Third In-Class Exam Solutions
Math 246, Professor David Levermore
Thursday, 14 November 2019

(1) [6] Recast the ordinary differential equation y” — e¥y” + e'y” —sin(t + ') =0 as a
first-order system of ordinary differential equations.

Solution. The normal form of the equation is

"

y" = eyy/// . 6ty// + sin(t + y/) .
Because this equation is fourth order, the first-order system must have dimension at
least four. The simplest such first-order system is

T T2 T Yy
d |z x x !
2 2
— = 3 ,  Where = y,,
dt | *3 Ty T3 Y
T4 ey — elag + sin(t + ) Ty y"

Remark. There should be no y, ¥/, 3", or ¥’ appearing in the first-order system.
The only place these should appear is in the dictionary on the right that shows their
relationship to the new variables. The first-order system should be expressed solely
in terms of the new variables, which are x1, x5, 3, and x4 in the solution given above.
Any letter except y could have been used for the new variables.

2 t
(2) [10] Consider the vector-valued functions x;(t) = (j ), X(t) = (Et).

1
(a) [2] Compute the Wronskian Wr[x;, x2](t).
(b) [3] Find C(t) such that x;, x5 is a fundamental set of solutions to the system
x' = C(t)x wherever Wr[xy, x2](t) # 0.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

2t
t e):tz-et—(—l)-et:(tQ—i-l)et.

Wr[xy, x5|(t) = det (_1 ol

Solution (b). If x;, x, is a fundamental set of solutions for the system x’ = C(t)x
then a fundamental matrix is

v - (1 4)

Because any fundamental matrix is invertible and satisfies W'(¢) = C(¢)W(t), we see
that
— 1 (2t € 2 e\
co=wown = (3 4) (4 &

B 1 2t e\ (et —¢
S (@2 +1)et \0 )\ 1 #

1 2te! + et —2te! + t2et
(2 + 1)et et t2e! '
1



Remark. The solution can be simplified to

L (241 2+ 12
C(t)—m( 1 2 ;

but this simplification was not required for full credit.

Solution (c). A general solution is
t2 el
x(t) = a1x1(t) + caxa(t) = ¢4 (_1> + ¢ <€t) )

Solution (d). By using the fundamental matrix W(¢) from part (b) we find that the
Green matrix is

G(t,s) = P()(s)"' = (i ji) (i 22>_1

B 1 t2 Bt es —es

T (s241)es \—1 € 1 s

1 e’ + et —tPe’ + s’

(24 1)es \—ef+e ef s )
Notice that G(s,s) =L

(3) [6] Given that 2 is an eigenvalue of the matrix

40 —4
c=(03 3],
2 2 4

find all the eigenvectors of C associated with 2.

Solution. The eigenvectors of C associated with 2 are all nonzero vectors v such
that Cv = 2v. Equivalently, they are all nonzero vectors v such that (C —2I)v = 0,
which is

2 0 —4 (%1 0
01 3 vl =10
2 2 2 U3 0
The entries of v thereby satisfy the homogeneous linear algebraic system
2'1}1 — 4’03 =0.
Vg + 3U3 =0 s

2U1+202+2U3:0,

This system may be solved either by elimination or by row reduction. By any method
its general solution is found to be

v =2a, U= —3a, v3=a, for any constant «.
Therefore every eigenvector of C associated with 2 has the form

2
al -3 for some constant o # 0.
1



(4) [10] Solve the initial-value problem
SO0 G-0)-

Solution. The characteristic polynomial of A = (_5 :4> is

p(z) =2 —tr(A)z + det(A) = 22 + 62+ 9 = (2 + 3)°.
This is a perfect square with © = —3. Then
¢A = e 14+t (A - (-3)I)]

(10 —2 A\ (1-2t -4
= {(01 e o 2)] 7 to1+2t)

(Check that tr(A + 3I) = 0!) Therefore the solution of the initial-value problem is
_ AT -3t =2t —4t 0 -3t —8t
x(t) =efx =e ( t 1+20)\2) ¢ \2+ar)-

(5) [8] Two interconnected tanks are filled with brine (salt water). At ¢ = 0 the first tank
contains 17 liters and the second contains 28 liters. Brine with a salt concentration
of 8 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 7 liters per hour, from the second into
the first at 5 liters per hour, from the first into a drain at 3 liter per hour, and from
the second into a drain at 4 liters per hour. At t = 0 there are 21 grams of salt in
the first tank and 14 grams in the second.

