
Second In-Class Exam Solutions
Math 246, Professor David Levermore

Thursday, 17 October 2019

(1) [4] Give the interval of definition for the solution of the initial-value problem

x′′′ − cos(3t)

t2 − 16
x′ +

et

sin(t)
x =

1

1 + t2
, x(5) = x′(5) = x′′(5) = −2 .

Solution. The equation is linear and is already in normal form. Notice the following.
� The coefficient of x′ is undefined at t = ±4 and is continuous elsewhere.
� The coefficient of x is undefined at t = nπ for every integer n and is continuous

elsewhere.
� The forcing is continuous everywhere.
� The initial time is t = 5.

Plotting these points on a time-line near the initial time t = 5 gives

——-◦———-◦————•—————◦——→ t
π 4 5 2π

Therefore the interval of definition is (4, 2π) because:
• the initial time t = 5 is in (4, 2π);
• all the coefficients and the forcing are continuous over (4, 2π);
• the coefficient of x′ is undefined at t = 4;
• the coefficient of x is undefined at t = 2π.

Remark. All four reasons must be given for full credit.
◦ The first two reasons are why a (unique) solution exists over the interval (4, 2π).
◦ The last two reasons are why this solution does not exist over a larger interval.

(2) [12] The functions t and t2 are a fundamental set of solutions to t2y′′ − 2ty′ + 2y = 0
over t > 0.
(a) [8] Solve the general initial-value problem

t2y′′ − 2ty′ + 2y = 0 , y(1) = y0 , y′(1) = y1 .

(b) [4] Find the associated natural fundamental set of solutions to t2y′′−2ty′+2y = 0.

Solution (a). Because we are given that t and t2 is a fundamental set of solutions
to t2y′′ − 2ty′ + 2y = 0 over t > 0, a general solution is y(t) = c1t + c2t

2. Because
y′(t) = c1 + 2c2t, the initial conditions imply

y0 = y(1) = c1 + c2 , y1 = y′(1) = c1 + 2c2 .

We solve these equations to obtain

c1 = 2y0 − y1 , c2 = y1 − y0 .
Therefore the solution to the general initial-value problem is

y(t) = (2y0 − y1)t+ (y1 − y0)t2 .

Solution (b). The solution found in part (a) can be written as

y(t) = y0(2t− t2) + y1(t
2 − t) .
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We can read off from this that the associated natural fundamental set of solutions is

N0(t) = 2t− t2 , N1(t) = t2 − t .

(3) [4] Suppose that Z1(t), Z2(t), Z3(t), and Z4(t) solve the differential equation

z′′′′ + 3z′′′ + sin(2t)z′ + etz′ + 6z = 0 ,

Suppose we know that Wr[Z1, Z2, Z3, Z4](0) = 5. Find Wr[Z1, Z2, Z3, Z4](t).

Solution. The Abel Theorem says that w(t) = Wr[Z1, Z2, Z3, Z4](t) satisfies

w′ + 3w = 0 .

We see that w(t) = ce−3t for some c. Because w(t) satisfies the initial condition

w(0) = Wr[Z1, Z2, Z3, Z4](0) = 5 ,

we have w(0) = ce−3·0 = 5, whereby c = 5. Therefore w(t) = 5e−3t, which shows that

Wr[Z1, Z2, Z3, Z4](t) = 5e−3t .

(4) [12] Let L be a linear ordinary differential operator with constant coefficients. Sup-
pose that all the roots of its characteristic polynomial (listed with their multiplicities)
are −3 + i2, −3 + i2, −3− i2, −3− i2, −5, −5, −5, 0, 0.
(a) [2] Give the order of L.
(b) [7] Give a real general solution of the homogeneous equation Lu = 0.
(c) [3] Give the degree d, characteristic µ+ iν, and multiplicity m for the forcing of

the nonhomogeneous equation Lv = t4e−3t sin(2t).

Solution (a). Because 9 roots are listed, the degree of the characteristic polynomial
must be 9, whereby the order of L is 9.

