Second In-Class Exam Math 410, Professor David Levermore Friday, 2 November 2018

1. [10] Let $D \subset \mathbb{R}$ and $f : D \to \mathbb{R}$. Write negations of the following assertions. (a) "For all sequences $\{x_k\}_{k \in \mathbb{N}}$ and $\{y_k\}_{k \in \mathbb{N}}$ contained in D we have

$$\lim_{k \to \infty} |x_k - y_k| = 0 \implies \lim_{k \to \infty} |f(x_k) - f(y_k)| = 0.$$

(b) "For every
$$\epsilon > 0$$
 there exists a $\delta > 0$ such that for all points $x, y \in D$ we have $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$."

- 2. [10] Give (with reasoning) a counterexample to each of the following false assertions.
 (a) If f: (a, b) → R is continuous then f has a minimum or a maximum over (a, b).
 (b) If f: R → R is differentiable then its derivative f': R → R is continuous.
- 3. [15] Let $f: (a,b) \to \mathbb{R}$ be differentiable at a point $c \in (a,b)$ with f'(c) < 0. Show that there exists a $\delta > 0$ such that

$$x \in (c - \delta, c) \subset (a, b) \implies f(x) > f(c) ,$$

$$x \in (c, c + \delta) \subset (a, b) \implies f(c) > f(x) ,$$

4. [15] If $f(x) = \cos(x)$ for every $x \in \mathbb{R}$ then for every $k \in \mathbb{N}$ we have

$$f^{(2k)}(x) = (-1)^k \cos(x), \qquad f^{(2k+1)}(x) = (-1)^{k+1} \sin(x) \qquad \text{for every } x \in \mathbb{R}.$$

Use this fact to show that

$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} \quad \text{for every } x \in \mathbb{R}.$$

- 5. [15] Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Suppose that f' is increasing over a bounded interval (a, b). Prove that f is strictly convex over [a, b].
- 6. [15] Prove that for every nonzero $x \in \mathbb{R}$ we have

$$1 + \frac{6}{5}x < (1+x)^{\frac{6}{5}}$$
.

- 7. [10] Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Suppose the equation f'(x) = 0 has at most three real solutions. Prove that the equation f(x) = 0 has at most four real solutions.
- 8. [10] Let $D \subset \mathbb{R}$. A function $f : D \to \mathbb{R}$ is said to be Hölder continuous of order $\alpha \in (0, 1]$ if there exists a $C \in \mathbb{R}_+$ such that for every $x, y \in D$ we have

$$|f(x) - f(y)| \le C |x - y|^{\alpha}.$$

Show that if $f: D \to \mathbb{R}$ is Hölder continuous of order α for some $\alpha \in (0, 1]$ then it is uniformly continuous over D.