Quiz 6 Solutions, Math 246, Professor David Levermore
Tuesday, 15 October 2019

(1) [3] Find the amplitude and phase of the simple harmonic motion
h(t) = 5cos(2t) — 5v/3sin(2t).
Solution. The point in the plane with Cartesian coordinates (5, —5v/3) lies in the
fourth quadrant and has polar coordinates (a, ¢) with
a=V52+52.-3=+25+75=+100 =10,

O = 2W—tan’1(%§) = 27T—tan’1(\/§) =27 — % = §7r.

Therefore the amplitude is a = 10 and the phase is ¢ = gﬂ'.

Remark. There are many ways to express ¢. For example, because ¢ is in the fourth
quadrant we know that 37“ < ¢ < 2m. Using either 27 or 37” as a reference we have

¢ =2 —tan ' (22) =27 — T gbz%%—*ﬁ&n‘%%):%—k%,
¢:27r—sin_1(%g):27r—§, gb:3§+sin_1(% :3?”—1—%,
¢=2r—cos (&) =2r— %, o= +cos ! (B2) =T+ 7.

The first column uses 27 as the reference while the second uses 37“ as the reference.

Other inverse trigonometric functions could have been used. Only one correct answer
(with no wrong answers) was required for full credit.

Remark. This simple harmonic motion has frequency 2 and period 27” = T.

(2) [2] The displacement h(t) of a spring-mass system is governed by
h + 2nh + 49h = f(1),

where n > 0 is the damping rate and f(t) is a forcing. For what values of 7 is the
system over damped?

Solution. The system is over damped when w, < 7. Because the natural frequency
of this system is w, = v/49 = 7, the system is over damped when

T<n.
Alternative Solution. The system is over damped when the associated character-

istic polynomial has two real roots. Because the associated characteristic polynomial
is

p(¢) = ¢* +2n¢ +49 = (C+n)* +49 — 7,
it has two real roots when 49 — n? < 0. Therefore the system is over damped when
T<n.

Remark. You should be able to answer a similar question about when the system
is undamped, under damped, or critically damped.



(3) [5] Compute the Green function for the differential operator L = D? + 6D + 13.

Solution. The Green function g(t) for L solves the initial-value problem
g"+6¢g +13g=0, g(0)=0, ¢'(0)=1.
The associated characteristic polynomial is
p(¢) = +6¢+13=(C+3)° +22,
which has roots —3 &£ i2. Therefore a general solution of the equation is
g(t) = cre™ % cos(2t) + cpe ¥ sin(2t) .
Because g(0) = ¢q, the initial condition ¢(0) = 0 implies that ¢; = 0. Therefore
g(t) = coe 3 sin(2t)
g (t) = 2coe™ cos(2t) — 3cge ™ sin(2t) .

Because ¢'(0) = 2cy, the initial condition ¢’(0) = 1 implies that ¢, = L. Therefore

5.
the Green function for L is
g(t) = s *sin(2t).

Remark. For any initial time ¢; and any forcing f(t) the Green Function Formula
gives the solution of the second-order initial-value problem

LU:f(t)’ U<t1):()> ’Ul(tI)ZO,
by .
o(t) = / gt — s) f(s)ds.

This can serve as a particular solution of Ly = f(¢). For L = D? + 6D + 13 it gives
the particular solution

yp(t) = %/ e ) sin (2(t — s)) f(s)ds.

tr
By using the facts that e 3(=%) = ¢=3¢3% and that
sin(2(¢ — s)) = sin(2t) cos(2s) — cos(2t) sin(2s) ,
we obtain
t t
yp(t) = 2 sin(2t)/ e* cos(2s) f(s)ds — s~ cos(Qt)/ e cos(2s) f(s)ds.
tr tr

The Green Function Formula thereby reduces the problem of finding an explicit
particular solution to the evaluation of the two integrals

/ 5 cos(2s) f(s) ds / 5 cos(2s) f(s) ds.

tr tr
Even when they can be evaluated, the evaluation can be laborious even for simple f.
This approach should not be taken when the forcing f has characteristic form
because either Key Identity Evaluations, the Zero Degree Formula, or Undetemined
Coeflicients usually provide a much shorter route to an explicit particular solution!