Solution (b). A fundamental set of nine real-valued solutions is built as follows.
� The conjugate pair of double roots −3± i2 contributes

e−3t cos(2t) , e−3t sin(2t) , t e−3t cos(2t) , and t e−3t sin(2t) .

� The triple real root −5 contributes

e−5t , t e−5t , and t2e−5t .

� The double real root 0 contributes

1 and t .

Therefore a real general solution of the homogeneous equation Lu = 0 is

u = c1e
−3t cos(2t) + c2e

−3t sin(2t) + c3t e
−3t cos(2t) + c4t e

−3t sin(2t)

+ c5e
−5t + c6t e

−5t + c7t
2e−5t + c8 + c9t .

Solution (c). The forcing of the nonhomogeneous linear equation Lv = t4e−3t sin(2t)
has degree d = 4 and characteristic µ + iν = −3 + i2. Because the characteristic
µ + iν = −3 + i2 is listed as a double root of the characteristic polynomial, it has
multiplicity m = 2. Therefore, we have

d = 4 , µ+ iν = −3 + i2 , m = 2 .
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(5) [8] What answer will be produced by the following MATLAB commands?

>> syms w(t)
>> ode = diff(w,t,2) − diff(w,t) − 12*w == 12*exp(3*t);
>> wSol(t) = dsolve(ode)

Solution. The commands ask MATLAB for a real general solution of the equation

D2w −Dw − 12w = 12e3t , where D =
d

dt
.

While your answer did not have to be given in MATLAB format, MATLAB will
produce something equivalent to

− 2*exp(3*t) + C1*exp(−3*t) + C2*exp(4*t)

This can be seen as follows. This is a nonhomogeneous linear equation for w(t)
with constant coefficients. Its linear differential operator is L = D2 − D − 12. Its
characteristic polynomial is

p(z) = z2 − z − 12 = (z + 3)(z − 4) ,

which has the two real roots −3 and 4. Therefore a real general solution of the
associated homogeneous problem is

wH(t) = c1e
−3t + c2e

4t .

The forcing 12e3t has degree d = 0, characteristic µ+ iν = 3, and multiplicity m = 0.
A particular solution wP (t) can be found by using either Key Identity Evaluations,
the Zero Degree Formula, or Undetermined Coefficients. Below we show that each of
these methods gives the particular solution wP (t) = −2e3t. Therefore a real general
solution is

w = c1e
−3t + c2e

4t − 2 e3t .

Up to notational differences, this is the answer that MATLAB produces.

Key Identity Evaluations. Because m = m+ d = 0, we only need to evaluate the
Key Identity at the characteristic z = µ+ iν = 3. The Key Identity is

L(ezt) = (z2 − z − 12) · ezt .
When this is evaluated at z = 3 we find

L(e3t) = (32 − 3− 12) · e3t = −6e3t .

Because the forcing is 12e3t, we multiply the above equation by −2 to obtain

L(−2e3t) = 12e3t .

Therefore a particular solution is

wP (t) = −2e3t .
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Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the phasor form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

wP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem the forcing f(t) = 12e3t is already in phasor form with phasor
α − iβ = 12 and characteristic µ + iν = 3. Because the characteristic polynomial is
p(z) = z2 − z − 12 and m = 0, we have

p(m)(µ+ iν) = p(3) = 32 − 3− 12 = −6 .

Therefore the particular solution becomes

wP (t) = e3t
12

−6
= −2e3t .

Undetermined Coefficients. Because m = m + d = 0 and µ + iν = 3, there is a
particular solution in the form

wP (t) = Ae3t .

Because

w′P (t) = 3Ae3t , w′′P (t) = 9Ae3t ,

we see that
LwP (t) = w′′P (t)− w′P (t)− 12wP (t)

=
[
9Ae3t

]
−
[
3Ae3t

]
− 12[Ae3t]

= (9− 3− 12)Ae3t = −6Ae3t .

Setting LwP (t) = −6Ae3t = 12e3t, we see that A = −2. Therefore the particular
solution is

wP (t) = −2e2t .

