
Third In-Class Exam Solutions
Math 246, Professor David Levermore

Thursday, 15 November 2018

(1) [6] Recast the ordinary differential equation v′′′′ − v2v′′′ + cos(v′′) + evv′ − t4 = 0 as
a first-order system of ordinary differential equations.

Solution. The normal form of the equation is

v′′′′ = v2v′′′ − cos(v′′)− evv′ + t4 .

Because this equation is fourth order, the first-order system must have dimension at
least four. The simplest such first-order system is

d

dt


x1
x2
x3
x4

 =


x2
x3
x4

x 2
1x4 − cos(x3)− ex1x2 + t4

 , where


x1
x2
x3
x4

 =


v
v′

v′′

v′′′

 .

(2) [10] Consider the vector-valued functions x1(t) =

(
4 + t6

−t2
)

, x2(t) =

(
3t4

1

)
.

(a) [2] Compute the Wronskian Wr[x1,x2](t).
(b) [3] Find B(t) such that x1, x2 is a fundamental set of solutions to the system

x′ = B(t)x wherever Wr[x1,x2](t) 6= 0.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

Wr[x1,x2](t) = det

(
4 + t6 3t4

−t2 1

)
= (4 + t6) · 1− (−t2) · (3t4)

= 4 + 4t6 = 4(1 + t6) .

Solution (b). If x1, x2 is a fundamental set of solutions for the system x′ = B(t)x
then a fundamental matrix is

Ψ(t) =

(
4 + t6 3t4

−t2 1

)
.

Because any fundamental matrix satisfies Ψ′(t) = B(t)Ψ(t), we see that

B(t) = Ψ′(t)Ψ(t)−1 =

(
6t5 12t3

−2t 0

) (
4 + t6 3t4

−t2 1

)−1
=

1

4(1 + t6)

(
6t5 12t3

−2t 0

) (
1 −3t4

t2 4 + t6

)
=

1

4(1 + t6)

(
18t5 48t3 − 6t9

−2t 6t5

)
.

Solution (c). A general solution is

x(t) = c1x1(t) + c2x2(t) = c1

(
4 + t6

−t2
)

+ c2

(
3t4

1

)
.
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Solution (d). By using the fundamental matrix Ψ(t) from part (b) we find that the
Green matrix is

G(t, s) = Ψ(t)Ψ(s)−1 =

(
4 + t6 3t4

−t2 1

) (
4 + s6 3s4

−s2 1

)−1
=

1

4(1 + s6)

(
4 + t6 3t4

−t2 1

) (
1 −3s4

s2 4 + s6

)
=

1

4(1 + s6)

(
4 + t6 + 3t4s2 12(t4 − s4) + 3t4s4(s2 − t2)

s2 − t2 4 + s6 + 3t2s4

)
.

(3) [6] Given that −3 is an eigenvalue of the matrix

C =

−1 3 2
0 −2 −2
1 0 1

 ,

find all the eigenvectors of C associated with −3.

Solution. The eigenvectors of C associated with −3 are all nonzero vectors v such
that Cv = −3v. Equivalently, they are all nonzero vectors v such that (C+3I)v = 0,
which is 2 3 2

0 1 −2
1 0 4

v1v2
v3

 =

0
0
0

 .

The entries of v thereby satisfy the homogeneous linear algebraic system

2v1 + 3v2 + 2v3 = 0 ,

v2 − 2v3 = 0 ,

v1 + 4v3 = 0 .

This system may be solved either by elimination or by row reduction. By either
method its general solution is found to be

v1 = −4α , v2 = 2α , v3 = α , for any constant α .

Therefore the eigenvectors of B associated with 2 each have the form

α

−4
2
1

 for some constant α 6= 0 .

(4) [10] Solve the initial-value problem

d

dt

(
x
y

)
=

(
−4 −2
5 −6

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
0
2

)
.

