
First In-Class Exam Solutions
Math 410, Professor David Levermore

Monday, 1 October 2018

1. [10] Let {bk}k∈N be a sequence in R and let A be a subset of R.
Write the negations of the following assertions.
(a) [5] “For every M > 0 we have bj > M eventually as j →∞.”
(b) [5] “Every sequence in A has a subsequence that converges to a limit in A.”

Solution (a). “There exists an M > 0 such that bj ≤M frequently as j →∞.” �

Solution (b). “There exists a sequence in A such that every subsequence of it either
diverges or converges to a limit outside A.” �

Remark. The answer “There exists a sequence in A such that no subsequence of it
converges to a limit in A.” does not fully carry the negation through.

Remark. Assertion (a) is equivalent to the sequence {bk} diverges to ∞. Assertion
(b) is the definition that the set A is sequentially compact.

2. [15] Give a counterexample to each of the following false assertions.
(a) [5] If a sequence {ak}k∈N in R is bounded then it converges.

(b) [5] If lim inf
k→∞

|bk+1|
|bk|

≥ 1 then
∞∑
k=1

bk diverges.

(c) [5] A countable union of closed subsets of R is closed.

Solution (a). A simple counterexample is the sequence {ak}k∈N with ak = (−1)k.
It is bounded, but does not converge.

Solution (b). A simple counterexample is the sequence {bk}k∈N with bk = k−2. This
sequence satisfies

lim inf
k→∞

|bk+1|
|bk|

= lim inf
k→∞

k2

(k + 1)2
= lim

k→∞

(
1

1 + 1
k

)2

= 1 ,

but the series
∞∑
k=1

bk =
∞∑
k=1

1

k2
converges ,

because it is the p-series with p = 2.

Remark. This problem is asking for a convergent series about which the Ratio Test
is inconclusive. There are many such examples! Any p-series with p > 1 is one.

Solution (c). A simple counterexample is the countable collection of closed intervals
given by [0, 1− 2−n] for every n ∈ N. Each [0, 1− 2−n] is closed but their union⋃

n∈N

[0, 1− 2−n] = [0, 1) is not closed .
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3. [10] Consider the real sequence {ck}k∈N given by

ck = (−1)k
2k − 3

k + 1
for every k ∈ N = {0, 1, 2, . . . } .

(a) [3] Write down the first three terms of the subsequence {c2k}k∈N.
(b) [3] Write down the first three terms of the subsequence {c2k+1}k∈N.
(c) [4] Write down lim inf

k→∞
ck and lim sup

k→∞
ck . (No proof is needed here.)

Solution (a). When k = 0, 1, 2 we have 2k = 0, 2, 4, whereby the first three terms
of the subsequence {c2k}k∈N are

c0 = (−1)0
2 · 0− 3

0 + 1
= −3 ,

c2 = (−1)2
2 · 2− 3

2 + 1
=

1

3
,

c4 = (−1)4
2 · 4− 3

4 + 1
=

5

5
= 1 .

Solution (b). When k = 0, 1, 2 we have 2k + 1 = 1, 3, 5, whereby the first three
terms of the subsequence {c2k+1}k∈N are

c1 = (−1)1
2 · 1− 3

1 + 1
= −−1

2
=

1

2
,

c3 = (−1)3
2 · 3− 3

3 + 1
= −3

4
,

c5 = (−1)5
2 · 5− 3

5 + 1
= −7

6
.

Solution (c). Because c2k+1 < 0 for k ≥ 1 while c2k > 0 for k ≥ 1, and because

lim
k→∞

c2k+1 = lim
k→∞

(
(−1)2k+12(2k + 1)− 3

(2k + 1) + 1

)
= − lim

k→∞

4k − 1

2k + 2
= −2 ,

while

lim
k→∞

c2k = lim
k→∞

(
(−1)2k

2(2k)− 3

(2k) + 1

)
= lim

k→∞

4k − 3

2k + 1
= 2 ,

we see that

lim inf
k→∞

ck = lim
k→∞

c2k+1 = −2 , lim sup
k→∞

ck = lim
k→∞

c2k = 2 .



