First In-Class Exam Solutions Math 410, Professor David Levermore Monday, 1 October 2018

1. [10] Let $\{b_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R} and let A be a subset of \mathbb{R} .

Write the negations of the following assertions.

- (a) [5] "For every M > 0 we have $b_j > M$ eventually as $j \to \infty$."
- (b) [5] "Every sequence in A has a subsequence that converges to a limit in A."

Solution (a). "There exists an M > 0 such that $b_j \leq M$ frequently as $j \to \infty$." \Box

Solution (b). "There exists a sequence in A such that every subsequence of it either diverges or converges to a limit outside A."

Remark. The answer "There exists a sequence in A such that no subsequence of it converges to a limit in A." does not fully carry the negation through.

Remark. Assertion (a) is equivalent to the sequence $\{b_k\}$ diverges to ∞ . Assertion (b) is the definition that the set A is sequentially compact.

- 2. [15] Give a counterexample to each of the following false assertions.
 - (a) [5] If a sequence $\{a_k\}_{k\in\mathbb{N}}$ in \mathbb{R} is bounded then it converges.
 - (b) [5] If $\liminf_{k \to \infty} \frac{|b_{k+1}|}{|b_k|} \ge 1$ then $\sum_{k=1}^{\infty} b_k$ diverges.
 - (c) [5] A countable union of closed subsets of \mathbb{R} is closed.

Solution (a). A simple counterexample is the sequence $\{a_k\}_{k\in\mathbb{N}}$ with $a_k = (-1)^k$. It is bounded, but does not converge.

Solution (b). A simple counterexample is the sequence $\{b_k\}_{k\in\mathbb{N}}$ with $b_k = k^{-2}$. This sequence satisfies

$$\liminf_{k \to \infty} \frac{|b_{k+1}|}{|b_k|} = \liminf_{k \to \infty} \frac{k^2}{(k+1)^2} = \lim_{k \to \infty} \left(\frac{1}{1 + \frac{1}{k}}\right)^2 = 1,$$

but the series

$$\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} \frac{1}{k^2} \quad \text{converges} \,,$$

because it is the *p*-series with p = 2.

Remark. This problem is asking for a convergent series about which the Ratio Test is inconclusive. There are many such examples! Any *p*-series with p > 1 is one.

Solution (c). A simple counterexample is the countable collection of closed intervals given by $[0, 1-2^{-n}]$ for every $n \in \mathbb{N}$. Each $[0, 1-2^{-n}]$ is closed but their union

$$\bigcup_{n \in \mathbb{N}} [0, 1 - 2^{-n}] = [0, 1) \text{ is not closed}.$$

3. [10] Consider the real sequence $\{c_k\}_{k\in\mathbb{N}}$ given by

$$c_k = (-1)^k \frac{2k-3}{k+1}$$
 for every $k \in \mathbb{N} = \{0, 1, 2, \dots\}$.

- (a) [3] Write down the first three terms of the subsequence $\{c_{2k}\}_{k\in\mathbb{N}}$.
- (b) [3] Write down the first three terms of the subsequence $\{c_{2k+1}\}_{k\in\mathbb{N}}$.
- (c) [4] Write down $\liminf_{k\to\infty} c_k$ and $\limsup_{k\to\infty} c_k$. (No proof is needed here.)

$$k{
ightarrow}\infty$$

Solution (a). When k = 0, 1, 2 we have 2k = 0, 2, 4, whereby the first three terms of the subsequence $\{c_{2k}\}_{k\in\mathbb{N}}$ are

$$c_{0} = (-1)^{0} \frac{2 \cdot 0 - 3}{0 + 1} = -3,$$

$$c_{2} = (-1)^{2} \frac{2 \cdot 2 - 3}{2 + 1} = \frac{1}{3},$$

$$c_{4} = (-1)^{4} \frac{2 \cdot 4 - 3}{4 + 1} = \frac{5}{5} = 1.$$

Solution (b). When k = 0, 1, 2 we have 2k + 1 = 1, 3, 5, whereby the first three terms of the subsequence $\{c_{2k+1}\}_{k\in\mathbb{N}}$ are