(6) [8] Find a particular solution qP (t) of the equation q′′ − 4q = 8t e2t.

Solution. This is a nonhomogeneous linear equation with constant coefficients. Its
linear differential operator is L = D2 − 4. Its characteristic polynomial is

p(z) = z2 − 4 = (z + 2)(z − 2) ,

which has two simple real roots −2 and 2. The forcing 8t e2t has characteristic form
with degree d = 1 and characteristic µ + iν = 2, which has multiplicity m = 1.
Therefore we can use either Key Identity Evaluations or Undetermined Coefficients
to find a particular solution. Both methods give the particular solution

qP (t) = t2e2t − 1
2
t e2t .
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Key Identity Evaluations. Because m = 1 and m+d = 2 we need to evaluate the
first and second derivative (with respect to z) of the Key Identity at the characteristic
z = µ+ iν = 2. The Key Identity and its first two derivatives with respect to z are

L
(
ezt
)

= (z2 − 4) · ezt ,
L
(
t ezt

)
= (z2 − 4) · t ezt + 2z · ezt ,

L
(
t2ezt

)
= (z2 − 4) · t2ezt + 2 · 2z · t ezt + 2 · ezt .

(Notice the 2 in the middle term of the second derivative from the Pascal triangle.)
By evaluating the first and second derivative of the Key Identity at z = µ + iν = 2
we obtain

L
(
t e2t

)
= 4e2t , L

(
t2e2t

)
= 8t e2t + 2e2t .

By subtracting half of the first equation from the second we obtain

L
(
t2e2t − 1

2
t e2t

)
= 8t e2t .

Therefore a particular solution of Lq = 8t e2t is

qP (t) = t2e2t − 1
2
t e2t .

Undetermined Coefficients. Because m = 1, m+ d = 2, and µ+ iν = 2, there is
a particular solution in the form

qP (t) = (A0t
2 + A1t) e

2t .

Because

q′P (t) = 2(A0t
2 + A1t) e

2t + (2A0t+ A1) e
2t

=
(
2A0t

2 + (2A0 + 2A1)t+ A1

)
e2t ,

q′′P (t) = 2
(
2A0t

2 + (2A0 + 2A1)t+ A1

)
e2t +

(
4A0t+ (2A0 + 2A1)

)
e2t

=
(
4A0t

2 + (8A0 + 4A1)t+ (2A0 + 4A1)
)
e2t ,

we see that

LqP (t) = q′′P (t)− 4qP (t)

=
(
4A0t

2 + (8A0 + 4A1)t+ (2A0 + 4A1)
)
e2t − 4(A0t

2 + A1t) e
2t

=
(
8A0t+ (2A0 + 4A1)

)
e2t = 8A0t e

2t + (2A0 + 4A1)e
2t .

By setting LqP (t) = 8t e2t, the linear independence of t e2t and e2t implies that

8A0 = 8 , 2A0 + 4A1 = 0 ,

which yields A0 = 1 and A1 = −1
2
. Therefore a particular solution of Lq = 8t e2t is

qP (t) = t2e2t − 1
2
t e2t .
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(7) [8] Compute the Green function g(t) associated with the differential operator

D2 + 6D + 9 , where D =
d

dt
.

Solution. Because the linear differential operator has constant coefficients, its Green
function g(t) satisfies

D2g + 6Dg + 9g = 0 , g(0) = 0 , g′(0) = 1 .

The characteristic polynomial is

p(z) = z2 + 6z + 9 = (z + 3)2 ,

which has the double root −3. Hence, a general solution of the equation is

g(t) = c1e
−3t + c2t e

−3t .

The first initial condition implies 0 = g(0) = c1, whereby

g(t) = c2te
−3t .

Because
g′(t) = c2e

−3t − 3c2t e
−3t ,

the second initial condition implies 1 = g′(0) = c2, whereby c2 = 1. Therefore the
Green function associated with the differential operator is

g(t) = te−3t .
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(8) [8] Solve the initial-value problem

v′′ + 6v′ + 9v =
9e−3t

1 + t
, v(0) = v′(0) = 0 .

