
Third In-Class Exam Solutions
Math 246, Professor David Levermore

Thursday, 14 November 2019

(1) [6] Recast the ordinary differential equation y′′′′ − eyy′′′ + ety′′ − sin(t + y′) = 0 as a
first-order system of ordinary differential equations.

Solution. The normal form of the equation is

y′′′′ = eyy′′′ − ety′′ + sin(t+ y′) .

Because this equation is fourth order, the first-order system must have dimension at
least four. The simplest such first-order system is

d

dt


x1
x2
x3
x4

 =


x2
x3
x4

ex1x4 − etx3 + sin(t+ x2)

 , where


x1
x2
x3
x4

 =


y
y′

y′′

y′′′

 .

Remark. There should be no y, y′, y′′, or y′′′ appearing in the first-order system.
The only place these should appear is in the dictionary on the right that shows their
relationship to the new variables. The first-order system should be expressed solely
in terms of the new variables, which are x1, x2, x3, and x4 in the solution given above.
Any letter except y could have been used for the new variables.

(2) [10] Consider the vector-valued functions x1(t) =

(
t2

−1

)
, x2(t) =

(
et

et

)
.

(a) [2] Compute the Wronskian Wr[x1,x2](t).
(b) [3] Find C(t) such that x1, x2 is a fundamental set of solutions to the system

x′ = C(t)x wherever Wr[x1,x2](t) 6= 0.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

Wr[x1,x2](t) = det

(
t2 et

−1 et

)
= t2 · et − (−1) · et = (t2 + 1)et .

Solution (b). If x1, x2 is a fundamental set of solutions for the system x′ = C(t)x
then a fundamental matrix is

Ψ(t) =

(
t2 et

−1 et

)
.

Because any fundamental matrix is invertible and satisfies Ψ′(t) = C(t)Ψ(t), we see
that

C(t) = Ψ′(t)Ψ(t)−1 =

(
2t et

0 et

) (
t2 et

−1 et

)−1
=

1

(t2 + 1)et

(
2t et

0 et

) (
et −et
1 t2

)
=

1

(t2 + 1)et

(
2tet + et −2tet + t2et

et t2et

)
.

1
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Remark. The solution can be simplified to

C(t) =
1

t2 + 1

(
2t+ 1 −2t+ t2

1 t2

)
,

but this simplification was not required for full credit.

Solution (c). A general solution is

x(t) = c1x1(t) + c2x2(t) = c1

(
t2

−1

)
+ c2

(
et

et

)
.

Solution (d). By using the fundamental matrix Ψ(t) from part (b) we find that the
Green matrix is

G(t, s) = Ψ(t)Ψ(s)−1 =

(
t2 et

−1 et

) (
s2 es

−1 es

)−1
=

1

(s2 + 1)es

(
t2 et

−1 et

) (
es −es
1 s2

)
=

1

(s2 + 1)es

(
t2es + et −t2es + s2et

−es + et es + s2et

)
.

Notice that G(s, s) = I.

(3) [6] Given that 2 is an eigenvalue of the matrix

C =

4 0 −4
0 3 3
2 2 4

 ,

find all the eigenvectors of C associated with 2.

Solution. The eigenvectors of C associated with 2 are all nonzero vectors v such
that Cv = 2v. Equivalently, they are all nonzero vectors v such that (C− 2I)v = 0,
which is 2 0 −4

0 1 3
2 2 2

v1v2
v3

 =

0
0
0

 .

The entries of v thereby satisfy the homogeneous linear algebraic system

2v1 − 4v3 = 0 .

v2 + 3v3 = 0 ,

2v1 + 2v2 + 2v3 = 0 ,

This system may be solved either by elimination or by row reduction. By any method
its general solution is found to be

v1 = 2α , v2 = −3α , v3 = α , for any constant α .

Therefore every eigenvector of C associated with 2 has the form

α

 2
−3
1

 for some constant α 6= 0 .
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(4) [10] Solve the initial-value problem

d

dt

(
x
y

)
=

(
−5 −4
1 −1

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
0
2

)
.

Solution. The characteristic polynomial of A =

(
−5 −4
1 −1

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 6z + 9 = (z + 3)2 .