3

4. [15] Let a0 > 0 and define the sequence {ak}k∈N by ak+1 =
√
ak + 2 for every k ∈ N.

(a) [10] Prove that {ak}k∈N converges.
(b) [5] Evaluate lim

k→∞
ak.

Solution (a). Notice that {ak}k∈N is a positive sequence. We will show that {ak}k∈N
is also a contracting sequence, whereby it will be convergent.

Notice that the recursion relation implies that for every k ≥ 1 we have

ak+1 − ak =
√
ak + 2−

√
ak−1 + 2

=
(√

ak + 2−
√
ak−1 + 2

) √ak + 2 +
√
ak−1 + 2√

ak + 2 +
√
ak−1 + 2

=
ak − ak−1√

ak + 2 +
√
ak−1 + 2

.

Therefore, because {ak}k∈N is a positive sequence, we have for every k ≥ 1

|ak+1 − ak| =
|ak − ak−1|√

ak + 2 +
√
ak−1 + 2

<
1

2
√

2
|ak − ak−1| .

Because 1/(2
√

2) < 1, this implies that {ak}k∈N is a contracting sequence, whereby
it is convergent. �

Solution (b). Let a ∈ R be the limit of the convergent sequence {ak}k∈N. By the
recursion relation we have

a 2
k+1 = ak + 2 .

By letting k →∞ in this relation we see by the properties of limits that

a2 = a+ 2 ,

whereby either a = 2 or a = −1. Because {ak}k∈N is a positive sequence, we have

lim
k→∞

ak = 2 .

�

5. [10] Let A and B be any subsets of R. Prove that (A ∩B)c ⊂ Ac ∩Bc.
(Here Sc denotes the closure of any S ⊂ R.)

Remark. We must show that every element of (A ∩B)c is an element of Ac ∩Bc.

Solution. Let x ∈ (A ∩B)c (be arbitrary).

By the definition of closure there exists a sequence {xn}n∈N contained within A ∩ B
such that xn → x as n→∞.

Because {xn}n∈N is contained within A and xn → x as n → ∞, we see that x ∈ Ac

by the definition of closure.

Because {xn}n∈N is contained within B and xn → x as n → ∞, we see that x ∈ Bc

by the definition of closure.

Because x ∈ Ac and x ∈ Bc, we know that x ∈ Ac ∩Bc.

Because x ∈ (A ∩B)c was arbitrary, we conclude that (A ∩B)c ⊂ Ac ∩Bc. �
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6. [15] Let {ck}k∈N be a positive sequence in R.
(a) [10] Prove that

lim sup
k→∞

k
√
ck ≤ lim sup

k→∞

ck+1

ck
.

(b) [5] Give an example for which the above inequality is strict.

Solution (a). There is nothing to prove when

lim sup
k→∞

ck+1

ck
=∞ ,

so suppose that

ρ = lim sup
k→∞

ck+1

ck
<∞ .

Because {ck}k∈N is a positive sequence, so is {ck+1/ck}k∈N, whereby ρ ≥ 0. Let r > ρ.
By Proposition 2.17 we have

ck+1

ck
< r eventually ,

say
ck+1

ck
< r for every k ≥ m.

Because ck > 0 for every k ∈ N and r > ρ ≥ 0, it follows by induction that

ck ≤ cmr
k−m for every k ≥ m.

Therefore
k
√
ck ≤ r k

√
cmr−m for every k ≥ m,

which implies that

lim sup
k→∞

k
√
ck ≤ r lim sup

k→∞

k
√
cmr−m ≤ r lim

k→∞
k
√
cmr−m = r .

Because r > ρ was arbitrary, we have

lim sup
k→∞

k
√
ck ≤ ρ = lim sup

k→∞

ck+1

ck
.

Therefore we have proved the desired inequality. �

Solution (b). One example is given by

ck =
(
3− (−1)k

)−k
=

{
4−k for k even ,

2−k for k odd .