Solution. This is a nonhomogeneous linear equation with constant coefficients. Be-
cause its forcing does not have characteristic form, we cannot use either Key Identity
Evaluations or Undetermined Coefficients. Because this is an initial-value problem
with homogeneous initial conditions, we will use the Green function method, which
leads directly to the answer.

By the previous problem the Green function for this problem is g(t) = t e−3t.
Because the equation is in normal form, the initial time is 0, and both of the initial
values are 0, the solution to this inital-value problem is given by the Green formula

q(t) =

∫ t

0

g(t− s)f(s) ds =

∫ t

0

(t− s)e−3(t−s) 9e−3s

1 + s
ds

= 9e−3t
∫ t

0

t− s
1 + s

ds

= 9t e−3t
∫ t

0

1

1 + s
ds− 8e−3t

∫ t

0

s

1 + s
ds

= 9t e−3t log(1 + t)− 9e−3t
(
t− log(1 + t)

)
.

Remark. The last integral above can be done by using either the substitution
u = 1 + s, integration by parts, or the identity

s

1 + s
= 1− 1

1 + s
.

Remark. Notice that the interval of definition for this solution is (−1,∞), which is a
fact that could have been read off directly from the initial-value problem beforehand.

Remark. This problem can also be solved by the general Green function method.
However that approach is not as efficient because it does not use the fact the Green
function g(t) was already computed in the solution of the preceeding problem. The
integrals end up being the same.

Remark. This problem can also be solved by using variation of parameters. However
that approach is not as efficient because it does not directly solve the initial-value
problem. Rather, it yields a general solution after which the parameters c1 and c2 in
it must be determined to satisfy the initial conditions.
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(9) [10] The functions 1 + 2t and t2 are solutions of the homogeneous equation

(1 + t)t x′′ − (1 + 2t)x′ + 2x = 0 over t > 0 .

(You do not have to check that this is true!)
(a) [3] Show that these functions are linearly independent.
(b) [7] Give a general solution of the nonhomogeneous equation

(1 + t)t y′′ − (1 + 2t)y′ + 2y =
8t (1 + t)2

1 + 2t
over t > 0 .

Solution (a). The Wronskian of 1 + 2t and t2 is

Wr[1 + 2t, t2](t) = det

(
1 + 2t t2

2 2t

)
= (1 + 2t)2t− 2t2 = 2t+ 2t2 = 2(1 + t)t .

Because Wr[1 + 2t, t2](t) 6= 0 for t > 0, the functions 1 + 2t and t2 are linearly
independent.

Solution (b). The nonhomogeneous equation for y(t) has variable coefficients, so
we must use either the variation of parameters method or the general Green function
method to solve it. Because we seek a general solution, neither method is favored.
To apply either method we must first bring the equation into its normal form,

y′′ − 1 + 2t

t
y′ +

2

t
y =

8(1 + t)

1 + 2t
over t > 0 .

Because 1 + 2t and t2 are linearly independent, they constitute a fundamental set of
solutions to the associated homogeneous equation.

Variation of Parameters. Because 1 + 2t and t2 constitute a fundamental set of
solutions to the associated homogeneous equation, we seek a general solution of the
nonhomogeneous equation in the form

y(t) = (1 + 2t)u1(t) + t2u2(t) ,

where u′1(t) and u′2(t) satisfy the linear algebraic system

(1 + 2t)u′1(t) + t2u′2(t) = 0 ,

2u′1(t) + 2tu′2(t) =
8(1 + t)

1 + 2t
.

The solution of this system is

u′1(t) = − 4t

1 + 2t
, u′2(t) =

4

t
.

Integrate these equations over t > 0 to obtain

u1(t) = c1 − 2t+ log(1 + 2t) , u2(t) = c2 + 4 log(t) .