This is a perfect square with µ = −3. Then

etA = e−3t
[
I + t

(
A− (−3)I

)]
= e−3t

[(
1 0
0 1

)
+ t

(
−2 −4
1 2

)]
= e−3t

(
1− 2t −4t
t 1 + 2t

)
.

(Check that tr(A + 3I) = 0!) Therefore the solution of the initial-value problem is

x(t) = etAxI = e−3t
(

1− 2t −4t
t 1 + 2t

)(
0
2

)
= e−3t

(
−8t

2 + 4t

)
.

(5) [8] Two interconnected tanks are filled with brine (salt water). At t = 0 the first tank
contains 17 liters and the second contains 28 liters. Brine with a salt concentration
of 8 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 7 liters per hour, from the second into
the first at 5 liters per hour, from the first into a drain at 3 liter per hour, and from
the second into a drain at 4 liters per hour. At t = 0 there are 21 grams of salt in
the first tank and 14 grams in the second.
(a) [6] Give an initial-value problem that governs the amount of salt in each tank

as a function of time.
(b) [2] Give the interval of definition for the solution of this initial-value problem.

Solution (a). Let V1(t) and V2(t) be the volumes (lit) of brine in the first and second
tank at time t hours. Let S1(t) and S2(t) be the mass (gr) of salt in the first and
second tank at time t hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time t are C1(t) = S1(t)/V1(t) and
C2(t) = S2(t)/V2(t) respectively. In particular, these are the salt concentrations of
the brine that flows out of these tanks. We have the following picture.

8 gr/lit
6 lit/hr

→

C1(t) gr/lit
3 lit/hr

←

V1(t) lit
S1(t) gr

→ C1(t) gr/lit
7 lit/hr

→

← C2(t) gr/lit
5 lit/hr

←

V2(t) lit
S2(t) gr

→ C2(t) gr/lit
4 lit/hr

V1(0) = 17 lit
S1(0) = 21 gr

V2(0) = 28 lit
S2(0) = 14 gr

We are asked to write down an initial-value problem that governs S1(t) and S2(t).
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The rates work out so there will be V1(t) = 17 + t liters of brine in the first tank
and V2(t) = 28 − 2t liters in the second. Then S1(t) and S2(t) are governed by the
initial-value problem

dS1

dt
= 8 · 6 +

S2

28− 2t
5− S1

17 + t
7− S1

17 + t
3 , S1(0) = 21 ,

dS2

dt
=

S1

17 + t
7− S2

28− 2t
5− S2

28− 2t
4 , S2(0) = 14 .

Your answer could be left in the above form. However, it can be simplified to

dS1

dt
= 48 +

5

28− 2t
S2 −

10

17 + t
S1 , S1(0) = 21 ,

dS2

dt
=

7

17 + t
S1 −

9

28− 2t
S2 , S2(0) = 14 .

Solution (b). This first-order system of differential equations is linear. Its coeffi-
cients are undefined either at t = 14 or t = −17 and are continuous elsewhere. Its
forcing is constant, so is continuous everywhere. Therefore the natural interval of
definition for the solution of this initial-value problem is (−17, 14) because:
• the initial time t = 0 is in (−17, 14);
• all the coefficients and the forcing are continuous over (−17, 14);
• every coefficient of S1 is undefined at t = −17;
• every coefficient of S2 is undefined at t = 14.

However, it could also be argued that the interval of definition for the solution of this
initial-value problem is [0, 14) because the word problem starts at t = 0.

(6) [8] A 4× 4 matrix K has the eigenpairs0 ,


1
1
1
1


 ,

1 ,


1
1
−1
−1


 ,

4 ,


1
−1
1
−1


 ,

9 ,


1
−1
−1
1


 ,

(a) Give an invertible matrix V and a diagonal matrix D such that etK = VetDV−1.
(You do not have to compute either V−1 or etK!)

(b) Give a fundamental matrix for the system x′ = Kx.

Solution (a). One choice for V and D is

V =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , D =


0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9

 .

Remark. There are 23 other choices for D. (Can you find them all?)

Solution (b). Use the given eigenpairs to construct the real eigensolutions

x1(t) =


1
1
1
1

 , x2(t) = et


1
1
−1
−1

 , x3(t) = e4t


1
−1
1
−1

 , x4(t) = e9t


1
−1
−1
1

 .
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Then a fundamental matrix for the system is

Ψ(t) =
(
x1(t) x2(t) x3(t) x4(t)

)
=


1 et e4t e9t

1 et −e4t −e9t
1 −et e4t −e9t
1 −et −e4t e9t

 .