It is clear that

lim sup
k→∞

k
√
ck = lim

k→∞
2k+1
√
c2k+1 = 1

2
,

while

lim sup
k→∞

ck+1

ck
= lim

k→∞

c2k+1

c2k
= lim

k→∞

42k

22k+1
=∞ .

Because 1
2
<∞, the inequality is strict. �
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7. [10] Let {bk}k∈N ⊂ R be a sequence and {bnk
}k∈N be a subsequence of it. Show that

∞∑
k=0

bk converges absolutely =⇒
∞∑
k=0

bnk
converges absolutely .

Solution. By the definition of absolute convergence of a series
∞∑
k=0

bk converges absolutely ⇐⇒
∞∑
k=0

|bk| converges ,

∞∑
k=0

bnk
converges absolutely ⇐⇒

∞∑
k=0

|bnk
| converges .

By the definition of a convergent series, each of the series on the right-hand side above
is convergent if and only if its associated sequence of partial sums is convergent. These
sequences of partial sums are given by {qn} and {pm} respectively where qn and pm
are defined for every n,m ∈ N by

qn =
n∑

k=0

|bk| , pm =
m∑
k=0

|bnk
| .

It is clear that these sequences are nondecreasing. The Monotonic Sequence Theorem
then implies that these sequences converge if and only if they are bounded above.
Therefore

∞∑
k=0

|bk| converges ⇐⇒ {qn} is bounded above ,

∞∑
k=0

|bnk
| converges ⇐⇒ {pm} is bounded above .

The crucial observation is that pm and qn satisfy the inequality

pm =
m∑
k=0

|bnk
| ≤

nm∑
k=0

|bk| = qnm for every m ∈ N .

This inequality shows that if {qn} is bounded above then {pm} is bounded above.
Therefore

∞∑
k=0

bk converges absolutely ⇐⇒ {qn} is bounded above

=⇒ {pm} is bounded above

⇐⇒
∞∑
k=0

bnk
converges absolutely .

�

Remark. This proof involves three notions of convergence: (1) absolute convergence
of a series, (2) convergence of a series, and (3) convergence of a sequence. Whenever
“converges” appears in your solution it should be clear which notion is being used.
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8. [15] Determine the set of all x ∈ R for which
∞∑
k=0

(−1)k
3kxk√
k + 1

converges .

Give your reasoning. (The set is an interval. Be sure to check its endpoints!)

Solution. Let ak denote the kth term in the sum, namely let

ak = (−1)k
3kxk√
k + 1

.

We have

lim sup
k→∞

|ak+1|
|ak|

= lim sup
k→∞

3k+1|x|k+1

√
k + 2

√
k + 1

3k|x|k
= 3|x| lim

k→∞

√
k + 1

k + 2
= 3|x| .

The Ratio Test shows that the series converges absolutely for 3|x| < 1 and diverges
for 3|x| > 1. This test says nothing when 3|x| = 1.

When 3x = 1 the series becomes
∞∑
k=0

(−1)k
1√
k + 1

.

Because the terms 1/
√
k + 1 are positive and decreasing with

lim
k→∞

1√
k + 1

= 0 ,

the Alternating Series Test can be applied to show that the series converges.

When 3x = −1 the series becomes
∞∑
k=0

1√
k + 1

.

Because this is the p-series with p = 1
2
, it diverges. Another argument is that because

the harmonic series
∞∑
k=0

1

k + 1
diverges .

and because
1

k + 1
≤ 1√

k + 1
for every k ∈ N ,

the Direct Comparison Test shows that the series diverges. Alternatively, because
the terms 1/

√
k + 1 are positive and decreasing, the Integral Test or the Cauchy 2k

Test can be applied to show that the series diverges.

Therefore the set of all x ∈ R for which the series converges is the interval(
− 1

3
, 1

3

]
.

�

Remark. It is not enough to argue that the series converges in the interval (−1
3
, 1
3
].

You also have to argue that it diverges outside the interval.


