First In-Class Exam Math 246, Professor David Levermore Thursday, 19 September 2019

Your Name:							
Discussion Instru Discussion Time		Sam Pot 9:00		Yu David Russell 12:00			
answer a problem to Indicate where the	then use the back o answer to each part	f one of these of each proble	pages. Do not em is located. C	ou need more space to separate the pages! ross out work that you credit! Good luck!			
	sign the Universi r name on each p	•	edge below.				
				given or received any			
	Sign	ature:					
Problem 1:	/10	Problem 2:	/10				
Problem 3:	/5	Problem 4:	/5				
Problem 5:	/10	Problem 6:	/10				
Problem 7:	/10	Problem 8:	/10				
Problem 9:	/5	Problem 10:	/7				
Problem 11:	/10	Problem 12:	/8				
		Total Score:	/100	Grade:			

Name:

(1) [10] Find an explicit solution for the following initial-value problems and give its interval of definition.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2(2x - x^2), \qquad x(0) = 1.$$

(2) [10] Find an explicit solution for the following initial-value problems and give its interval of definition.

$$(z^2 - 4)\frac{\mathrm{d}y}{\mathrm{d}z} + 6zy = \frac{3}{z^2 - 4}, \qquad y(0) = 3.$$

Name:

(3) [5] Sketch the graph that would be produced by the following Matlab commands.

[X, Y] = meshgrid(-4:0.1:4, -4:0.1:4)contour(X, Y, X.*Y, [-8, -4, -2]) axis square

(4) [5] Give the interval of definition for the solution of the initial-value problem

$$\frac{dw}{dt} + \frac{\cos(t)}{t^2 - 25} w = \frac{e^t}{\sin(t)}, \quad w(-4) = 5.$$

(Do not solve the equation to answer this question, but give reasoning!)

Name:

(5) [10] Consider the differential equation

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{(u^2 - 4)(u + 6)^2}{(u^2 + 4)(u - 6)}.$$

- (a) [7] Sketch its phase-line portrait over the interval $-8 \le u \le 8$. Identify points where solutions are undefined with a \circ . Identify stationary points with a \bullet and classify each as being either stable, unstable, or semistable.
- (b) [3] For each stationary point identify the set of initial-values u(0) such that the solution u(t) converges to that stationary point as $t \to -\infty$.

(6) [10] Determine if the following differential form is exact. If it is then find an implicit general solution. Otherwise find an integrating factor. (You do not need to find a general solution in the last case.)

$$(\cos(x) - \sin(x+y)) dx + (e^y - \sin(x+y)) dy = 0.$$

Name:

(7) [10] Consider the following MATLAB function m-file.

$$\begin{array}{l} {\rm function} \ [t,x] = {\rm solveit}(tI,\,xI,\,tF,\,n) \\ t = {\rm zeros}(n+1,\,1);\,\,x = {\rm zeros}(n+1,\,1); \\ t(1) = tI;\,x(1) = xI;\,\,h = (tF - tI)/n;\,\, hhalf = h/2; \\ {\rm for} \ k = 1:n \\ thalf = t(k) + hhalf;\,\,t(k+1) = t(k) + h; \\ {\rm fnow} = (t(k))^2 + \exp(t(k)^*x(k));\,\, xhalf = x(k) + hhalf*fnow; \\ {\rm fhalf} = (thalf)^2 + \exp(thalf*xhalf);\,\,x(k+1) = x(k) + h*fhalf; \\ {\rm end} \end{array}$$

Suppose the input values are tI = 1, xI = 0, tF = 11, and n = 50.

- (a) [4] What initial-value problem is being approximated numerically?
- (b) [1] What is the numerical method being used?
- (c) [1] What is the step size?
- (d) [4] What will be the output values of t(2) and x(2)?

(8) [10] Determine if the following differential form is exact. If it is then find an implicit general solution. Otherwise find an integrating factor. (You do not need to find a general solution in the last case.)

$$x^{2} dx + (x^{3} + y^{6} + 2y^{5}) dy = 0.$$

Name:

- (9) [5] A tank has a square base with 3 meter edges, a height of 5 meters, and an open top. It is initially empty when water begins to fill it at a rate of 9 liters per minute. The water also drains from the tank through a hole in its bottom at a rate of $4\sqrt{h}$ liters per minute where h(t) is the height of the water in the tank in meters.
 - (a) [4] Give an initial-value problem that governs h(t). (Recall 1 m³ = 1000 lit.) (Do not solve the initial-value problem!)
 - (b) [1] Does the tank overflow? (Why or why not?)

- (10) [7] In the absence of predators the population of mosquitoes in a certain area would increase at a rate proportional to its current population such that it would triple every seven weeks. There are 320,000 mosquitoes in the area when a flock of birds arrives that eats 50,000 mosquitoes per week.
 - (a) [5] Give an initial-value problem that governs M(t), the number of mosquitoes in the area after the flock of birds arrives. (Do not solve the initial-value problem!)
 - (b) [2] Is the flock large enough to control the mosquitoes? (Why or why not?)

	_			
1 😼	-1	m	11	٠.

(11) [10] A puck with initial velocity $v_o > 0$ begins to slide on a surface that imparts a position-dependent frictional drag. Its position x(t) is governed by the initial-value problem

$$\ddot{x} = -e^{-x}\dot{x}$$
, $x(0) = 0$, $\dot{x}(0) = v_o > 0$.

- (a) [8] Solve the auxiliary equation and write down the resulting reduced equation.
- (b) [2] Find the smallest initial velocity v_o for which $x(t) \to \infty$ as $t \to \infty$.

- (12) [8] Suppose you have used a numerical method to approximate the solution of an initial-value problem over the time interval [2, 10] with 800 uniform time steps. What step size is needed to reduce the global error of your approximation by a factor of $\frac{1}{256}$ if the method you had used was each of the following? (Notice that $256 = 4^4$.)
 - (a) explicit Euler method
 - (b) Runge-Kutta method
 - (c) Runge-midpoint method
 - (d) Runge-trapezoidal method