Alternative Solution (b). Given the V and D from part (a), a fundamental matrix
for the system is

Ψ(t) = VetD =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




1 0 0 0
0 et 0 0
0 0 e4t 0
0 0 0 e9t

 =


1 et e4t e9t

1 et −e4t −e9t
1 −et e4t −e9t
1 −et −e4t e9t

 .

(7) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
−7 −4
2 −3

)(
x
y

)
.

Solution by Formula. The characteristic polynomial of A =

(
−7 −4
2 −3

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 10z + 29 = (z + 5)2 + 22 .

This is a sum of squares with µ = −5 and ν = 2. Then

etA = e−5t
[
cos(2t)I +

sin(2t)

2
(A− (−5)I)

]
= e−5t

[
cos(2t)

(
1 0
0 1

)
+

sin(2t)

2

(
−2 −4
2 2

)]
= e−5t

(
cos(2t)− sin(2t) −2 sin(2t)

sin(2t) cos(2t) + sin(2t)

)
.

(Check that tr(A + 5I) = 0!) Therefore a general solution is

x(t) = etAc = e−5t
(

cos(2t)− sin(2t) −2 sin(2t)
sin(2t) cos(2t) + sin(2t)

)(
c1
c2

)
= c1e

−5t
(

cos(2t)− sin(2t)
sin(2t)

)
+ c2e

−5t
(

−2 sin(2t)
cos(2t) + sin(2t)

)
.

Solution by Eigensolutions. The characteristic polynomial of A =

(
−7 −4
2 −3

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 10z + 29 = (z + 5)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are −5+ i2 and −5− i2.
Consider the matrix

A− (−5− i2)I =

(
−2 + i2 −4

2 2 + i2

)
.
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After checking that the determinant of this matrix is zero, we can read off from its
first column that an eigenpair of A is(

−5 + i2 ,

(
−1 + i

1

))
.

(Another eigenpair is the complex conjugate of this one, but we will not need it.)
This eigenpair yields the complex-valued eigensolution

x(t) = e(−5+i2)t

(
−1 + i

1

)
= e−5t

(
cos(2t) + i sin(2t)

)(−1 + i
1

)
= e−5t

((
cos(2t) + i sin(2t)

)
(−1 + i)

cos(2t) + i sin(2t)

)
= e−5t

((
− cos(2t)− sin(2t)

)
+ i
(

cos(2t)− sin(2t)
)

cos(2t) + i sin(2t)

)
.

A fundamental set of real-valued solutions can be read off from the real and imaginary
parts of this complex-valued eigensolution as

x1(t) = e−5t
(
− cos(2t)− sin(2t)

cos(2t)

)
, x2(t) = e−5t

(
cos(2t)− sin(2t)

sin(2t)

)
.

Therefore a real general solution is

x(t) = c1e
−5t
(
− cos(2t)− sin(2t)

cos(2t)

)
+ c2e

−5t
(

cos(2t)− sin(2t)
sin(2t)

)
.

(8) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
1 5
3 3

)(
x
y

)
.

Solution by Eigensolutions. The characteristic polynomial of B =

(
1 5
3 3

)
is

p(z) = z2 − tr(B)z + det(B) = z2 − 4z − 12 = (z + 2)(z − 6) .

The eigenvalues of B are the roots of this polynomial, which are −2 and 6. Consider
the matrices

B + 2I =

(
3 5
3 5

)
, B− 6I =

(
−5 5
3 −3

)
.

After checking that the determinant of each matrix is zero, we can read off that
eigenpairs of B are (

−2 ,

(
5
−3

))
,

(
6 ,

(
1
1

))
.

Therefore a real general solution of the system is

x(t) = c1e
−2t
(

5
−3

)
+ c2e

6t

(
1
1

)
.
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Solution by Formula. The characteristic polynomial of B =

(
1 5
3 3

)
is

p(z) = z2 − tr(B)z + det(B) = z2 − 4z − 12 = (z − 2)2 − 4− 12 = (z − 2)2 − 42 .

