Second In-Class Exam Math 246, Professor David Levermore Thursday, 17 October 2019

Your Name:						
UMD SID:						
Discussion Instru Discussion Time		Sam Pot 9:00		n Yu — David Russell 12:00		
answer a problem Indicate where the	then use the back c answer to each par	of one of these t of each probl	pages. Do not em is located. C	cou need more space to separate the pages! Cross out work that you credit! Good luck!		
	sign the Univers r name on each p	•	edge below.			
				t given or received any		
	Sign	ature:				
Problem 1:	/4	Problem 2:	/12			
Problem 3:	/4	Problem 4:	/12			
Problem 5:	/8	Problem 6:	/8			
Problem 7:	/8	Problem 8:	/8			
Problem 9:	/10	Problem 10:	/8			
Problem 11:	/10	Problem 12:	/8			
		Total Score:	/100	Grade:		

Name:

(1) [4] Give the interval of definition for the solution of the initial-value problem

$$x''' - \frac{\cos(3t)}{t^2 - 16}x' + \frac{e^t}{\sin(t)}x = \frac{1}{1 + t^2}, \qquad x(5) = x'(5) = x''(5) = -2.$$

- (2) [12] The functions t and t^2 are a fundamental set of solutions to $t^2y'' 2ty' + 2y = 0$ over t > 0.
 - (a) [8] Solve the general initial-value problem

$$t^2y'' - 2ty' + 2y = 0$$
, $y(1) = y_0$, $y'(1) = y_1$.

(b) [4] Find the associated natural fundamental set of solutions to $t^2y'' - 2ty' + 2y = 0$.

Name:

(3) [4] Suppose that $Z_1(t)$, $Z_2(t)$, $Z_3(t)$, and $Z_4(t)$ solve the differential equation $z'''' + 3z''' + \sin(2t)z' + e^tz' + 6z = 0$,

Suppose we know that $Wr[Z_1, Z_2, Z_3, Z_4](0) = 5$. Find $Wr[Z_1, Z_2, Z_3, Z_4](t)$.

- (4) [12] Let L be a linear ordinary differential operator with constant coefficients. Suppose that all the roots of its characteristic polynomial (listed with their multiplicities) are -3 + i2, -3 + i2, -3 i2, -3 i2, -5, -5, -5, 0, 0.
 - (a) [2] Give the order of L.
 - (b) [7] Give a real general solution of the homogeneous equation Lu = 0.
 - (c) [3] Give the degree d, characteristic $\mu + i\nu$, and multiplicity m for the forcing of the nonhomogeneous equation $Lv = t^4 e^{-3t} \sin(2t)$.

(5) [8] What answer will be produced by the following MATLAB commands?

(6) [8] Find a particular solution $q_P(t)$ of the equation $q'' - 4q = 8t e^{2t}$.

Name:_____

(7) [8] Compute the Green function g(t) associated with the differential operator

$$D^2 + 6D + 9, \quad \text{where} \quad D = \frac{d}{dt}.$$

(8) [8] Solve the initial-value problem

$$v'' + 6v' + 9v = \frac{9e^{-3t}}{1+t}, \qquad v(0) = v'(0) = 0.$$

(9) [10] The functions 1+2t and t^2 are solutions of the homogeneous equation

$$(1+t)t x'' - (1+2t)x' + 2x = 0$$
 over $t > 0$.

(You do not have to check that this is true!)

- (a) [3] Show that these functions are linearly independent.
- (b) [7] Give a general solution of the nonhomogeneous equation

$$(1+t)ty'' - (1+2t)y' + 2y = \frac{8t(1+t)^2}{1+2t}$$
 over $t > 0$.

(10) [8] Give a real general solution of the equation

$$D^{2}u - 4Du + 20u = 4\cos(2t) - 3\sin(2t)$$
, where $D = \frac{d}{dt}$.

76 T		
1	am	\sim
T .	am	С.

(11) [10] The vertical displacement of a spring-mass system is governed by the equation

$$\ddot{h} + 10\dot{h} + 169h = \alpha\cos(\omega t) + \beta\sin(\omega t),$$

where $\alpha \neq 0$, $\beta \neq 0$, and $\omega > 0$. Assume CGS units.

- (a) [2] Give the natural frequency and period of the system.
- (b) [4] Show the system is under damped and give its damped frequency and period.
- (c) [4] Give the steady state solution in its phasor form $\operatorname{Re}(\Gamma e^{i\omega t})$.

- (12) [8] When a 10 gram mass is hung vertically from a spring, at rest it stretches the spring 20 cm. (Gravitational acceleration is $g = 980 \text{ cm/sec}^2$.) A dashpot imparts a damping force of 420 dynes (1 dyne = 1 gram cm/sec²) when the speed of the mass is 3 cm/sec. Assume that the spring force is proportional to displacement, that the damping force is proportional to velocity, and that there are no other forces. At t = 0 the mass is displaced 5 cm above its rest position and is released with a downward velocity of 2 cm/sec.
 - (a) [6] Give an initial-value problem that governs the displacement h(t) for t > 0. (DO NOT solve this initial-value problem, just write it down!)
 - (b) [2] Is this system undamped, under damped, critically damped, or over damped? (Give your reasoning!)