Quiz 8, Math 246, Professor David Levermore Tuesday, 5 November 2019

Your Name:

Discussion Instructor (circle one): Sam Potter Nathan Yu David Russell Discussion Time (circle one): 9:00 11:00 12:00

No books, notes, calculators, or any electronic devices. Show your reasoning for full credit. Good luck!

$$\textbf{Short Table:} \ \mathcal{L}[t^n e^{at}](s) = \frac{n!}{(s-a)^{n+1}} \quad \text{for } s>a \,, \qquad \mathcal{L}[u(t-c)j(t-c)](s) = e^{-cs}\mathcal{L}[j](s) \,.$$

(1) [5] Find
$$F(s) = \mathcal{L}[f](s)$$
 where $f(t) = u(t-4)e^{-3t} + 5\delta(t-2)$.

(2) [2] Recast the equation $x'''' - e^{t+x''}x' + \sin(x) = 0$ as a first-order system of ordinary differential equations.

- (3) [3] Consider the matrix-valued function $\Psi(t) = \begin{pmatrix} 1 & 2t^4 \\ -t^2 & 4 t^6 \end{pmatrix}$.
 - (a) Compute $\det(\Psi(t))$.
 - (b) Compute $\Psi(t)^{-1}$.
 - (c) Compute $\Psi'(t)$.