Solution. The characteristic polynomial of A =

(
−4 −2
5 −6

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 10z + 34 = (z + 5)2 + 32 .
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This is a sum of squares with µ = −5 and ν = 3. Then

etA = e−5t
[
cos(3t)I +

sin(3t)

3
(A− (−5)I)

]
= e−5t

[
cos(2t)

(
1 0
0 1

)
+

sin(3t)

3

(
1 −2
5 −1

)]
= e−5t

(
cos(3t) + 1

3
sin(3t) −2

3
sin(3t)

5
3

sin(3t) cos(3t)− 1
3

sin(3t)

)
.

(Check that tr(A + 5I) = 0!) Therefore the solution of the initial-value problem is

x(t) = etAxI = e−5t
(

cos(3t) + 1
3

sin(3t) −2
3

sin(3t)
5
3

sin(3t) cos(3t)− 1
3

sin(3t)

)(
0
2

)
= e−5t

(
−4

3
sin(3t)

2 cos(3t)− 2
3

sin(3t)

)
.

(5) [8] Two interconnected tanks are filled with brine (salt water). At t = 0 the first tank
contains 19 liters and the second contains 24 liters. Brine with a salt concentration
of 8 grams per liter flows into the first tank at 3 liters per hour. Well-stirred brine
flows from the first tank into the second at 4 liters per hour, from the second into
the first at 5 liters per hour, from the first into a drain at 6 liter per hour, and from
the second into a drain at 2 liters per hour. At t = 0 there are 21 grams of salt in
the first tank and 14 grams in the second.
(a) [6] Give an initial-value problem that governs the amount of salt in each tank

as a function of time.
(b) [2] Give the interval of definition for the solution of this initial-value problem.

Solution (a). Let V1(t) and V2(t) be the volumes (lit) of brine in the first and second
tank at time t hours. Let S1(t) and S2(t) be the mass (gr) of salt in the first and
second tank at time t hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time t are C1(t) = S1(t)/V1(t) and
C2(t) = S2(t)/V2(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

8 gr/lit
3 lit/hr

→

C1(t) gr/lit
6 lit/hr

←

V1(t) lit
S1(t) gr

→ C1(t) gr/lit
4 lit/hr

→

← C2(t) gr/lit
5 lit/hr

←

V2(t) lit
S2(t) gr

→ C2(t) gr/lit
2 lit/hr

V1(0) = 19 lit
S1(0) = 21 gr

V2(0) = 24 lit
S2(0) = 14 gr

We are asked to write down an initial-value problem that governs S1(t) and S2(t).

The rates work out so there will be V1(t) = 19− 2t liters of brine in the first tank
and V2(t) = 24 − 3t liters in the second. Then S1(t) and S2(t) are governed by the
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initial-value problem

dS1

dt
= 8 · 3 +

S2

24− 3t
5− S1

19− 2t
4− S1

19− 2t
6 , S1(0) = 21 ,

dS2

dt
=

S1

19− 2t
4− S2

24− 3t
5− S2

24− 3t
2 , S2(0) = 14 .

Your answer could be left in the above form. However, it can be simplified to

dS1

dt
= 24 +

5

24− 3t
S2 −

10

19− 2t
S1 , S1(0) = 21 ,

dS2

dt
=

4

19− 2t
S1 −

7

24− 3t
S2 , S2(0) = 14 .

Solution (b). This first-order system of differential equations is linear. Its coef-
ficients are undefined either at t = 8 or t = 19

2
and are continuous elsewhere. Its

forcing is constant, so is continuous everywhere. Therefore the natural interval of
definition for the solution of this initial-value problem is (−∞, 8) because:
• the initial time t = 0 is in (−∞, 8);
• all the coefficients and the forcing are continuous over (−∞, 8);
• two coefficients are undefined at t = 8.

However, it could also be argued that the interval of definition for the solution of this
initial-value problem is [0, 8) because the word problem starts at t = 0.

(6) [8] A 3× 3 matrix H has the eigenpairs−3 ,

1
1
1

 ,

−1 ,

 1
0
−1

 ,

2 ,

 1
−2
1

 .

(a) Give an invertible matrix V and a diagonal matrix D such that etH = VetDV−1.
(You do not have to compute either V−1 or etH!)