Therefore a general solution of the nonhomogeneous equation over t > 0 is

y(t) = (1 + 2t)u1(t) + t2u2(t)

= (1 + 2t)
(
c1 − 2t+ log(1 + 2t)

)
+ t2

(
c2 + 4 log(t)

)
= (1 + 2t)c1 + t2c2 + (1 + 2t)

(
log(1 + 2t)− 2t

)
+ 4t2 log(t) .
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Remark. The integration of u′1(t) above can be done by using either the substitution
u = 1 + 2t, integration by parts, or the identity

4t

1 + 2t
= 2− 2

1 + 2t
.

Remark. Another way to find u′1(t) and u′2(t) is to use the formulas

u′1(t) = − Y2(t) f(t)

Wr[Y1, Y2](t)
, u′2(t) =

Y1(t) f(t)

Wr[Y1, Y2](t)
,

with Y1(t) = 1 + 2t, Y2(t) = t2, and f(t) = 8(1 + t)/(1 + 2t). They yield

u′1(t) = − t2

2(1 + t)t

8(1 + t)

1 + 2t
= − 4t

1 + 2t
,

u′2(t) =
1 + 2t

2(1 + t)t

8(1 + t)

1 + 2t
=

4

t
.

This approach requires knowing two formulas. The General Green Function method
shown next requires knowing just one formula.

General Green Function. The Green function G(t, s) is given by

G(t, s) =
1

Wr[1 + 2s, s2](s)
det

(
1 + 2s s2

1 + 2t t2

)
=
t2(1 + 2s)− (1 + 2t)s2

2(1 + s)s
.

The Green Formula then yields the particular solution

yP (t) =

∫ t

1

G(t, s) f(s) ds =

∫ t

1

t2(1 + 2s)− (1 + 2t)s2

2(1 + s)s

8(1 + s)

1 + 2s
ds

= 4t2
∫ t

1

1

s
ds− (1 + 2t)

∫ t

1

4s

1 + 2s
ds

= 4t2 log(t)− (1 + 2t)

(
2t− 2− log

(
1 + 2t

3

))
.

A general solution of the nonhomogeneous equation over t > 0 is thereby

y(t) = c1(1 + 2t) + c2t
2 + 4t2 log(t)− (1 + 2t)

(
2t− 2− log

(
1 + 2t

3

))
.

Remark. The last integral above can be done by using either the substitution
u = 1 + 2s, integration by parts, or the identity

4s

1 + 2s
= 2− 2

1 + 2s
.

Remark. Because the integrands are both continuous except at s = −1
2

and s = 0,
and because we want our solution to be defined for every t > 0, the lower endpoint
of integration in the Green Formula can be any tI > 0. We took tI = 1 because
it simplified the evaluation of the first primitive. Had we been asked to solve an
initial-value problem then we would have taken tI to be the initial time. For any
tI > 0 the resulting particular solution would satisfy

yP (tI) = y′P (tI) = 0 .
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Remark. Notice that the general solutions produced by the Variation of Parameters
and General Green Function methods differ because they are built from different
particular solutions. If we replace the c2 in these first of these general solutions by
c2 + 2− log(3) then we get the second.

(10) [8] Give a real general solution of the equation

D2u− 4Du+ 20u = 4 cos(2t)− 3 sin(2t) , where D =
d

dt
.

Solution. This is a nonhomogeneous linear equation with constant coefficients. Its
linear differential operator is L = D2 − 4D + 20. Its characteristic polynomial is

p(z) = z2 − 4z + 20 = (z − 2)2 + 42 ,

which has the conjugate pair of roots 2 ± i4. The forcing 4 cos(2t) − 3 sin(2t) has
characteristic form with degree d = 0 and characteristic µ + iν = i2, which has
multiplicity m = 0. Therefore we can use either Key Identity Evaluations, the Zero
Degree Formula, or Undetermined Coefficients to find a particular solution. Each of
these methods gives the real particular solution

vP (t) = 1
8

cos(2t)− 1
4

sin(2t) .

Therefore a real general solution is

v(t) = c1e
2t cos(4t) + c2e

2t sin(4t) + 1
8

cos(2t)− 1
4

sin(2t) .