$$c_{1} = (-1)^{1} \frac{2 \cdot 1 - 3}{1 + 1} = -\frac{-1}{2} = \frac{1}{2},$$

$$c_{3} = (-1)^{3} \frac{2 \cdot 3 - 3}{3 + 1} = -\frac{3}{4},$$

$$c_{5} = (-1)^{5} \frac{2 \cdot 5 - 3}{5 + 1} = -\frac{7}{6}.$$

Solution (c). Because $c_{2k+1} < 0$ for $k \ge 1$ while $c_{2k} > 0$ for $k \ge 1$, and because

$$\lim_{k \to \infty} c_{2k+1} = \lim_{k \to \infty} \left((-1)^{2k+1} \frac{2(2k+1) - 3}{(2k+1) + 1} \right) = -\lim_{k \to \infty} \frac{4k - 1}{2k + 2} = -2,$$

while

$$\lim_{k \to \infty} c_{2k} = \lim_{k \to \infty} \left((-1)^{2k} \frac{2(2k) - 3}{(2k) + 1} \right) = \lim_{k \to \infty} \frac{4k - 3}{2k + 1} = 2,$$

we see that

$$\liminf_{k \to \infty} c_k = \lim_{k \to \infty} c_{2k+1} = -2, \qquad \limsup_{k \to \infty} c_k = \lim_{k \to \infty} c_{2k} = 2.$$

- 4. [15] Let $a_0 > 0$ and define the sequence $\{a_k\}_{k \in \mathbb{N}}$ by $a_{k+1} = \sqrt{a_k + 2}$ for every $k \in \mathbb{N}$. (a) [10] Prove that $\{a_k\}_{k \in \mathbb{N}}$ converges.
 - (b) [5] Evaluate $\lim_{k \to \infty} a$
 - (b) [5] Evaluate $\lim_{k \to \infty} a_k$.

Solution (a). Notice that $\{a_k\}_{k \in \mathbb{N}}$ is a positive sequence. We will show that $\{a_k\}_{k \in \mathbb{N}}$ is also a contracting sequence, whereby it will be convergent.

Notice that the recursion relation implies that for every $k \ge 1$ we have

$$a_{k+1} - a_k = \sqrt{a_k + 2} - \sqrt{a_{k-1} + 2}$$

= $\left(\sqrt{a_k + 2} - \sqrt{a_{k-1} + 2}\right) \frac{\sqrt{a_k + 2} + \sqrt{a_{k-1} + 2}}{\sqrt{a_k + 2} + \sqrt{a_{k-1} + 2}}$
= $\frac{a_k - a_{k-1}}{\sqrt{a_k + 2} + \sqrt{a_{k-1} + 2}}$.

Therefore, because $\{a_k\}_{k\in\mathbb{N}}$ is a positive sequence, we have for every $k\geq 1$

$$|a_{k+1} - a_k| = \frac{|a_k - a_{k-1}|}{\sqrt{a_k + 2} + \sqrt{a_{k-1} + 2}} < \frac{1}{2\sqrt{2}} |a_k - a_{k-1}|$$

Because $1/(2\sqrt{2}) < 1$, this implies that $\{a_k\}_{k \in \mathbb{N}}$ is a contracting sequence, whereby it is convergent.

Solution (b). Let $a \in \mathbb{R}$ be the limit of the convergent sequence $\{a_k\}_{k \in \mathbb{N}}$. By the recursion relation we have

$$a_{k+1}^2 = a_k + 2$$
.

By letting $k \to \infty$ in this relation we see by the properties of limits that

$$a^2 = a + 2$$

whereby either a = 2 or a = -1. Because $\{a_k\}_{k \in \mathbb{N}}$ is a positive sequence, we have $\lim_{k \to \infty} a_k = 2.$

5. [10] Let A and B be any subsets of \mathbb{R} . Prove that $(A \cap B)^c \subset A^c \cap B^c$. (Here S^c denotes the closure of any $S \subset \mathbb{R}$.)

Remark. We must show that every element of $(A \cap B)^c$ is an element of $A^c \cap B^c$.

Solution. Let $x \in (A \cap B)^c$ (be arbitrary).

By the definition of closure there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ contained within $A\cap B$ such that $x_n \to x$ as $n \to \infty$.