(b) Give a fundamental matrix for the system x′ = Hx.

Solution (a). One choice for V and D is

V =

1 1 1
1 0 −2
1 −1 1

 , D =

−3 0 0
0 −1 0
0 0 2

 .

Solution (b). Use the given eigenpairs to construct the real eigensolutions

x1(t) = e−3t

1
1
1

 , x2(t) = e−t

 1
0
−1

 , x3(t) = e2t

 1
−2
1

 .

Then a fundamental matrix for the system is

Ψ(t) =
(
x1(t) x2(t) x3(t)

)
=

e−3t e−t e2t

e−3t 0 −2e2t

e−3t −e−t e2t

 .
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Alternative Solution (b). Given the V and D from part (a), a fundamental matrix
for the system is

Ψ(t) = VetD =

1 1 1
1 0 −2
1 −1 1

e−3t 0 0
0 e−t 0
0 0 e2t

 =

e−3t e−t e2t

e−3t 0 −2e2t

e−3t −e−t e2t

 .

(7) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
5 4
3 1

)(
x
y

)
.

Solution by Eigen Methods. The characteristic polynomial of A =

(
5 4
3 1

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 6z − 7 = (z − 7)(z + 1) .

The eigenvalues of A are the roots of this polynomial, which are 7 and −1. Consider
the matrices

A− 7I =

(
−2 4
3 −6

)
, A + 1I =

(
6 4
3 2

)
.

After checking that the determinant of each matrix is zero, we can read off that
eigenpairs of A are (

7 ,

(
2
1

))
,

(
−1 ,

(
−2
3

))
.

Therefore a real general solution of the system is

x(t) = c1e
7t

(
2
1

)
+ c2e

−t
(
−2
3

)
.

Solution by Formula. The characteristic polynomial of A =

(
5 4
3 1

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 6z − 7 = (z − 3)2 − 9− 7 = (z − 3)2 − 42 .

This is a difference of squares with µ = 3 and ν = 4. Then

etA = e3t
[
cosh(4t)I +

sinh(4t)

4

(
A− 3I

)]
= e3t

[
cosh(4t)

(
1 0
0 1

)
+

sinh(4t)

4

(
2 4
3 −2

)]

= e3t

cosh(4t) + 1
2

sinh(4t) sinh(4t)

3
4

sinh(4t) cosh(4t)− 1
2

sinh(4t)

 .
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(Check that tr(A− 3I) = 0!) Therefore a real general solution of the system is

x(t) = etAc = e3t

cosh(4t) + 1
2

sinh(4t) sinh(4t)

3
4

sinh(4t) cosh(4t)− 1
2

sinh(4t)

c1
c2


= c1e

3t

cosh(4t) + 1
2

sinh(4t)

3
4

sinh(4t)

+ c2e
3t

 sinh(4t)

cosh(4t)− 1
2

sinh(4t)

 .

(8) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
−1 −1
1 −3

)(
x
y

)
.

Solution. The characteristic polynomial of A =

(
−1 −1
1 −3

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 4z + 4 = (z + 2)2 .

This is a perfect square with µ = −2. Then

etA = e−2t
[
I + t

(
A− (−2)I

)]
= e−2t

[(
1 0
0 1

)
+ t

(
1 −1
1 −1

)]
= e−2t

(
1 + t −t
t 1− t

)
.

(Check that tr(A + 2I) = 0!) Therefore a real general solution of the system is

x(t) = etAc = e−2t
(

1 + t −t
t 1− t

)(
c1
c2

)
= c1e

−2t
(

1 + t
t

)
+ c2e

−2t
(
−t

1− t

)
.

(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0
for the operator D4 + 10D2 + 9.

Solution from Green Function. The operator D4 + 10D2 + 9 has characteristic
polynomial

p(s) = s4 + 10s2 + 9 = (s2 + 1)(s2 + 9) .

We have the partial-fraction identity

1

p(s)
=

1

(s2 + 1)(s2 + 9)
=

1
8

s2 + 1
+
−1

8

s2 + 9
.