Key Identity Evaluations. Because m = m+ d = 0, we only need to evaluate the
Key Identity at the characteristic z = µ+ iν = i2. The Key Identity is

L(ezt) = (z2 − 4z + 20) · ezt .
When this is evaluated at z = i2 we find

L(ei2t) =
(
(i2)2 − 4 · (i2) + 20

)
· ei2t = (−4− i8 + 20)ei2t = (16− i8)ei2t .

Because the forcing has the phasor form

4 cos(2t)− 3 sin(2t) = Re
(
(4 + i3)ei2t

)
,

we multiply the previous equation by 4 + i3 and divide by 16− i8 to obtain

L

(
4 + i3

16− i8
ei2t
)

= (4 + i3)ei2t .

The real part of this equation gives the particular solution

vP (t) = Re

(
4 + i3

16− i8
ei2t
)

= 1
8

Re

(
4 + i3

2− i
ei2t
)

= 1
8

Re

(
4 + i3

2− i
2 + i

2 + i
ei2t
)

= 1
40

Re
(
(4 + i3) (2 + i) ei2t

)
= 1

40
Re
(
(5 + i10) ei2t

)
= 1

8
Re
(
(1 + i2) ei2t

)
= 1

8
Re
(
(1 + i2)

(
cos(2t) + i sin(2t)

))
= 1

8
cos(2t)− 1

4
sin(2t) .
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Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the phasor form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

vP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem the forcing has the phasor form

f(t) = 4 cos(2t)− 3 sin(2t) = Re
(
(4 + i3)ei2t

)
,

with characteristic µ+ iν = i2 and phasor α− iβ = 4+ i3. Because the characteristic
polynomial is p(z) = z2 − 4z + 20 and m = 0, we have

p(m)(µ+ iν) = p(i2) = (i2)2 − 4 · (i2) + 20 = −4− i8 + 20 = 16− i8 .
Therefore the particular solution becomes

vP (t) = Re

(
4 + i3

16− i8
ei2t
)

= 1
8

Re

(
4 + i3

2− i
ei2t
)

= 1
8

Re

(
4 + i3

2− i
2 + i

2 + i
ei2t
)

= 1
40

Re
(
(4 + i3) (2 + i) ei2t

)
= 1

40
Re
(
(5 + i10) ei2t

)
= 1

8
Re
(
(1 + i2) ei2t

)
= 1

8
Re
(
(1 + i2)

(
cos(2t) + i sin(2t)

))
= 1

8
cos(2t)− 1

4
sin(2t) .

Undetermined Coefficients. Because m = m+ d = 0, and µ+ iν = i2, there is a
particular solution in the form

vP (t) = A cos(2t) +B sin(2t) .

Because
v′P (t) = −2A sin(2t) + 2B cos(2t) ,

v′′P (t) = −4A cos(2t)− 4B sin(2t) ,

we see that

LvP (t) = v′′P (t)− 4v′P (t) + 20vP (t)

=
[
− 4A cos(2t)− 4B sin(2t)

]
− 4
[
− 2A sin(2t) + 2B cos(2t)

]
+ 20

[
A cos(2t) +B sin(2t)

]
= (16A− 8B) cos(2t) + (8A+ 16B) sin(2t) .

By setting LvP (t) = 4 cos(2t) − 3 sin(2t), the linear independence of cos(2t) and
sin(2t) implies that A and B solve the linear algebric system

16A− 8B = 4 , 8A+ 16B = −3 .

This implies that A = 1
8

and B = −1
4
, whereby the particular solution becomes

vP (t) = 1
8

cos(2t)− 1
4

sin(2t) .
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(11) [10] The vertical displacement of a spring-mass system is governed by the equation

ḧ+ 10ḣ+ 169h = α cos(ωt) + β sin(ωt) ,

where α 6= 0, β 6= 0, and ω > 0. Assume CGS units.
(a) [2] Give the natural frequency and period of the system.
(b) [4] Show the system is under damped and give its damped frequency and period.
(c) [4] Give the steady state solution in its phasor form Re(Γ eiωt).

Solution (a). The natural frequency is

ωo =
√

169 = 13 1/sec .