(a) [6] Give an initial-value problem that governs the amount of salt in each tank
as a function of time.
(b) [2] Give the interval of definition for the solution of this initial-value problem.

Solution (a). Let Vi(t) and Va(¢) be the volumes (lit) of brine in the first and second
tank at time ¢ hours. Let Sy(¢) and S(t) be the mass (gr) of salt in the first and
second tank at time ¢ hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time ¢t are Cy(t) = S1(¢)/Vi(t) and
Cy(t) = Sa(t)/Va(t) respectively. In particular, these are the salt concentrations of
the brine that flows out of these tanks. We have the following picture.

8 gr/lit C1(t) gr/lit
. — — .
6 lit/hr Vi(t) lit 7 lit/hr Va(t) lit
Ci(t) gr/lit Si(t) gr o Cat) gr/lit Sa(t) gr , Ca(t) gr/lit
3 lit/hr 5 lit/hr 4 lit/hr
Vi(0) = 17 Lit V(0) = 28 lit
S1(0) =21 gr S5(0) =14 gr

We are asked to write down an initial-value problem that governs S;(t) and Sy(t).



The rates work out so there will be Vi (t) = 17 + ¢ liters of brine in the first tank
and V5(t) = 28 — 2¢ liters in the second. Then S;(t) and Sy(t) are governed by the
initial-value problem

dSl . SQ Sl Sl
W S0t o0 17+t7 17+t
dSQ Sl 52 52

— — — 4 —14.
dt 17+t7 28—21%5 28 — 2t ' 52(0)

Your answer could be left in the above form. However, it can be simplified to
dSy 5 10

3, $1(0) = 21,

a Bt e 0=
ds, 7 9

= - s S5(0) = 14.
dt 17+t 28 —2t"" 0)

Solution (b). This first-order system of differential equations is linear. Its coeffi-
cients are undefined either at t = 14 or t = —17 and are continuous elsewhere. Its
forcing is constant, so is continuous everywhere. Therefore the natural interval of
definition for the solution of this initial-value problem is (—17,14) because:

e the initial time ¢t = 0 is in (—17,14);

e all the coefficients and the forcing are continuous over (—17,14);

e every coefficient of Sy is undefined at t = —17;

e cvery coefficient of Sy is undefined at ¢t = 14.
However, it could also be argued that the interval of definition for the solution of this
initial-value problem is [0, 14) because the word problem starts at ¢ = 0.

(6) [8] A 4 x 4 matrix K has the eigenpairs

1 1 1 1

1 -1 -1
17 -1 ) 97 -1 )
-1 -1 1

1
07 1 )
1

(a) Give an invertible matrix V and a diagonal matrix D such that e'® = VePV—L
(You do not have to compute either V=1 or ¢!)
(b) Give a fundamental matrix for the system x’ = Kx.

Solution (a). One choice for V and D is

1 1 1 1 000 0
1 1 -1 -1 010 0
V=11 41 1 1| D=10040
1 -1 -1 1 000 9

Remark. There are 23 other choices for D. (Can you find them all?)
Solution (b). Use the given eigenpairs to construct the real eigensolutions

1 1 1

-1 —1
, Xo(t)=e R X3(t)264t 1 , X4(t):egt 1

-1 -1 1

X1 (t) =

—_ = =



Then a fundamental matrix for the system is

1 6t e4t 69t
1 et et _ 9t
U(t) = (x1(t) xa(t) x3(t) xu(t)) = 1 et it oot
1 et ettt

Alternative Solution (b). Given the V and D from part (a), a fundamental matrix
for the system is

11 1 1\/10 0 0 Lo At o

_ o _ |1 1 -1 -1 0 e 0 0 B! ol et ot

PO=Ver=11 21 1 1o 0 e 0|71 —et e —em
I -1 -1 1 00 0 € 1 _et _eft o0

(7) [8] Find a real general solution of the system
d (fx\ _ (=7 —4\ (x
dt\y) \ 2 -3 y)
. . . -7 -4\ .
Solution by Formula. The characteristic polynomial of A = ( 9 _3> is

p(2) = 2% —tr(A)z + det(A) = 2% + 102 + 29 = (2 + 5)% + 22.