Referring to the table on the last page, item 2 with a = 0 and b = 1 and with a = 0
and b = 3 shows that

L−1
[

1

s2 + 1

]
(t) = sin(t) , L−1

[
3

s2 + 32

]
(t) = sin(3t) .
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Therefore the Green function for the operator D4 + 10D2 + 9 is

g(t) = L−1
[

1

p(s)

]
(t) = 1

8
L−1
[

1

s2 + 1

]
(t)− 1

24
L−1
[

3

s2 + 32

]
(t)

= 1
8

sin(t)− 1
24

sin(3t) .

Because we see the characteristic polynomial as

p(s) = s4 + 0 · s3 + 10 · s2 + 0 · s+ 9 ,

the natural fundamental set of solutions associated with the initial-time 0 for the
operator D4 + 10D2 + 9 is given by

N3(t) = g(t) = 1
8

sin(t)− 1
24

sin(3t) ,

N2(t) = N ′3(t) + 0 · g(t) = 1
8

cos(t)− 1
8

cos(3t) ,

N1(t) = N ′2(t) + 10 · g(t) = −1
8

sin(t) + 3
8

sin(3t) + 10
(
1
8

sin(t)− 1
24

sin(3t)
)
,

= 9
8

sin(t)− 1
24

sin(3t) ,

N0(t) = N ′1(t) + 0 · g(t) = 9
8

cos(t)− 1
8

cos(3t) .

Solution from General Initial-Value Problem. For the operator D4 + 10D2 + 9
the general initial-value problem for initial-time 0 is

y′′′′ + 10y′′ + y = 0 , y(0) = y0 , y′(0) = y1 , y′′(0) = y2 , y′′′(0) = y3 .

Its characteristic polynomial is

p(z) = z4 + 10z2 + 9 = (z2 + 1)(z2 + 9) = (z2 + 1)(z2 + 32) ,

which has roots i, −i, i3 and −i3. Therefore a real general solution is

y(t) = c1 cos(t) + c2 sin(t) + c3 cos(3t) + c4 sin(3t) .

Because

y′(t) = −c1 sin(t) + c2 cos(t)− 3c3 sin(3t) + 3c4 cos(3t) ,

y′′(t) = −c1 cos(t)− c2 sin(t)− 9c3 cos(3t)− 9c4 sin(3t) ,

y′′′(t) = c1 sin(t)− c2 cos(t) + 27c3 sin(3t)− 27c4 cos(3t) ,

the general initial conditions yield the linear algebraic system

y0 = y(0) = c1 cos(0) + c2 sin(0) + c3 cos(0) + c4 sin(0) = c1 + c3 .

y1 = y′(0) = −c1 sin(0) + c2 cos(0)− 3c3 sin(0) + 3c4 cos(0) = c2 + 3c4 ,

y2 = y′′(0) = −c1 cos(0)− c2 sin(0)− 9c3 cos(0)− 9c4 sin(0) = −c1 − 9c3 ,

y3 = y′′′(t) = c1 sin(0)− c2 cos(0) + 27c3 sin(0)− 27c4 cos(0) = −c2 − 27c4 .

This decouples into the two systems

y0 = c1 + c3 , y1 = c2 + 3c4 ,

y2 = −c1 − 9c3 , y3 = −c2 − 27c4 .
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The solutions of these systems are

c1 =
9y0 + y2

8
, c2 =

9y1 + y3
8

,

c3 = −y0 + y2
8

, c4 = −y1 + y3
24

.

Therefore the solution of the general initial-value problem is

y =
9y0 + y2

8
cos(t) +

9y1 + y3
8

sin(t)− y0 + y2
8

cos(3t)− y1 + y3
24

sin(3t)

= y0
(
9
8

cos(t)− 1
8

cos(3t)
)

+ y1
(
9
8

sin(t)− 1
24

sin(3t)
)

+ y2
(
1
8

cos(t)− 1
8

cos(3t)
)

+ y3
(
1
8

sin(t)− 1
24

sin(3t)
)
.

