Sample Problems for the Third In-Class Exam Math 246, Fall 2018, Professor David Levermore

- (1) Compute the Laplace transform of $f(t) = te^{3t}u(t-2)$ from its definition.
- (2) Consider the following (old style) MATLAB commands.

>> syms t s Y; f = ['heaviside(t)*t^2 + heaviside(t - 3)*(3*t - t^2)']; >> diffeqn = sym('D(D(y))(t) - 6*D(y)(t) + 10*y(t) = 'f); \gg eqntrans = laplace(diffeqn, t, s); \Rightarrow algeqn = subs(eqntrans, {'laplace(y(t),t,s),t,s)', 'y(0)', 'D(y)(0)'}, {Y, 2, 3}); \gg ytrans = simplify(solve(algeqn, Y)); $>> y =$ ilaplace(ytrans, s, t)

- (a) Give the initial-value problem for $y(t)$ that is being solved.
- (b) Find the Laplace transform $Y(s)$ of the solution $y(t)$.

DO NOT take the inverse Laplace transform of $Y(s)$ to find $y(t)$, just solve for $Y(s)!$ You may refer to the table on the last page.

(3) Find $Y(s) = \mathcal{L}[y](s)$ where $y(t)$ solves the initial-value problem

$$
y'' + 4y' + 13y = f(t), \t y(0) = 4, \t y'(0) = 1,
$$

where

$$
f(t) = \begin{cases} \cos(t) & \text{for } 0 \le t < 2\pi \\ t - 2\pi & \text{for } t \ge 2\pi \end{cases}
$$

DO NOT take the inverse Laplace transform of $Y(s)$ to find $y(t)$, just solve for $Y(s)!$ You may refer to the table on the last page.

(4) Find $X(s) = \mathcal{L}[x](s)$ where $x(t)$ solves the initial-value problem

 $x'' + 4x = \delta(t - 3), \quad x(0) = 5, \quad x'(0) = 0.$

DO NOT take the inverse Laplace transform of $X(s)$ to find $x(t)$, just solve for $X(s)$! You may refer to the table on the last page.

(5) Find the inverse Laplace transforms of the following functions.

(a)
$$
F(s) = \frac{2}{(s+5)^2}
$$
,
(b) $F(s) = \frac{3s}{s^2 - s - 6}$,

$$
s^{2}-s-6
$$

(c) $F(s) = \frac{(s-2)e^{-3s}}{s^{2}-4s+5}$.

You may refer to the table on the last page.

- (6) For each of the following differential operators compute its Green function $q(t)$ and its natural fundamental set for $t = 0$.
	- (a) $L = D^4 + 8D^2 9$,
	- (b) $L = (D 2)^3$.

You may refer to the table on the last page.

- (7) Recast the equation $u''' + t^2u' 3u = \sinh(2t)$ as a first-order system of ordinary differential equations.
- (8) Two interconnected tanks are filled with brine (salt water). At $t = 0$ the first tank contains 45 liters and the second contains 30 liters. Brine with a salt concentration of 5 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine flows from the first tank into the second at 8 liters per hour, from the second into the first at 7 liters per hour, from the first into a drain at 4 liter per hour, and from the second into a drain at 3 liters per hour. At $t = 0$ there are 27 grams of salt in the first tank and 18 grams in the second.
	- (a) Give an initial-value problem that governs the amount of salt in each tank as a function of time.
	- (b) Give the interval of definition for the solution of this initial-value problem.
- (9) Consider the matrices

$$
\mathbf{A} = \begin{pmatrix} -i2 & 1+i \\ 2+i & -4 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 7 & 6 \\ 8 & 7 \end{pmatrix}
$$

.

Compute the matrices

- (a) $\mathbf{A}^{\!\mathrm{T}}\!$, (b) \overline{A} , (c) A^H , (d) $5\mathbf{A} - \mathbf{B}$, (e) AB ,
- (f) **B**⁻¹.

(10) Consider the vector-valued functions $\mathbf{x}_1(t) = \begin{pmatrix} t^4 + 3 \\ 9t^2 \end{pmatrix}$ $2t^2$ $\Big), \mathbf{x}_2(t) = \begin{pmatrix} t^2 \\ 3 \end{pmatrix}$ 3 \setminus .

- (a) Compute the Wronskian $Wr[**x**₁, **x**₂](t)$.
- (b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_1, \mathbf{x}_2$ is a fundamental set of solutions to the system

$$
\mathbf{x}' = \mathbf{A}(t)\mathbf{x},
$$

wherever $Wr[\mathbf{x}_1, \mathbf{x}_2](t) \neq 0.$

- (c) Give a fundamental matrix $\Psi(t)$ for the system found in part (b).
- (d) For the system found in part (b), solve the initial-value problem

$$
\mathbf{x}' = \mathbf{A}(t)\mathbf{x}, \qquad \mathbf{x}(1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
$$

(e) For the $\mathbf{A}(t)$ found in part (b), give the Green matrix for the system $\mathbf{x}' = \mathbf{A}(t)\mathbf{x} + \mathbf{f}(t)$.