Because $\{x_n\}_{n\in\mathbb{N}}$ is contained within A and $x_n \to x$ as $n \to \infty$, we see that $x \in A^c$ by the definition of closure.

Because $\{x_n\}_{n\in\mathbb{N}}$ is contained within B and $x_n \to x$ as $n \to \infty$, we see that $x \in B^c$ by the definition of closure.

Because $x \in A^c$ and $x \in B^c$, we know that $x \in A^c \cap B^c$.

Because $x \in (A \cap B)^c$ was arbitrary, we conclude that $(A \cap B)^c \subset A^c \cap B^c$.

6. [15] Let {c_k}_{k∈ℕ} be a positive sequence in ℝ.
(a) [10] Prove that

$$\limsup_{k \to \infty} \sqrt[k]{c_k} \le \limsup_{k \to \infty} \frac{c_{k+1}}{c_k} \,.$$

(b) [5] Give an example for which the above inequality is strict.

Solution (a). There is nothing to prove when

$$\limsup_{k \to \infty} \frac{c_{k+1}}{c_k} = \infty$$

so suppose that

$$\rho = \limsup_{k \to \infty} \frac{c_{k+1}}{c_k} < \infty \,.$$

Because $\{c_k\}_{k\in\mathbb{N}}$ is a positive sequence, so is $\{c_{k+1}/c_k\}_{k\in\mathbb{N}}$, whereby $\rho \ge 0$. Let $r > \rho$. By Proposition 2.17 we have

$$\frac{c_{k+1}}{c_k} < r \quad \text{eventually} \,,$$

say

$$\frac{c_{k+1}}{c_k} < r \quad \text{for every } k \ge m \,.$$

Because $c_k > 0$ for every $k \in \mathbb{N}$ and $r > \rho \ge 0$, it follows by induction that

 $c_k \le c_m r^{k-m}$ for every $k \ge m$.

Therefore

$$\sqrt[k]{c_k} \le r \sqrt[k]{c_m r^{-m}}$$
 for every $k \ge m$,

which implies that

$$\limsup_{k \to \infty} \sqrt[k]{c_k} \le r \limsup_{k \to \infty} \sqrt[k]{c_m r^{-m}} \le r \lim_{k \to \infty} \sqrt[k]{c_m r^{-m}} = r.$$

Because $r > \rho$ was arbitrary, we have

$$\limsup_{k \to \infty} \sqrt[k]{c_k} \le \rho = \limsup_{k \to \infty} \frac{c_{k+1}}{c_k}.$$

Therefore we have proved the desired inequality.

Solution (b). One example is given by

$$c_k = (3 - (-1)^k)^{-k} = \begin{cases} 4^{-k} & \text{for } k \text{ even}, \\ 2^{-k} & \text{for } k \text{ odd}. \end{cases}$$

It is clear that

$$\limsup_{k \to \infty} \sqrt[k]{c_k} = \lim_{k \to \infty} \sqrt[2k+1]{c_{2k+1}} = \frac{1}{2} ,$$

while

$$\limsup_{k \to \infty} \frac{c_{k+1}}{c_k} = \lim_{k \to \infty} \frac{c_{2k+1}}{c_{2k}} = \lim_{k \to \infty} \frac{4^{2k}}{2^{2k+1}} = \infty.$$

Because $\frac{1}{2} < \infty$, the inequality is strict.

4

7. [10] Let $\{b_k\}_{k\in\mathbb{N}}\subset\mathbb{R}$ be a sequence and $\{b_{n_k}\}_{k\in\mathbb{N}}$ be a subsequence of it. Show that

$$\sum_{k=0}^{\infty} b_k \quad \text{converges absolutely} \quad \Longrightarrow \quad \sum_{k=0}^{\infty} b_{n_k} \quad \text{converges absolutely} \,.$$

Solution. By the definition of absolute convergence of a series

$$\sum_{k=0}^{\infty} b_k \quad \text{converges absolutely} \quad \Longleftrightarrow \quad \sum_{k=0}^{\infty} |b_k| \quad \text{converges},$$
$$\sum_{k=0}^{\infty} b_{n_k} \quad \text{converges absolutely} \quad \Longleftrightarrow \quad \sum_{k=0}^{\infty} |b_{n_k}| \quad \text{converges}.$$