We can read off from this that the natural fundamental set of solutions associated
with the initial-time 0 for the operator D4 + 10D2 + 9 is

N0(t) = 9
8

cos(t)− 1
8

cos(3t) , N1(t) = 9
8

sin(t)− 1
24

sin(3t) ,

N2(t) = 1
8

cos(t)− 1
8

cos(3t) , N3(t) = 1
8

sin(t)− 1
24

sin(3t) .

(10) [8] Compute the Laplace transform of f(t) = u(t− 3) e−2t from its definition.
(Here u is the unit step function.)

Solution. The definition of Laplace transform gives

L[f ](s) = lim
T→∞

∫ T

0

e−stu(t− 3) e−2t dt = lim
T→∞

∫ T

3

e−(s+2)t dt .

When s ≤ −2 this limit diverges to +∞ because in that case we have for every T > 3∫ T

3

e−(s+2)t dt ≥
∫ T

3

dt = T − 3 ,

which clearly diverges to +∞ as T →∞.

When s > −2 we have for every T > 3∫ T

3

e−(s+2)t dt = −e
−(s+2)t

s+ 2

∣∣∣∣T
3

= −e
−(s+2)T

s+ 2
+
e−(s+2)3

s+ 2
,

whereby

L[f ](s) = lim
T→∞

[
− e−(s+2)T

s+ 2
+
e−(s+2)3

s+ 2

]
=
e−(s+2)3

s+ 2
for s > −2 .

Therefore the definition of the Laplace transform shows that

L[f ](s) =


e−(s+2)3

s+ 2
for s > −2 ,

undefined for s ≤ −2 .
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(11) [10] Consider the following (old style) MATLAB commands.

>> syms t s X; f = [’t̂ 2 + heaviside(t − 3)*(6 − t̂ 2) − heaviside(t − 5)*6’];
>> diffeqn = sym(’D(D(x))(t) + 2*D(x)(t) + 10*x(t) = ’ f);
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, {’laplace(x(t),t,s),t,s)’, ’x(0)’, ’D(x)(0)’}, {X, 3, −7});
>> xtrans = simplify(solve(algeqn, X));
>> x = ilaplace(xtrans, s, t)

(a) [2] Give the initial-value problem for x(t) that is being solved.
(b) [8] Find the Laplace transform X(s) of the solution x(t). (DO NOT take the

inverse Laplace transform of X(s) to find x(t), just solve for X(s)!)

You may refer to the table on the last page.

Solution (a). The initial-value problem for y(t) that is being solved is

x′′ + 2x′ + 10x = f(t) , x(0) = 3 , x′(0) = −7 ,

where the forcing f(t) can be expressed either as the piecewise-defined function

f(t) =


t2 for 0 ≤ t < 3 ,

6 for 2 ≤ t < 5 ,

0 for 5 ≤ t ,

or in terms of the unit step function as

f(t) = t2 + u(t− 3)(6− t2)− u(t− 5)6 .

Solution (b). The Laplace transform of the initial-value problem is

L[x′′](s) + 2L[x′](s) + 10L[x](s) = L[f ](s) .

Because
L[x](s) = X(s) ,

L[x′](s) = sL[x](s)− x(0) = sX(s)− 3 ,

L[x′′](s) = sL[x′](s)− x′(0) = s2X(s)− 3s+ 7 ,

the Laplace transform of the initial-value problem becomes(
s2X(s)− 3s+ 7

)
+ 2
(
sX(s)− 3

)
+ 10X(s) = L[f ](s) .

This simplifies to

(s2 + 2s+ 10)X(s)− 3s+ 1 = L[f ](s) ,

whereby

X(s) =
1

s2 + 2s+ 10

(
3s− 1 + L[f ](s)

)
.
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To compute L[f ](s), we write f(t) as

f(t) = t2 + u(t− 3)(6− t2)− u(t− 5)6

= t2 + u(t− 3)j1(t− 3) + u(t− 5)j2(t− 5) ,

where by setting j1(t − 3) = 6 − t2 and j2(t − 5) = −6 we see by the shifty step
method that

j1(t) = 6− (t+ 3)2 = 6− t2 − 6t− 9 = −t2 − 6t− 3 , j2(t) = −6 .