This is a difference of squares with µ = 2 and ν = 4. Then

etB = e2t
[
cosh(4t)I +

sinh(4t)

4

(
B− 2I

)]
= e2t

[
cosh(4t)

(
1 0
0 1

)
+

sinh(4t)

4

(
−1 5
3 1

)]

= e2t

cosh(4t)− 1
4

sinh(4t) 5
4

sinh(4t)

3
4

sinh(4t) cosh(4t) + 1
4

sinh(4t)

 .

(Check that tr(B− 2I) = 0!) Therefore a real general solution of the system is

x(t) = etBc = e2t

cosh(4t)− 1
4

sinh(4t) 5
4

sinh(4t)

3
4

sinh(4t) cosh(4t) + 1
4

sinh(4t)

c1
c2


= c1e

2t

cosh(4t)− 1
4

sinh(4t)

3
4

sinh(4t)

+ c2e
2t

 5
4

sinh(4t)

cosh(4t) + 1
4

sinh(4t)

 .

(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0
for the operator D4 + 17D2 + 16.

Solution from Green Function. The operator D4 + 17D2 + 16 has characteristic
polynomial

p(s) = s4 + 17s2 + 16 = (s2 + 1)(s2 + 16) .

We have the partial-fraction identity

1

p(s)
=

1

(s2 + 1)(s2 + 16)
=

1
15

s2 + 1
+
− 1

15

s2 + 16
.

Referring to the table on the last page, item 2 with a = 0 and b = 1 and with a = 0
and b = 4 shows that

L−1
[

1

s2 + 1

]
(t) = sin(t) , L−1

[
4

s2 + 42

]
(t) = sin(4t) .

Therefore the Green function for the operator D4 + 17D2 + 16 is

g(t) = L−1
[

1

p(s)

]
(t) = 1

15
L−1
[

1

s2 + 1

]
(t)− 1

60
L−1
[

4

s2 + 42

]
(t)

= 1
15

sin(t)− 1
60

sin(4t) .

Because we see the characteristic polynomial as

p(s) = s4 + 0 · s3 + 17 · s2 + 0 · s+ 16 ,
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the natural fundamental set of solutions associated with the initial-time 0 for the
operator D4 + 10D2 + 9 is given by

N3(t) = g(t) = 1
15

sin(t)− 1
60

sin(4t) ,

N2(t) = N ′3(t) + 0 · g(t) = 1
15

cos(t)− 1
15

cos(4t) ,

N1(t) = N ′2(t) + 17 · g(t) = − 1
15

sin(t) + 4
15

sin(4t) + 17
(

1
15

sin(t)− 1
60

sin(4t)
)
,

= 16
15

sin(t)− 1
60

sin(4t) ,

N0(t) = N ′1(t) + 0 · g(t) = 16
15

cos(t)− 1
15

cos(4t) .

Solution from General Initial-Value Problem. For the operator D4 +17D2 +16
the general initial-value problem for initial-time 0 is

y′′′′ + 17y′′ + 16y = 0 , y(0) = y0 , y′(0) = y1 , y′′(0) = y2 , y′′′(0) = y3 .

Its characteristic polynomial is

p(z) = z4 + 17z2 + 16 = (z2 + 1)(z2 + 16) = (z2 + 1)(z2 + 42) ,

which has roots i, −i, i4 and −i4. Therefore a real general solution is

y(t) = c1 cos(t) + c2 sin(t) + c3 cos(4t) + c4 sin(4t) .

Because

y′(t) = −c1 sin(t) + c2 cos(t)− 4c3 sin(4t) + 4c4 cos(4t) ,

y′′(t) = −c1 cos(t)− c2 sin(t)− 16c3 cos(4t)− 16c4 sin(4t) ,

y′′′(t) = c1 sin(t)− c2 cos(t) + 64c3 sin(4t)− 64c4 cos(4t) ,

the general initial conditions yield the linear algebraic system

y0 = y(0) = c1 cos(0) + c2 sin(0) + c3 cos(0) + c4 sin(0) = c1 + c3 .

y1 = y′(0) = −c1 sin(0) + c2 cos(0)− 4c3 sin(0) + 4c4 cos(0) = c2 + 4c4 ,

y2 = y′′(0) = −c1 cos(0)− c2 sin(0)− 16c3 cos(0)− 16c4 sin(0) = −c1 − 16c3 ,

y3 = y′′′(t) = c1 sin(0)− c2 cos(0) + 64c3 sin(0)− 64c4 cos(0) = −c2 − 64c4 .