This is a sum of squares with = —5 and v = 2. Then

sin(2t) (A (_5)1)1

el )2 (2 )

cos(2t) — sin(2t) —2sin(2t) )

et =5 [cos(Qt)I +—

5t
- ( sin(2t) cos(2t) + sin(2¢
(Check that tr(A + 5I) = 0!) Therefore a general solution is

x(t) = etc=e™ (COS(%) —sin(2t)  —2sin(2¢) ) )

sin(2t) cos(2t) + sin(2t

= <COS(2§1)n(_2§;H<2t)) e <cos(_2?)sf(szif1)(2t)) :

Solution by Eigensolutions. The characteristic polynomial of A = (_27 :g) is

p(z) = 2% —tr(A)z + det(A) = 2% + 102 + 29 = (2 + 5)* + 2°.

The eigenvalues of A are the roots of this polynomial, which are —5+¢2 and —5 — 2.
Consider the matrix

e (2402 -4
A_(_5_Z2)I( 2 2+z‘2>



After checking that the determinant of this matrix is zero, we can read off from its
first column that an eigenpair of A is

(e (7))

(Another eigenpair is the complex conjugate of this one, but we will not need it.)
This eigenpair yields the complex-valued eigensolution

x(t) = el =5+t (—11+ z) — = ((cos(2f) + isin(28)) (—11+ 2>
e ((cos (2t) 4 i sin(2t) )ét)1+@ )
) +

N cos(2t) + i sin(
_ ot (( — cos(2t) — sin(2t)) + i( cos(2t) — sin(2t))> .

cos(2t) + isin(2t)

A fundamental set of real-valued solutions can be read off from the real and imaginary
parts of this complex-valued eigensolution as

5 [—cos(2t) —sin(2t) 5 (cos(2t) — sin(2t)
xi(t) =e ( cos(2t) ’ xa(t) = e sin(2t) '
Therefore a real general solution is

P (_ cos(fsiét)sm(%)) i (cos(2;)n(—2§i)n(2t)> _

(8) [8] Find a real general solution of the system
d fz\ _ (1 5\ (=
dt\y) \3 3)\y)"~

Solution by Eigensolutions. The characteristic polynomial of B = (21)) g) is

p(z) =2 —tr(B)z +det(B) = 2> — 42z — 12 = (2 + 2)(2 — 6) .

The eigenvalues of B are the roots of this polynomial, which are —2 and 6. Consider

the matrices
3 5 -5 5
s (3. moas (7).

After checking that the determinant of each matrix is zero, we can read off that

eigenpairs of B are
5 1
(= (5)- (0)

Therefore a real general solution of the system is

e () v (1)



Solution by Formula. The characteristic polynomial of B = (zl)) g) is

p(z) =22 —tr(B)z +det(B) = 2 — 42— 12 = (2 — 2)? —4 — 12 = (2 — 2)® — 47,
This is a difference of squares with © = 2 and v = 4. Then

sin};(llt) (B - 21)}

{mh (o )= ()]

B = e {cosh(élt)l +

cosh(4t) — 1 sinh(4t) 2 sinh(4¢)
3 sinh(4¢) cosh(4t) 4 1 sinh(4¢)
(Check that tr(B — 2I) = 0!) Therefore a real general solution of the system is
0 = cosh(4t) — 1 sinh(4¢) 2 sinh(4t) 1
x(t
3 sinh(4¢) cosh(4t) + $sinh(4t) | \ e
cosh(4t) — 1 sinh(4¢) 2 sinh(4¢)
_ 2t 2t
= c1€e + coe
3 sinh(4¢) cosh(4t) + 1 sinh(4t)

(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0
for the operator D* + 17D? + 16.

Solution from Green Function. The operator D* + 17D? + 16 has characteristic
polynomial

p(s) = s* +17s* + 16 = (s + 1)(s* + 16) .
We have the partial-fraction identity

1 1
1 1 i5 is

p) G+ )(E116) £+l 216

Referring to the table on the last page, item 2 with a = 0 and b = 1 and with a =0
and b = 4 shows that

51{ ! ](t):sin(t), .cl{ 1 ](t):sin(élt).

s +1 s + 42

Therefore the Green function for the operator D* + 17D? + 16 is
1 1 4
_ -1 _ 1 - 1 p—1
ol = £ 0 = e [zﬂ}m—@ﬁ EErl

p(s)
= s=sin(t) — g5 sin(4¢) .