Referring to the table on the last page, item 1 with a = 0 and n = 0, with a = 0 and
n = 1, and with a = 0 and n = 2 shows that

L[1](s) =
1

s
, L[t](s) =

1

s2
, L[t2](s) =

2

s3
,

whereby item 6 with c = 3 and j(t) = j1(t) and with c = 5 and j(t) = j2(t) shows
that

L
[
u(t− 3)j1(t− 3)

]
(s) = e−3sL[j1](s) = −e−3sL[t2 + 6t+ 3](s)

= −e−3s
(

2

s3
+

6

s2
+

3

s

)
,

L
[
u(t− 5)j2(t− 5)

]
(s) = e−5sL[j2](s) = −e−5sL[6](s) = −e−5s6

s
.

Therefore

L[f ](s) = L
[
t2 + u(t− 3)j1(t− 3) + u(t− 5)j2(t− 5)

]
(s)

=
2

s3
− e−3s

(
2

s3
+

6

s2
+

3

s

)
− e−5s6

s
.

Upon placing this result into the expression for Y (s) found earlier, we obtain

X(s) =
1

s2 + 2s+ 10

(
3s− 1 +

2

s3
− e−3s

(
2

s3
+

6

s2
+

3

s

)
− e−5s6

s

)
.

(12) [8] Find the inverse Laplace transform L−1[Y (s)](t) of the function

Y (s) = e−3s
s− 6

s2 + 4s+ 20
.

You may refer to the table on the last page.

Solution. Referring to the table on the last page, item 6 with c = 3 implies that

L−1
[
e−3s J(s)

]
= u(t− 3)j(t− 3) , where j(t) = L−1[J(s)](t) .

We apply this formula to

J(s) =
s− 6

s2 + 4s+ 20
.
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Because s2 + 4s+ 20 = (s+ 2)2 + 42, we have the partial fraction identity

J(s) =
s− 6

s2 + 4s+ 20
=

(s+ 2)− 8

(s+ 2)2 + 42
=

s+ 2

(s+ 2)2 + 42
− 8

(s+ 2)2 + 42
.

Referring to the table on the last page, items 2 and 3 with a = −2 and b = 4 imply
that

L−1
[

s+ 2

(s+ 2)2 + 42

]
= e−2t cos(4t) , L−1

[
4

(s+ 2)2 + 42

]
= e−2t sin(4t) .

The above formulas and the linearity of the inverse Laplace transform yield

j(t) = L−1[J(s)](t) = L−1
[

s− 6

s2 + 4s+ 20

]
(t)

= L−1
[

s+ 2

(s+ 2)2 + 42
− 8

(s+ 2)2 + 42

]
(t)

= L−1
[

s+ 2

(s+ 2)2 + 42

]
(t)− 2L−1

[
4

(s+ 2)2 + 42

]
(t)

= e−2t cos(4t)− 2e−2t sin(4t) .

Therefore

L−1
[
Y (s)

]
(t) = L−1[e−3sJ(s)](t)

= u(t− 3)j(t− 3)

= u(t− 3)
(
e−2(t−3) cos

(
4(t− 3)

)
− 2e−2(t−3) sin

(
4(t− 3)

))
.

Table of Laplace Transforms

L[tneat](s) =
n!

(s− a)n+1
for s > a .

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2
for s > a .

L[eat sin(bt)](s) =
b

(s− a)2 + b2
for s > a .

L[tnj(t)](s) = (−1)nJ (n)(s) where J(s) = L[j(t)](s) .

L[eatj(t)](s) = J(s− a) where J(s) = L[j(t)](s) .

L[u(t− c)j(t− c)](s) = e−csJ(s) where J(s) = L[j(t)](s)

and u is the unit step function .

L[δ(t− c)h(t)](s) = e−csh(c) where δ is the unit impluse .


