Math 246, Professor David Levermore Group Work Exercises for Discussion 9 Monday, 28 October 2019

Answers to the following exercises should be worked out on the board space for your group. Your reasoning must be shown for full credit!

First Set of Group Work Exercises [4]

Use the table on page 2 if needed.

- (1) Find the exponential order of $f(t) = u(t-3)e^{-5t}\cos(4t)$.
- (2) Find $F(s) = \mathcal{L}[f](s)$ where $f(t) = u(t-3)e^{-5t}\cos(4t)$.
- (3) Find the exponential order of $h(t) = u(t-3)t^2e^{-5t}\cos(4t)$.
- (4) Find $H(s) = \mathcal{L}[h](s)$ where $h(t) = u(t-3)t^2e^{-5t}\cos(4t)$.

Second Set of Group Work Exercises [3]

Use the table on page 2 if needed.

(1) Use the Laplace transform to solve the initial-value problem

$$v''' + 16v' = 24\cos(2t), \quad v(0) = 0, \quad v'(0) = 0, \quad v''(0) = 0.$$

(2) Use the Laplace transform to compute the Green function g(t) for the operator

$$L = D^3 + 16D$$
, where $D = \frac{d}{dt}$.

(3) Compute the natural fundamental set of solutions $N_0(t)$, $N_1(t)$, $N_2(t)$ associated with initial time 0 for the operator $L = D^3 + 16D$.

Third Set of Group Work Exercises [3]

Use the table on page 2 if needed.

(1) Find $x(t) = \mathcal{L}^{-1}[X](t)$ where $X(s) = e^{-2s} \frac{2s+11}{s^2-10s+21}$. (2) Find $y(t) = \mathcal{L}^{-1}[Y](t)$ where $Y(s) = e^{-4s} \frac{3s+21}{s^2+10s+29}$. (3) Find $z(t) = \mathcal{L}^{-1}[Z](t)$ where $Z(s) = e^{-3s} \frac{26}{(s^2-9)(s^2+4)}$.

Warning. On Quiz 7 you will have to compute $\mathcal{L}[f](s)$ for some f(t) using the definition of the Laplace transform.

Table of Laplace Transforms

$$\begin{split} \mathcal{L}[t^n e^{at}](s) &= \frac{n!}{(s-a)^{n+1}} & \text{for } s > a \,. \\ \mathcal{L}[e^{at}\cos(bt)](s) &= \frac{s-a}{(s-a)^2 + b^2} & \text{for } s > a \,. \\ \mathcal{L}[e^{at}\sin(bt)](s) &= \frac{b}{(s-a)^2 + b^2} & \text{for } s > a \,. \\ \mathcal{L}[t^n j(t)](s) &= (-1)^n J^{(n)}(s) & \text{where } J(s) = \mathcal{L}[j(t)](s) \,. \\ \mathcal{L}[e^{at} j(t)](s) &= J(s-a) & \text{where } J(s) = \mathcal{L}[j(t)](s) \,. \\ \mathcal{L}[u(t-c)j(t-c)](s) &= e^{-cs}J(s) & \text{where } J(s) = \mathcal{L}[j(t)](s), c \,. \end{split}$$

where $J(s) = \mathcal{L}[j(t)](s), c \ge 0$, and u is the unit step function.