By the definition of a convergent series, each of the series on the right-hand side above is convergent if and only if its associated sequence of partial sums is convergent. These sequences of partial sums are given by $\{q_n\}$ and $\{p_m\}$ respectively where q_n and p_m are defined for every $n, m \in \mathbb{N}$ by

$$q_n = \sum_{k=0}^n |b_k|, \qquad p_m = \sum_{k=0}^m |b_{n_k}|$$

It is clear that these sequences are nondecreasing. The Monotonic Sequence Theorem then implies that these sequences converge if and only if they are bounded above. Therefore

$$\sum_{k=0}^{\infty} |b_k| \quad \text{converges} \quad \Longleftrightarrow \quad \{q_n\} \text{ is bounded above },$$
$$\sum_{k=0}^{\infty} |b_{n_k}| \quad \text{converges} \quad \Longleftrightarrow \quad \{p_m\} \text{ is bounded above }.$$

The crucial observation is that p_m and q_n satisfy the inequality

 ∞

$$p_m = \sum_{k=0}^m |b_{n_k}| \le \sum_{k=0}^{n_m} |b_k| = q_{n_m} \quad \text{for every } m \in \mathbb{N}.$$

This inequality shows that if $\{q_n\}$ is bounded above then $\{p_m\}$ is bounded above. Therefore

$$\sum_{k=0}^{\infty} b_k \text{ converges absolutely} \iff \{q_n\} \text{ is bounded above}$$
$$\implies \{p_m\} \text{ is bounded above}$$
$$\iff \sum_{k=0}^{\infty} b_{n_k} \text{ converges absolutely}.$$

Remark. This proof involves three notions of convergence: (1) absolute convergence of a series, (2) convergence of a series, and (3) convergence of a sequence. Whenever "converges" appears in your solution it should be clear which notion is being used.

8. [15] Determine the set of all $x \in \mathbb{R}$ for which

$$\sum_{k=0}^{\infty} (-1)^k \frac{3^k x^k}{\sqrt{k+1}} \quad \text{converges} \,.$$

Give your reasoning. (The set is an interval. Be sure to check its endpoints!) Solution. Let a_k denote the k^{th} term in the sum, namely let

$$a_k = (-1)^k \frac{3^k x^k}{\sqrt{k+1}}.$$

We have

$$\limsup_{k \to \infty} \frac{|a_{k+1}|}{|a_k|} = \limsup_{k \to \infty} \frac{3^{k+1} |x|^{k+1}}{\sqrt{k+2}} \frac{\sqrt{k+1}}{3^k |x|^k} = 3|x| \lim_{k \to \infty} \sqrt{\frac{k+1}{k+2}} = 3|x|$$

The *Ratio Test* shows that the series *converges absolutely* for 3|x| < 1 and *diverges* for 3|x| > 1. This test says nothing when 3|x| = 1.

When 3x = 1 the series becomes

$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{\sqrt{k+1}} \, .$$

Because the terms $1/\sqrt{k+1}$ are positive and decreasing with

$$\lim_{k \to \infty} \frac{1}{\sqrt{k+1}} = 0 \,,$$

the Alternating Series Test can be applied to show that the series converges.

When 3x = -1 the series becomes

$$\sum_{k=0}^{\infty} \frac{1}{\sqrt{k+1}} \, .$$

Because this is the *p*-series with $p = \frac{1}{2}$, it *diverges*. Another argument is that because the *harmonic series*

$$\sum_{k=0}^{\infty} \frac{1}{k+1} \quad \text{diverges}.$$

and because

$$\frac{1}{k+1} \le \frac{1}{\sqrt{k+1}} \quad \text{for every } k \in \mathbb{N} \,,$$

the Direct Comparison Test shows that the series diverges. Alternatively, because the terms $1/\sqrt{k+1}$ are positive and decreasing, the Integral Test or the Cauchy 2^k Test can be applied to show that the series diverges.

Therefore the set of all $x \in \mathbb{R}$ for which the series converges is the interval

$$\left(-\frac{1}{3} \, , \, \frac{1}{3} \right]$$

Remark. It is not enough to argue that the series converges in the interval $\left(-\frac{1}{3}, \frac{1}{3}\right]$. You also have to argue that it diverges outside the interval.