Quiz 9 Solutions, Math 246, Professor David Levermore Tuesday, 12 November 2019

(1) [5] Consider the vector-valued functions $\mathbf{x}_1(t) = \begin{pmatrix} 1 \\ t \end{pmatrix}$ $-t^2$ $\bigg), \mathbf{x}_2(t) = \begin{pmatrix} 2t^4 \\ 4 \end{pmatrix}$ $4-t^6$ \setminus .

- (a) [2] Compute their Wronskian Wr[$\mathbf{x}_1, \mathbf{x}_2$](*t*).
- (b) [3] Find $\mathbf{A}(t)$ such that $\mathbf{x}_1, \mathbf{x}_2$ is a fundamental set of solutions to $\mathbf{x}' = \mathbf{A}(t)\mathbf{x}$.

Solution (a). The Wronskian is

$$
\text{Wr}[\mathbf{x}_1, \mathbf{x}_2](t) = \det \begin{pmatrix} 1 & 2t^4 \\ -t^2 & 4-t^6 \end{pmatrix} = 1 \cdot (4-t^6) - (-t^2) \cdot 2t^4 = 4 + t^6.
$$

Solution (b). Let $\Psi(t) = \begin{pmatrix} 1 & 2t^4 \\ -t^2 & 4 \end{pmatrix}$ $-t^2$ 4 – t^6). Because $\Psi'(t) = \mathbf{A}(t)\Psi(t)$, we have

$$
\mathbf{A}(t) = \mathbf{\Psi}'(t)\mathbf{\Psi}(t)^{-1} = \begin{pmatrix} 0 & 8t^3 \\ -2t & -6t^5 \end{pmatrix} \begin{pmatrix} 1 & 2t^4 \\ -t^2 & 4-t^6 \end{pmatrix}^{-1}
$$

$$
= \frac{1}{4+t^6} \begin{pmatrix} 0 & 8t^3 \\ -2t & -6t^5 \end{pmatrix} \begin{pmatrix} 4-t^6 & -2t^4 \\ t^2 & 1 \end{pmatrix}
$$

$$
= \frac{1}{4+t^6} \begin{pmatrix} 8t^5 & 8t^3 \\ -8t - 4t^7 & -2t^5 \end{pmatrix}.
$$

Remark. This problem is related to Problem 3 on Quiz 8.

 (2) [4] Let $$ $(-1 -2)$ 4 −5 \setminus . Compute $e^{t\mathbf{B}}$.

Solution. Because **B** is 2×2 its characteristic polynomial is

$$
p(\zeta) = \zeta^2 - \text{tr}(\mathbf{B})\zeta + \det(\mathbf{B}) = \zeta^2 + 6\zeta + 13 = (\zeta + 3)^2 + 2^2.
$$

Because this is a *sum of squares* with roots $-3 \pm i2$, the 2×2 formula gives

$$
e^{t\mathbf{B}} = e^{-3t} \left[\cos(2t)\mathbf{I} + \frac{\sin(2t)}{2} (\mathbf{B} + 3\mathbf{I}) \right]
$$

=
$$
e^{-3t} \left[\cos(2t) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\sin(2t)}{2} \begin{pmatrix} 2 & -2 \\ 4 & -2 \end{pmatrix} \right]
$$

=
$$
e^{-3t} \begin{pmatrix} \cos(2t) + \sin(2t) & -\sin(2t) \\ 2\sin(2t) & \cos(2t) - \sin(2t) \end{pmatrix}.
$$

Remark. An alternative solution is on the back.

(3) [1] Suppose that $e^{t\mathbf{C}} = e^{3t} \begin{pmatrix} \cosh(4t) & -\frac{1}{2} \\ 2\sinh(4t) & \cosh(4t) \end{pmatrix}$ $rac{1}{2}\sinh(4t)$ $-2\sinh(4t)$ cosh $(4t)$ \setminus . Compute the Green matrix $\mathbf{G}(t,s)$ for the system $\mathbf{x}' = \mathbf{C}\mathbf{x} + \mathbf{f}(t)$. Solution. The Green matrix is

$$
\mathbf{G}(t,s) = e^{(t-s)\mathbf{C}} = e^{3(t-s)} \begin{pmatrix} \cosh(4(t-s)) & -\frac{1}{2}\sinh(4(t-s)) \\ -2\sinh(4(t-s)) & \cosh(4(t-s)) \end{pmatrix}
$$

.

Alternative Solution for 2. Because B is 2×2 its characteristic polynomial is

$$
p(\zeta) = \zeta^2 - \text{tr}(\mathbf{B})\zeta + \det(\mathbf{B}) = \zeta^2 + 6\zeta + 13 = (\zeta + 3)^2 + 2^2.
$$

This is a sum of squares with roots $-3 \pm i2$. Because the Green function for $p(D)$ satisfies the initial-value problem

$$
p(D)g = 0
$$
, $g(0) = 0$, $g'(0) = 1$,

it had the form

$$
g(t) = c_1 e^{-3t} \cos(2t) + c_2 e^{-3t} \sin(2t).
$$

Because $g(0) = c_1$, the initial condition $g(0) = 0$ implies that $c_1 = 0$, whereby

$$
g'(t) = c_2 e^{-3t} 2 \cos(2t) - c_2 3 e^{-3t} \sin(2t).
$$

Because $g'(0) = 2c_2$, the initial condition $g'(0) = 1$ implies that $c_2 = \frac{1}{2}$ $\frac{1}{2}$, whereby

$$
g(t) = \frac{1}{2}e^{-3t}\sin(2t).
$$

Because $p(\zeta) = \zeta^2 + 6\zeta + 13$, the natural fundamental set associated with $t_I = 0$ is $N_1(t) = g(t) = \frac{1}{2}e^{-3t}\sin(2t)$,

$$
N_0(t) = N'_1(t) + 6g(t)
$$

= $e^{-3t}\cos(2t) - \frac{3}{2}e^{-3t}\sin(2t) + 3e^{-3t}\sin(2t)$
= $e^{-3t}\cos(2t) + \frac{3}{2}e^{-3t}\sin(2t)$.

The natural fundamental set method then gives

$$
e^{t\mathbf{B}} = N_0(t)\mathbf{I} + N_1(t)\mathbf{B}
$$

= $(e^{-3t}\cos(2t) + \frac{3}{2}e^{-3t}\sin(2t))\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{2}e^{-3t}\sin(2t)\begin{pmatrix} -1 & -2 \\ 4 & -5 \end{pmatrix}$
= $e^{-3t}\cos(2t)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{2}e^{-3t}\sin(2t)\begin{pmatrix} 2 & -2 \\ 4 & -2 \end{pmatrix}$
= $e^{-3t}\begin{pmatrix} \cos(2t) + \sin(2t) & -\sin(2t) \\ 2\sin(2t) & \cos(2t) - \sin(2t) \end{pmatrix}$.

Remark. For 2×2 matrices the 2×2 formula for the matrix exponential will always be the fastest way to go because it precomputes the natural fundamental set.