First In-Class Exam Solutions
Math 410, Professor David Levermore
Monday, 1 October 2018

1. [10] Let {bx}ren be a sequence in R and let A be a subset of R.
Write the negations of the following assertions.
(a) [5] “For every M > 0 we have b; > M eventually as j — 00.”
(b) [5] “Every sequence in A has a subsequence that converges to a limit in A.”

Solution (a). “There exists an M > 0 such that b; < M frequently as j — c0.” 0O

Solution (b). “There exists a sequence in A such that every subsequence of it either
diverges or converges to a limit outside A.” O

Remark. The answer “There exists a sequence in A such that no subsequence of it
converges to a limit in A.” does not fully carry the negation through.

Remark. Assertion (a) is equivalent to the sequence {b;} diverges to co. Assertion
(b) is the definition that the set A is sequentially compact.

2. [15] Give a counterexample to each of the following false assertions.
(a) [5] If a sequence {a}ren in R is bounded then it converges.
b o
(b) [5] If lim inf 1D > 1 then Z by diverges.
k=1

(c) [5] A countable union of closed subsets of R is closed.

Solution (a). A simple counterexample is the sequence {a ren With ap = (—1).
It is bounded, but does not converge.

Solution (b). A simple counterexample is the sequence {by, }ren With by = k=2, This
sequence satisfies

[ 2 1\’
lim inf = liminf ——— = lim T =1

Y

but the series
o o

Z b = Z% converges ,
k=1 k

=1

because it is the p-series with p = 2.

Remark. This problem is asking for a convergent series about which the Ratio Test
is inconclusive. There are many such examples! Any p-series with p > 1 is one.

Solution (c). A simple counterexample is the countable collection of closed intervals
given by [0,1 — 27"] for every n € N. Each [0,1 — 27"] is closed but their union

U 0,1 —27"]=10,1) is not closed.

neN



3. [10] Consider the real sequence {ck}ren given by

2k —3
k+1
(a) [3] Write down the first three terms of the subsequence {co }ren-

a
(b) [3] Write down the first three terms of the subsequence {cogt1}ren-

(c) [4] Write down hlgn inf ¢, and limsup ¢ . (No proof is needed here.)
k—o0

C — (—1)k

for every k e N={0,1,2,...}.

Solution (a). When k£ = 0,1,2 we have 2k =
of the subsequence {coy }ren are

0,2, 4, whereby the first three terms

2.0—3
= (—1)° =-3
¢ = (=1) 0+ 1 ’
2.2-3 1
__12 ——
=057 =3
2.4-3 5
— (—1)* _ 21,
a=E0 =g =5

Solution (b). When & = 0,1,2 we have 2k + 1 = 1,3,5, whereby the first three
terms of the subsequence {cox11}ren are

2:-1-3 —1 1
=(=1)! = ==
a= 0= 2 ~ 2
2:-3—-3 3
¢ = (=157 4
2:-5—-3 7
= (=1)° ——.
¢ = (=1 577 6
Solution (c). Because o1 < 0 for k£ > 1 while co > 0 for k£ > 1, and because
. . 2(2k +1) — 3 k-1
_ \2k+1 B
&%f%ﬂ‘wgi((l) @k+1}+1) Thbw2kt2
while
2(2k) — 3 4k —3
—_ Qk— g —
am ez = lim <( Y o+t ) o2k 41
we see that

liminf ¢, = hm Cokt1 =
k—o0

-2,

limsup ¢, = llm Cop, = 2.
k—o0
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4. [15] Let ap > 0 and define the sequence {ay }reny by ari1 = Vay + 2 for every k € N,
(a) [10] Prove that {ay}ren converges.
(b) [5] Evaluate klim .
—00

Solution (a). Notice that {ay}ren is a positive sequence. We will show that {ay }ren
is also a contracting sequence, whereby it will be convergent.

Notice that the recursion relation implies that for every k > 1 we have

a1 — ar = Vag +2 — \/ag_1 + 2

= (\/@k+2_\/ak71+2)

- A — Q-1
Vag +2+ a1 +2
Therefore, because {ay }ren is a positive sequence, we have for every k > 1

\/ak+2+\/ak,1—|—2
Vag + 24 a1 +2

|CLk+1 — ak’ = |ak _ ak_1| < ! |ak — ak_1| .
\/ak—|—2+\/ak_1—|—2 2\/§

Because 1/(2v/2) < 1, this implies that {a;}ren is a contracting sequence, whereby
it is convergent. ([

Solution (b). Let a € R be the limit of the convergent sequence {ay}ren. By the
recursion relation we have
ap = ap+2.
By letting £ — oo in this relation we see by the properties of limits that
a>=a+2,
whereby either a = 2 or a = —1. Because {ay }ren is a positive sequence, we have

lim a;, = 2.
k—o0

5. [10] Let A and B be any subsets of R. Prove that (AN B)¢ C A°N BC.
(Here S© denotes the closure of any S C R.)

Remark. We must show that every element of (AN B)¢ is an element of A°N B€.

Solution. Let x € (AN B)° (be arbitrary).