This decouples into the two systems

y0 = c1 + c3 , y1 = c2 + 4c4 ,

y2 = −c1 − 16c3 , y3 = −c2 − 64c4 .

The solutions of these systems are

c1 =
16y0 + y2

15
, c2 =

16y1 + y3
15

,

c3 = −y0 + y2
15

, c4 = −y1 + y3
60

.

Therefore the solution of the general initial-value problem is

y =
16y0 + y2

15
cos(t) +

16y1 + y3
15

sin(t)− y0 + y2
15

cos(4t)− y1 + y3
60

sin(4t)

= y0
(
16
15

cos(t)− 1
15

cos(4t)
)

+ y1
(
16
15

sin(t)− 1
60

sin(4t)
)

+ y2
(

1
15

cos(t)− 1
15

cos(4t)
)

+ y3
(

1
15

sin(t)− 1
60

sin(4t)
)
.
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We can read off from this that the natural fundamental set of solutions associated
with the initial-time 0 for the operator D4 + 10D2 + 9 is

N0(t) = 16
15

cos(t)− 1
15

cos(4t) , N1(t) = 16
15

sin(t)− 1
60

sin(4t) ,

N2(t) = 1
15

cos(t)− 1
15

cos(4t) , N3(t) = 1
15

sin(t)− 1
60

sin(4t) .

(10) [8] Compute the Laplace transform of f(t) = u(t− 5) e−3t from its definition.
(Here u is the unit step function.)

Solution. The definition of Laplace transform gives

L[f ](s) = lim
T→∞

∫ T

0

e−stu(t− 5) e−3t dt = lim
T→∞

∫ T

5

e−(s+3)t dt .

• When s ≤ −3 we have for every T > 5∫ T

5

e−(s+3)t dt ≥
∫ T

5

dt = T − 5 ,

which clearly diverges to +∞ as T →∞.

• When s > −3 we have for every T > 5∫ T

5

e−(s+3)t dt = −e
−(s+3)t

s+ 3

∣∣∣∣T
5

= −e
−(s+3)T

s+ 3
+
e−(s+3)5

s+ 3
,

whereby

L[f ](s) = lim
T→∞

[
− e−(s+3)T

s+ 3
+
e−(s+3)5

s+ 3

]
=
e−(s+3)5

s+ 3
for s > −3 .

Therefore the definition of the Laplace transform gives

L[f ](s) =


e−(s+3)5

s+ 3
for s > −3 ,

undefined for s ≤ −3 .

(11) [10] Consider the following MATLAB commands.

>> syms t x(t) s X
>> f = t̂ 2 + heaviside(t − 2)*(4 − t̂ 2);
>> diffeqn = diff(x, 2) + 4*diff(x, 1) + 20*x(t) == f;
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, ...

[laplace(x(t), t, s), x(0), subs(diff(x(t), t), t, 0)], [X, 2, −3]);
>> xtrans = simplify(solve(algeqn, X));
>> x = ilaplace(xtrans, s, t)
(a) [2] Give the initial-value problem for x(t) that is being solved.
(b) [8] Find the Laplace transform X(s) of the solution x(t). (Just solve for X(s)!

DO NOT take the inverse Laplace transform of X(s) to find x(t)!)
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You may refer to the table on the last page.

Solution (a). The initial-value problem for x(t) that is being solved is

x′′ + 4x′ + 20x = f(t) , x(0) = 2 , x′(0) = −3 ,

where the forcing f(t) can be expressed either as the piecewise-defined function

f(t) =

{
t2 for 0 ≤ t < 2 ,

4 for 2 ≤ t .

or in terms of the unit step function as

f(t) = t2 + u(t− 2)(4− t2) .

Solution (b). The Laplace transform of the differential equation is

L[x′′](s) + 4L[x′](s) + 20L[x](s) = L[f ](s) ,

while the initial conditions give

L[x](s) = X(s) ,

L[x′](s) = sL[x](s)− x(0) = sX(s)− 2 ,

L[x′′](s) = sL[x′](s)− x′(0) = s2X(s)− 2s+ 3 .

