First In-Class Exam Math 410, Professor David Levermore Monday, 1 October 2018

- 1. [10] Let $\{b_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R} and let A be a subset of \mathbb{R} . Write the negations of the following assertions.
 - (a) [5] "For every M > 0 we have $b_j > M$ eventually as $j \to \infty$."
 - (b) [5] "Every sequence in A has a subsequence that converges to a limit in A."
- 2. [15] Give a counterexample to each of the following false assertions.
 - (a) [5] If a sequence $\{a_k\}_{k \in \mathbb{N}}$ in \mathbb{R} is bounded then it converges.
 - (b) [5] If $\liminf_{k \to \infty} \frac{|b_{k+1}|}{|b_k|} \ge 1$ then $\sum_{k=1}^{\infty} b_k$ diverges.
 - (c) [5] A countable union of closed subsets of \mathbb{R} is closed.
- 3. [10] Consider the real sequence $\{c_k\}_{k\in\mathbb{N}}$ given by

$$c_k = (-1)^k \frac{2k-3}{k+1}$$
 for every $k \in \mathbb{N} = \{0, 1, 2, \dots\}$.

- (a) [3] Write down the first three terms of the subsequence $\{c_{2k}\}_{k\in\mathbb{N}}$.
- (b) [3] Write down the first three terms of the subsequence $\{c_{2k+1}\}_{k\in\mathbb{N}}$.
- (c) [4] Write down $\liminf_{k\to\infty} c_k$ and $\limsup_{k\to\infty} c_k$. (No proof is needed here.)

4. [15] Let $a_0 > 0$ and define the sequence $\{a_k\}_{k \in \mathbb{N}}$ by $a_{k+1} = \sqrt{a_k + 2}$ for every $k \in \mathbb{N}$. (a) [10] Prove that $\{a_k\}_{k \in \mathbb{N}}$ converges.

- (b) [5] Evaluate $\lim_{k \to \infty} a_k$.
- 5. [10] Let A and B be any subsets of \mathbb{R} . Prove that $(A \cap B)^c \subset A^c \cap B^c$. (Here S^c denotes the closure of any $S \subset \mathbb{R}$.)
- 6. [15] Let {c_k}_{k∈ℕ} be a positive sequence in ℝ.
 (a) [10] Prove that

$$\limsup_{k \to \infty} \sqrt[k]{c_k} \le \limsup_{k \to \infty} \frac{c_{k+1}}{c_k} \, .$$

- (b) [5] Give an example for which the above inequality is strict.
- 7. [10] Let $\{b_k\}_{k\in\mathbb{N}} \subset \mathbb{R}$ be a sequence and $\{b_{n_k}\}_{k\in\mathbb{N}}$ be a subsequence of it. Show that $\sum_{k=0}^{\infty} b_k$ converges absolutely $\implies \sum_{k=0}^{\infty} b_{n_k}$ converges absolutely.
- 8. [15] Determine the set of all $x \in \mathbb{R}$ for which

$$\sum_{k=0}^{\infty} (-1)^k \frac{3^k x^k}{\sqrt{k+1}} \quad \text{converges} \,.$$

Give your reasoning. (The set is an interval. Be sure to check its endpoints!)