Because we see the characteristic polynomial as

p(s)=s*4+0-524+17-52+0-5+ 16,



the natural fundamental set of solutions associated with the initial-time 0 for the
operator D* + 10D? + 9 is given by

N3(t) = g(t) = = sin(t) — g5 sin(4¢)

No(t) = Ni(t) +0-g(t) = 1z cos(t) — % cos(4t) ,

Ni(t) = No(t) + 17 - g(t) = —% sin(t) + -t sin(4t) + 17(& sin(t) — & sin(4t))
2sin(t) — & sm(4t) ,

No(t) = Ni(t) +0-g(t) = 12cos(t) — 7 cos(4t) .

Solution from General Initial-Value Problem. For the operator D* 4+ 17D? + 16
the general initial-value problem for initial-time 0 is

y" + 17y + 16y =0,  y(0)=wo, Y(0) =y, y¥(0)=w2, y"(0)=uys.
Its characteristic polynomial is
p(2) =22+ 1722 +16 = (22 + 1)(22 +16) = (2% + 1)(2% + 4?),
which has roots ¢, —i, 14 and —i4. Therefore a real general solution is
y(t) = c1 cos(t) + cosin(t) + c3 cos(4t) + ¢4 sin(4t) .
Because
y'(t) = —cysin(t) 4 co cos(t) — des sin(4t) + 4ey cos(4t)
y"(t) = —cq cos(t) — casin(t) — 16¢3 cos(4t) — 16¢4 sin(4t),
y"(t) = ¢y sin(t) — cg cos(t) + 64cs sin(4t) — 64cy cos(4t),
the general initial conditions yield the linear algebraic system
yo = y(0) = ¢1 cos(0) + c2sin(0) + c3 cos(0) + ¢4 sin(0) = ¢; + ¢3.
y1 =y (0) = —c; sin(0) + ¢z cos(0) — 4es sin(0) + 4eyq cos(0) = o + 4y,
Yo = y"(0) = —cy cos(0) — e 8in(0) — 16¢3 cos(0) — 16¢4 sin(0) = —¢; — 16¢3,
ys = 4" (t) = ¢1sin(0) — cg cos(0) + 64cs sin(0) — 64cy cos(0) = —cy — 64cy .

This decouples into the two systems

Yo=c1+ 3, Y1 =2+ 4y,
Y2 = —cy — 16¢3, Y3 = —co — 64cy .
The solutions of these systems are
~ 16yo +y2 16y +ys
= —— Co=———
15 15
o Yot Y2 or— YLt
’ 15 ! 60
Therefore the solution of the general initial-value problem is
16 16
= =2 o)+ = i) — L2 cos(4t) sin(4t)
= yo (12 cos(t) — & cos(4t)) + yi1 (12 sin(t) — & sin(4t))

+ 12 (55 cos(t) — 1= cos(4t)) + y3 (55 sin(t ) — o5 sin(4t)) .



9

We can read off from this that the natural fundamental set of solutions associated
with the initial-time 0 for the operator D* 4+ 10D? + 9 is

No(t) = 12 cos(t) — & cos(4t), Ni(t) = 12sin(t) — g5 sin(4¢),
No(t) = i cos(t) — & cos(4t), Ns(t) = = sin(t) — & sin(4¢) .

(10) [8] Compute the Laplace transform of f(t) = u(t — 5) e~ from its definition.
(Here wu is the unit step function.)

Solution. The definition of Laplace transform gives

T T
L[f](s) = lim e *tu(t —5)e 3 dt = lim et gt

T—o0 0 T—o0 5

e When s < —3 we have for every T' > 5

T T
/e_(5+3)tdt2/ dt=T -5,
5 5

which clearly diverges to 400 as T" — oo.

e When s > —3 we have for every T' > 5

’ —(s+3)t . _6*(”3” T - _@*(S+3)T e~ (s+3)5
e dt = _ 4 ’
5 s+ 3 5 s+3 s+3
whereby
. e*(s+3)T 67(s+3)5 67(s+3)5
,C[f](S):Tlggo[— o + 3—{—3]: 3 for s > —3.

Therefore the definition of the Laplace transform gives
e—(s+3)5

L[f](s) = s+3
undefined for s < —3.

for s > —3,

(11) [10] Consider the following MATLAB commands.