The natural period is then

To =
2π

ωo
=

2π√
169

=
2π

13
sec .

Remark. You did not need to evaluate
√

169 = 13 for full credit.

Solution (b). The characteristic polynomial of the equation is

p(z) = z2 + 10z + 169 = (z + 5)2 + 169− 25

= (z + 5)2 + 144 = (z + 5)2 + 122 .

This has the conjugate pair of roots −5± i12. Therefore the system is under damped.
Its damped frequency ωη is

ωη =
√

144 = 12 1/sec .

The damped period Tη is then

Tη =
2π

ωη
=

2π√
144

=
2π

12
=
π

6
sec .

Remark. You did not need to evaluate
√

144 = 12 for full credit.

Alternative Solution (b). The system is under damped because the damping rate
η = 5 is less that the natural frequency ωo =

√
169 = 13. The damped frequency ωη

is then given by

ωη =
√
ω 2
o − η2 =

√
169− 25 =

√
144 = 12 1/sec .

The damped period Tη is found as before.

Solution (c). The forcing f(t) = α cos(ωt) + β sin(ωt) has the phasor form

f(t) = Re
(
γ eiωt

)
, where the phasor is γ = α− iβ .

Therefore the steady state solution has the phasor form

hP (t) = Re
(
Γ eiωt

)
, where the phasor is Γ =

γ

p(iω)
.

Because γ = α− iβ and p(z) = z2 + 10z + 169, the phasor Γ is

Γ =
α− iβ

169− ω2 + i10ω
.

We are not asked to give the solution in either its Cartesian or polar phasor form, so
we can stop here.
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(12) [8] When a 10 gram mass is hung vertically from a spring, at rest it stretches the
spring 20 cm. (Gravitational acceleration is g = 980 cm/sec2.) A dashpot imparts a
damping force of 420 dynes (1 dyne = 1 gram cm/sec2) when the speed of the mass
is 3 cm/sec. Assume that the spring force is proportional to displacement, that the
damping force is proportional to velocity, and that there are no other forces. At t = 0
the mass is displaced 5 cm above its rest position and is released with a downward
velocity of 2 cm/sec.
(a) [6] Give an initial-value problem that governs the displacement h(t) for t > 0.

(DO NOT solve this initial-value problem, just write it down!)
(b) [2] Is this system undamped, under damped, critically damped, or over damped?

(Give your reasoning!)

Solution (a). Let h(t) be the displacement in centimeters at time t in seconds of
the mass from its rest position, with upward displacements being positive. Because
there is no external forcing, the governing initial-value problem has the form

mḧ+ cḣ+ kh = 0 , h(0) = 5 , ḣ(0) = −2 ,

where m is the mass, c is the damping coefficient, and k is the spring constant. The
problem says that m = 10 grams. The damping coefficient c is found by equating
the damping force imparted by the dashpot when the speed of the mass is 3 cm/sec,
which is c 3 dynes, with the force of 420 dynes. This gives c 3 = 420, or

c =
420

3
= 140 dynes sec/cm .

The spring constant k is found by equating the force of the spring when it is stetched
20 cm, which is k 20 dynes, with the weight of the mass, which is mg = 10 · 980
dynes. This gives k 20 = 10 · 980, or

k =
10 · 980

20
= 490 dynes/cm .

Therefore the governing initial-value problem is

10ḧ+ 140 ḣ+ 490h = 0 , h(0) = 5 , ḣ(0) = −2 .

Remark. With the equation in normal form the answer is

ḧ+ 14 ḣ+ 49h = 0 , h(0) = 5 , ḣ(0) = −2 .

Remark. If we had chosen downward displacements to be positive then the governing
initial-value problem would be the same except for the initial conditions, which would
be h(0) = −5 and ḣ(0) = 2.

Solution (b). The damping rate is η = 14/2 = 7. Because η2 = 49 = ω 2
o , the

system is critically damped.

Alternative Solution (b). The characteristic polynomial is

p(z) = z2 + 14z + 49 = (z + 7)2 .

This polynomial has the double negative root −7, so the system is critically damped.