By the definition of closure there exists a sequence {z, }nen contained within A N B
such that x,, — = as n — oo.

Because {z, }nen is contained within A and x,, — = as n — oo, we see that x € A°
by the definition of closure.

Because {x, }nen is contained within B and x,, — = as n — oo, we see that = € B¢
by the definition of closure.

Because z € A° and x € B¢, we know that = € A°N B°.
Because x € (AN B)¢ was arbitrary, we conclude that (AN B)¢ C A°N B O



6. [15] Let {ck}ren be a positive sequence in R.
(a) [10] Prove that

: . c
limsup /¢, < lim sup sy

k—o00 k—o00 Ck

(b) [5] Give an example for which the above inequality is strict.

Solution (a). There is nothing to prove when

. Ck+1
limsup — = o0,
k—00 Ck

so suppose that
. Cr4+1
p = limsup — < oc0.
k—o0 C;
Because {cj }ren is a positive sequence, 80 is {c11/¢k bren, whereby p > 0. Let r > p.
By Proposition 2.17 we have

c
RAR Y eventually,
Ck

say

c

AR for every K > m.

Ck

Because ¢, > 0 for every £ € N and r > p > 0, it follows by induction that

k—m

e < CpT for every kK > m.

Therefore

e <ry/epr—™  for every k > m,
which implies that
limsup ¥c, < rlimsup v/c,r—™ < r lim v/ cp,r—™ =r.
k—o0 k—o0 k—o0

Because r > p was arbitrary, we have

c
limsup /cx < p = limsup AR
k—o0 k—o0 Ck
Therefore we have proved the desired inequality. 0

Solution (b). One example is given by

_ 4=%  for k even
= (B3 (-1 "= ’
a=(3-(-1)7) {z—k for k odd .

It is clear that

limsup /¢, = lim 2 Y/cop 1 = %,
k—o0

k—o00
while
2k
. Chk+1 . okl . 4
limsup — = lim = lim —— =
koo Ck k—oo Cop koo 22RFI

Because % < 00, the inequality is strict. 0
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. [10] Let {bg}ren C R be a sequence and {b,, }ren be a subsequence of it. Show that

Z by converges absolutely =— Z b,, converges absolutely .
k=0 k=0

Solution. By the definition of absolute convergence of a series

(o.9] oo
Z br, converges absolutely <= Z |bx| converges,
k=0 k=0

Z b,, converges absolutely <= Z |br, | converges.

k=0 k=0
By the definition of a convergent series, each of the series on the right-hand side above
is convergent if and only if its associated sequence of partial sums is convergent. These
sequences of partial sums are given by {¢,} and {p,,} respectively where ¢, and p,,
are defined for every n,m € N by

Qn:Z|bk|’ pm:Z|bnk|'
k=0 k=0

It is clear that these sequences are nondecreasing. The Monotonic Sequence Theorem
then implies that these sequences converge if and only if they are bounded above.
Therefore

Z |bg| converges <= {g,} is bounded above,
k=0

Z |b,| converges <= {p,} is bounded above.
k=0
The crucial observation is that p,, and ¢, satisfy the inequality

Pm = Z b, | < Z |bk| = qn,, for every m € N.
k=0 k=0

This inequality shows that if {¢,} is bounded above then {p,,} is bounded above.
Therefore

Z b converges absolutely <= {g,} is bounded above
k=0
—>  {pm} is bounded above

oo
— Z b,, converges absolutely .
k=0
OJ
Remark. This proof involves three notions of convergence: (1) absolute convergence

of a series, (2) convergence of a series, and (3) convergence of a sequence. Whenever
“converges” appears in your solution it should be clear which notion is being used.



8. [15] Determine the set of all z € R for which

o0

S

(—1) converges .
E+1

k=0

Give your reasoning. (The set is an interval. Be sure to check its endpoints!)

Solution. Let a; denote the k' term in the sum, namely let
3Fak
k

ap = (—1) it
We have
lim sup [@1+1] = limsup S T VR = 3|z| lim kel 3|z|.
koo |G| koo Vk+2  3F|z|* koo \ Kk + 2

The Ratio Test shows that the series converges absolutely for 3|z| < 1 and diverges
for 3|z| > 1. This test says nothing when 3|z| = 1.

When 3z = 1 the series becomes

- 1
| | S——
2V s
Because the terms 1/v/k + 1 are positive and decreasing with
1
lim =0,
the Alternating Series Test can be applied to show that the series converges.
When 3x = —1 the series becomes
= 1
= VE+1

Because this is the p-series with p = %, it diverges. Another argument is that because

the harmonic series
o0

Z . diverges
— kE+1

and because
1 1

1 VETl
the Direct Comparison Test shows that the series diverges. Alternatively, because
the terms 1/vk + 1 are positive and decreasing, the Integral Test or the Cauchy 2"
Test can be applied to show that the series diverges.

for every k € N,

Therefore the set of all x € R for which the series converges is the interval
11
(=53]
O

Remark. It is not enough to argue that the series converges in the interval (—%, %]
You also have to argue that it diverges outside the interval.