>> syms t x(t) s X
>> f = t"2 + heaviside(t — 2)*(4 — t"2);
>> diffeqn = diff(x, 2) + 4*diff(x, 1) + 20%x(t) == f;
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, ...
[laplace(x(t), t, s), x(0), subs(diff(x(t), t), t, 0)], [X, 2, =3]);
>> xtrans = simplify(solve(algeqn, X));
>> x = ilaplace(xtrans, s, t)
(a) [2] Give the initial-value problem for z(¢) that is being solved.
(b) [8] Find the Laplace transform X (s) of the solution x(t). (Just solve for X(s)!
DO NOT take the inverse Laplace transform of X (s) to find x(¢)!)
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You may refer to the table on the last page.
Solution (a). The initial-value problem for x(t) that is being solved is
" + 42’ + 20z = f(t), z(0) =2, 2'(0)= -3,
where the forcing f(t) can be expressed either as the piecewise-defined function

2 for0<t<?2
t: — )
1) {4 for 2 <t.

or in terms of the unit step function as

ft) =t* +u(t—2)(4—1%).

Solution (b). The Laplace transform of the differential equation is
L[z"](s) + 4L[2](s) + 20L[z](s) = L[f](s) ,
while the initial conditions give
Llz](s) = X(s),
L[z'](s) = s L[z](s) — 2(0) = s X(s) — 2,
Lla")(s) = s L[')(5) — 2'(0) = $2X (5) — 25 + 3.
Therefore the Laplace transform of the initial-value problem is
(s°X(s) — 254 3) +4(s X (s) — 2) + 20X (s) = L[f](s).
This simplifies to
(s* + 45 +20)X (s) — 25 — 5= L[f](s),

whereby
1

A T
To compute L[f](s), we write f(t) as
f&) = +ult—2)4—t3) =12 +u(t—2)j(t—2),
where upon setting j(t — 2) = 4 — 2, we see by the shifty step method that
jt)=4—(t+2)2 =4—1>—4t —4=—1*—4t.

(25 +5+ L[f](s)) )

Referring to the table on the last page, item 1 with a = 0 and n = 1, and with a =0
and n = 2 shows that

L) =5, LPe =

s s3’
whereby item 6 with ¢ = 2 and j(t) = —t* — 4t shows that
Llu(t—2)j(t —2)](s) = e >L[j](s) = —e L[> + 4t](s)

N 4
= —€ 54—8—2 .
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Therefore

LIf1(s) = L[* +ult — 2)j(t — 2)](s)

2 L, (2 4
—5—6 ;4—5—2 .

Upon placing this result into the expression for X(s) found earlier, we obtain

1 2 2 4
X(s)= - (2s45+2—e>(Z+2)).
(s) 5?2 +4s 420 ( ot +s3 ‘ <s3 * 52>)

(12) [8] Find the inverse Laplace transform £V (s)](¢) of the function

5+8
s2 —8s+ 25
You may refer to the table on the last page.

Y(s) =e %

Solution. Referring to the table on the last page, item 6 with ¢ = 2 shows that
L7 e J(s)] = ut—2)j(t—2), where  j(t) = L71[J(s)](¢).
We apply this formula to

s+8
J(s)= =%
&)= o8+
Because s* — 8s + 25 = (s — 4)? 4 3%, we have the partial fraction identity
s+8 s—4)+12 s—4 12
J(s) = _ o4 +12 N |
2851 (5-4243 (s-121F  (s_ap+3

Referring to the table on the last page, items 2 and 3 with a = 4 and b = 3 show
that

_ s—4 _ 3 .
£ e, £ = .

The above formulas and the linearity of the inverse Laplace transform yield

i = £ eI0 = £ 5w

L[ s—4 12
=L _(5—4)2+32+(s—4)2+32}(t)

)0 [

= e' cos(3t) + 4e* sin(3t) .

Therefore
LY (s)](t) = L7 e T (s)](2)

u(t —2)j(t —2)
u(t — 2) (64(t’2) cos(3(t — 2)) + 4e* P sin (3(t — 2))) :
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Table of Laplace Transforms

L)) =
L{eat COS(bt)](S> = ﬁ
Lle sin(bt)](s) = m
L' (B)(s) = 5T (s) — §(0)
L] (s) = (=1)"T™(s)
Lle™j(1))(s) = (s — a)
Clu(t — )it — o))(s) = e (s)

for s >a.
for s > a.

for s >a.

where J(s S

) = LHB)](s) -
) = LB](s) -
) = LHB)](s) -
LB)](s), ¢ =0,

and w is the unit step function.

(
where J(s
where J(s s
(

where J(s) =

where ¢ > 0 and ¢ is the unit impulse.