(11) Compute e^{tA} for the following matrices.

(a)
$$
\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}
$$

(b) $\mathbf{A} = \begin{pmatrix} 6 & 4 \\ -1 & 2 \end{pmatrix}$

(12) Give the Green matrix for the system $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{f}(t)$ when

(a)
$$
\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}
$$

(b) $\mathbf{A} = \begin{pmatrix} 6 & 4 \\ -1 & 2 \end{pmatrix}$

(13) Consider the matrix

$$
\mathbf{A} = \begin{pmatrix} -1 & -2 & 1 \\ 4 & 0 & -2 \\ -2 & 0 & 1 \end{pmatrix}.
$$

Compute e^{tA} given that the characteristic polynomial of **A** is $p(z) = z^3 + 9z$ and that the natural fundamental set of solutions associated with $t = 0$ for $D^3 + 9D$ is

 $N_0(t) = 1, \qquad N_1(t) = \frac{1}{3}\sin(3t), \qquad N_2(t) = \frac{1}{9}(1 - \cos(3t)).$

(14) Solve each of the following initial-value problems.

(a)
$$
\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.
$$

\n(b) $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$

(15) Find a general solution for each of the following systems.

(a)
$$
\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
$$

\n(b) $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
\n(c) $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

(16) Given that 1 is an eigenvalue of the matrix

$$
\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 3 \end{pmatrix},
$$

find all the eigenvectors of A associated with 1.

(17) Consider the matrix

$$
\mathbf{A} = \begin{pmatrix} 3 & 3 \\ 4 & -1 \end{pmatrix} \, .
$$

- (a) Find all the eigenvalues of A.
- (b) For each eigenvalue of A find all of its eigenvectors.
- (c) Diagonalize A.
- (d) Compute $e^{t\mathbf{A}}$.
- (e) Compute $(sI A)^{-1}$ for every s where it is defined.
- (18) What answer will be produced by the following Matlab command?

>> A = [1 4; 3 2]; [vect, val] = eig(sym(A))

You do not have to give the answer in Matlab format.

(19) A 3×3 matrix **A** has the eigenpairs

$$
\left(-3, \begin{pmatrix}1\\1\\0\end{pmatrix}\right), \qquad \left(2, \begin{pmatrix}-1\\1\\1\end{pmatrix}\right), \qquad \left(5, \begin{pmatrix}1\\-1\\2\end{pmatrix}\right).
$$

- (a) Give an invertible matrix **V** and a diagonal matrix **D** such that $e^{t\mathbf{A}} = \mathbf{V}e^{t\mathbf{D}}\mathbf{V}^{-1}$. (You do not have to compute either V^{-1} or e^{tA} !)
- (b) Give a fundamental matrix for the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Table of Laplace Transforms

$$
\mathcal{L}[t^n e^{at}](s) = \frac{n!}{(s-a)^{n+1}} \quad \text{for } s > a.
$$

$$
\mathcal{L}[e^{at}\cos(bt)](s) = \frac{s-a}{(s-a)^2 + b^2} \quad \text{for } s > a.
$$

$$
\mathcal{L}[e^{at}\sin(bt)](s) = \frac{b}{(s-a)^2 + b^2} \quad \text{for } s > a.
$$

$$
\mathcal{L}[j'(t)](s) = sJ(s) - j(0) \quad \text{where } J(s) = \mathcal{L}[j(t)](s).
$$

$$
\mathcal{L}[t^n j(t)](s) = (-1)^n J^{(n)}(s) \quad \text{where } J(s) = \mathcal{L}[j(t)](s).
$$

$$
\mathcal{L}[e^{at} j(t)](s) = J(s-a) \quad \text{where } J(s) = \mathcal{L}[j(t)](s).
$$

$$
\mathcal{L}[u(t-c)j(t-c)](s) = e^{-cs}J(s) \quad \text{where } J(s) = \mathcal{L}[j(t)](s), c \ge 0,
$$

and u is the unit step function.

$$
\mathcal{L}[\delta(t-c)h(t)](s) = e^{-cs}h(c)
$$

where $c \geq 0$ and δ is the unit impluse.

 $\mathcal{L}[j(t)](s)$.

 $\mathcal{L}[j(t)](s)$.

 $\mathcal{L}[j(t)](s)$.

 $\mathcal{L}[j(t)](s), c \geq 0,$