
Quiz 6 Solutions, Math 246, Professor David Levermore
Tuesday, 15 October 2019

(1) [3] Find the amplitude and phase of the simple harmonic motion

h(t) = 5 cos(2t)− 5
√

3 sin(2t) .

Solution. The point in the plane with Cartesian coordinates (5,−5
√

3) lies in the
fourth quadrant and has polar coordinates (a, φ) with

a =
√

52 + 52 · 3 =
√

25 + 75 =
√

100 = 10 ,

φ = 2π − tan−1
(
5
√
3

5

)
= 2π − tan−1

(√
3
)

= 2π − π
3

= 5
3
π .

Therefore the amplitude is a = 10 and the phase is φ = 5
3
π.

Remark. There are many ways to express φ. For example, because φ is in the fourth
quadrant we know that 3π

2
< φ < 2π. Using either 2π or 3π

2
as a reference we have

φ = 2π − tan−1
(
5
√
3

5

)
= 2π − π

3
, φ = 3π

2
+ tan−1

(
5

5
√
3

)
= 3π

2
+ π

6
,

φ = 2π − sin−1
(
5
√
3

10

)
= 2π − π

3
, φ = 3π

2
+ sin−1

(
5
10

)
= 3π

2
+ π

6
,

φ = 2π − cos−1
(

5
10

)
= 2π − π

3
, φ = 3π

2
+ cos−1

(
5
√
3

10

)
= 3π

2
+ π

6
.

The first column uses 2π as the reference while the second uses 3π
2

as the reference.
Other inverse trigonometric functions could have been used. Only one correct answer
(with no wrong answers) was required for full credit.

Remark. This simple harmonic motion has frequency 2 and period 2π
2

= π.

(2) [2] The displacement h(t) of a spring-mass system is governed by

ḧ+ 2ηḣ+ 49h = f(t) ,

where η ≥ 0 is the damping rate and f(t) is a forcing. For what values of η is the
system over damped?

Solution. The system is over damped when ωo < η. Because the natural frequency
of this system is ωo =

√
49 = 7, the system is over damped when

7 < η .

Alternative Solution. The system is over damped when the associated character-
istic polynomial has two real roots. Because the associated characteristic polynomial
is

p(ζ) = ζ2 + 2ηζ + 49 = (ζ + η)2 + 49− η2 ,
it has two real roots when 49− η2 < 0. Therefore the system is over damped when

7 < η .

Remark. You should be able to answer a similar question about when the system
is undamped, under damped, or critically damped.
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(3) [5] Compute the Green function for the differential operator L = D2 + 6D + 13.

Solution. The Green function g(t) for L solves the initial-value problem

g′′ + 6g′ + 13g = 0 , g(0) = 0 , g′(0) = 1 .

The associated characteristic polynomial is

p(ζ) = ζ2 + 6ζ + 13 = (ζ + 3)2 + 22 ,

which has roots −3± i2. Therefore a general solution of the equation is

g(t) = c1e
−3t cos(2t) + c2e

−3t sin(2t) .

Because g(0) = c1, the initial condition g(0) = 0 implies that c1 = 0. Therefore

g(t) = c2e
−3t sin(2t) ,

g′(t) = 2c2e
−3t cos(2t)− 3c2e

−3t sin(2t) .

Because g′(0) = 2c2, the initial condition g′(0) = 1 implies that c2 = 1
2
. Therefore

the Green function for L is

g(t) = 1
2
e−3t sin(2t) .

Remark. For any initial time tI and any forcing f(t) the Green Function Formula
gives the solution of the second-order initial-value problem

Lv = f(t) , v(tI) = 0 , v′(tI) = 0 ,

by

v(t) =

∫ t

tI

g(t− s) f(s) ds .

This can serve as a particular solution of Ly = f(t). For L = D2 + 6D + 13 it gives
the particular solution

yP (t) = 1
2

∫ t

tI

e−3(t−s) sin
(
2(t− s)

)
f(s) ds .

By using the facts that e−3(t−s) = e−3te3s and that

sin
(
2(t− s)

)
= sin(2t) cos(2s)− cos(2t) sin(2s) ,

we obtain

yP (t) = 1
2
e−3t sin(2t)

∫ t

tI

e3s cos(2s) f(s) ds− 1
2
e−3t cos(2t)

∫ t

tI

e3s cos(2s) f(s) ds .

The Green Function Formula thereby reduces the problem of finding an explicit
particular solution to the evaluation of the two integrals∫ t

tI

e3s cos(2s) f(s) ds ,

∫ t

tI

e3s cos(2s) f(s) ds .

Even when they can be evaluated, the evaluation can be laborious even for simple f .

This approach should not be taken when the forcing f has characteristic form
because either Key Identity Evaluations, the Zero Degree Formula, or Undetemined
Coefficients usually provide a much shorter route to an explicit particular solution!