Therefore the Laplace transform of the initial-value problem is(
s2X(s)− 2s+ 3

)
+ 4
(
sX(s)− 2

)
+ 20X(s) = L[f ](s) .

This simplifies to

(s2 + 4s+ 20)X(s)− 2s− 5 = L[f ](s) ,

whereby

X(s) =
1

s2 + 4s+ 20

(
2s+ 5 + L[f ](s)

)
.

To compute L[f ](s), we write f(t) as

f(t) = t2 + u(t− 2)(4− t2) = t2 + u(t− 2)j(t− 2) ,

where upon setting j(t− 2) = 4− t2, we see by the shifty step method that

j(t) = 4− (t+ 2)2 = 4− t2 − 4t− 4 = −t2 − 4t .

Referring to the table on the last page, item 1 with a = 0 and n = 1, and with a = 0
and n = 2 shows that

L[t](s) =
1

s2
, L[t2](s) =

2

s3
,

whereby item 6 with c = 2 and j(t) = −t2 − 4t shows that

L
[
u(t− 2)j(t− 2)

]
(s) = e−2sL[j](s) = −e−2sL[t2 + 4t](s)

= −e−2s
(

2

s3
+

4

s2

)
.
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Therefore
L[f ](s) = L

[
t2 + u(t− 2)j(t− 2)

]
(s)

=
2

s3
− e−2s

(
2

s3
+

4

s2

)
.

Upon placing this result into the expression for X(s) found earlier, we obtain

X(s) =
1

s2 + 4s+ 20

(
2s+ 5 +

2

s3
− e−2s

(
2

s3
+

4

s2

))
.

(12) [8] Find the inverse Laplace transform L−1[Y (s)](t) of the function

Y (s) = e−2s
s+ 8

s2 − 8s+ 25
.

You may refer to the table on the last page.

Solution. Referring to the table on the last page, item 6 with c = 2 shows that

L−1
[
e−2s J(s)

]
= u(t− 2)j(t− 2) , where j(t) = L−1[J(s)](t) .

We apply this formula to

J(s) =
s+ 8

s2 − 8s+ 25
.

Because s2 − 8s+ 25 = (s− 4)2 + 32, we have the partial fraction identity

J(s) =
s+ 8

s2 − 8s+ 25
=

(s− 4) + 12

(s− 4)2 + 32
=

s− 4

(s− 4)2 + 32
+

12

(s− 4)2 + 32
.

Referring to the table on the last page, items 2 and 3 with a = 4 and b = 3 show
that

L−1
[

s− 4

(s− 4)2 + 32

]
= e4t cos(3t) , L−1

[
3

(s− 4)2 + 32

]
= e4t sin(3t) .

The above formulas and the linearity of the inverse Laplace transform yield

j(t) = L−1[J(s)](t) = L−1
[

s+ 8

s2 − 8s+ 25

]
(t)

= L−1
[

s− 4

(s− 4)2 + 32
+

12

(s− 4)2 + 32

]
(t)

= L−1
[

s− 4

(s− 4)2 + 32

]
(t) + 4L−1

[
3

(s− 4)2 + 32

]
(t)

= e4t cos(3t) + 4e4t sin(3t) .

Therefore

L−1
[
Y (s)

]
(t) = L−1[e−2sJ(s)](t)

= u(t− 2)j(t− 2)

= u(t− 2)
(
e4(t−2) cos

(
3(t− 2)

)
+ 4e4(t−2) sin

(
3(t− 2)

))
.
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Table of Laplace Transforms

L[tneat](s) =
n!

(s− a)n+1
for s > a .

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2
for s > a .

L[eat sin(bt)](s) =
b

(s− a)2 + b2
for s > a .

L[j′(t)](s) = sJ(s)− j(0) where J(s) = L[j(t)](s) .

L[tnj(t)](s) = (−1)nJ (n)(s) where J(s) = L[j(t)](s) .

L[eatj(t)](s) = J(s− a) where J(s) = L[j(t)](s) .

L[u(t− c)j(t− c)](s) = e−csJ(s) where J(s) = L[j(t)](s), c ≥ 0,

and u is the unit step function.

L[δ(t− c)j(t)](s) = e−csj(c) where c ≥ 0 and δ is the unit impulse.


