Third In-Class Exam Solutions
Math 246, Professor David Levermore
Thursday, 15 November 2018

(1) [6] Recast the ordinary differential equation v — v*v"” + cos(v") + e'v' — t* = 0 as
a first-order system of ordinary differential equations.

Solution. The normal form of the equation is
U”” — UQ,U/// . COS(U//) _ BUUI + t4.

Because this equation is fourth order, the first-order system must have dimension at
least four. The simplest such first-order system is

T i) T v
d |z x x v
2 3 2
— = ,  where = /)
dt | =3 T4 T3 v
X4 xixy — cos(xs) — e¥lay + t T4 V"
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(2) [10] Consider the vector-valued functions x;(t) = (4 +1 ), xa(t) = (Bt )

—¢2
(a) [2] Compute the Wronskian Wr[xy, x2](%).
(b) [3] Find B(t) such that x;, x5 is a fundamental set of solutions to the system
x' = B(t)x wherever Wr[x, x](t) # 0.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

Wrlxy, o] () = det (4:556 3154) — (419 1 (=) - (3Y)

=4+ 45 =4(1 +19).

Solution (b). If x;, X5 is a fundamental set of solutions for the system x’ = B(¢)x
then a fundamental matrix is

(4410 3t
v = (107
Because any fundamental matrix satisfies W'(t) = B(t)®(t), we see that

wo-we (% ) (% 1)

1 6t° 1263\ (1 =3t
41415 \ =2t 0 2 4+

1 18¢°  48t* — 6t°
CA(L416) \ -2t 6> '

Solution (c). A general solution is

x(t) = e (f) + epxa(t) = & (4256) te (3f4) |
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Solution (d). By using the fundamental matrix W (¢) from part (b) we find that the
Green matrix is

o= = (1) (5 )

—g2

1 [f4S 3\ [1 —3st
41+ s9) —t2 1 s 4450

B 1 4+15 4+ 3452 12(t1 — st) + 3ttst(s? — ?)
4(1 + s5) s —t? 4+ %+ 3t%s '

(3) [6] Given that —3 is an eigenvalue of the matrix

-1 3 2
c=|0 -2 —2],
1 0 1

find all the eigenvectors of C associated with —3.

Solution. The eigenvectors of C associated with —3 are all nonzero vectors v such
that Cv = —3v. Equivalently, they are all nonzero vectors v such that (C+3I)v = 0,

which is
2 3 2 U1 0
01 -2 va ]l =10
10 4 V3 0

The entries of v thereby satisfy the homogeneous linear algebraic system
2v1 + 3vy + 2v3 =0,
vg — 203 =0,
V1 +4v3 =0.

This system may be solved either by elimination or by row reduction. By either
method its general solution is found to be

v = —4da, vy =2a, v3=a, for any constant .
Therefore the eigenvectors of B associated with 2 each have the form

—4
al 2 for some constant a # 0.
1

(4) [10] Solve the initial-value problem
0G0 G-0)

Solution. The characteristic polynomial of A = (_54 :é) is

p(z) = 22 —tr(A)z +det(A) = 2> + 10z + 34 = (2 + 5)? + 3%,



This is a sum of squares with 4 = —5 and v = 3. Then

sin(3t)
S (- ()

<o (3 §) < 3 )

_ (cos(zag) + 1 sin(3¢) —25in(3t) (375)) '

5 sin(3t) cos(3t) — Lsin

e =7 {005(325)1 +

w

3

(Check that tr(A + 5I) = 0!) Therefore the solution of the initial-value problem is

(6= hxl = o <cos(3§) +5sin(3t)  —Zsin(3t) (315)) (O)

3 sin(3t) cos(3t) — 3 sin 2

ol )

(5) [8] Two interconnected tanks are filled with brine (salt water). At ¢ = 0 the first tank
contains 19 liters and the second contains 24 liters. Brine with a salt concentration
of 8 grams per liter flows into the first tank at 3 liters per hour. Well-stirred brine
flows from the first tank into the second at 4 liters per hour, from the second into
the first at 5 liters per hour, from the first into a drain at 6 liter per hour, and from
the second into a drain at 2 liters per hour. At t = 0 there are 21 grams of salt in
the first tank and 14 grams in the second.

(a) [6] Give an initial-value problem that governs the amount of salt in each tank
as a function of time.
(b) [2] Give the interval of definition for the solution of this initial-value problem.

Solution (a). Let V;(t) and V5(t) be the volumes (lit) of brine in the first and second
tank at time ¢ hours. Let S;(t) and S(f) be the mass (gr) of salt in the first and
second tank at time ¢ hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time ¢ are Cy(t) = S1(¢)/Vi(t) and
Co(t) = Sa(t)/Va(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

8 gr/lit Cy(t) gr/lit
. — — .
3 lit/hr Vi(#) lit 4 lit /hr Va(t) lit
aweme | TOE o eme | POE o0 g
6 lit/hr 5 lit/hr 2 lit/hr
Vi(0) = 19 lit Va(0) = 24 lit
S1(0) =21 gr S2(0) =14 gr

We are asked to write down an initial-value problem that governs S;(t) and Sy(t).

The rates work out so there will be V;(t) = 19 — 2¢ liters of brine in the first tank
and V5(t) = 24 — 3t liters in the second. Then S;(¢) and Sy(t) are governed by the



initial-value problem

s, S, Sy S

—l_3. - 4-— —21
AT YR R T VA T s 51(0) ’
L S S S S 2, S5(0) = 14.

dt — 19—2t 24—-3t° 24—3t

Your answer could be left in the above form. However, it can be simplified to

dsS) 5 10

— =24 Sy — S S51(0) =21

dt M7 TR T TR 1(0) =21,

dSy 4 7

= Si — S S9(0) = 14.

dt  19-2t70 24377 0)
Solution (b). This first-order system of differential equations is linear. Its coef-
ficients are undefined either at t = 8 or t = & and are continuous elsewhere. Its

2
forcing is constant, so is continuous everywhere. Therefore the natural interval of

definition for the solution of this initial-value problem is (—o0, 8) because:

e the initial time ¢t = 0 is in (—o0, 8);

e all the coefficients and the forcing are continuous over (—oo, 8);

e two coeflicients are undefined at ¢ = 8.
However, it could also be argued that the interval of definition for the solution of this
initial-value problem is [0, 8) because the word problem starts at ¢t = 0.

(6) [8] A 3 x 3 matrix H has the eigenpairs

1 1 1
3, (1], 1, | o : 2, | -2
1 -1 1

(a) Give an invertible matrix V and a diagonal matrix D such that e = VePV-1L,
(You do not have to compute either V=1 or ¢H!)
(b) Give a fundamental matrix for the system x’ = Hx.

Solution (a). One choice for V and D is

11 1 -3 0 0
V=11 0 =-2], D=0 -10
1 -1 1 0 0 2

Solution (b). Use the given eigenpairs to construct the real eigensolutions

1 1 1
x(t)=e 1], xp(t)=e [ 0 |, x3(t) = e | =2
1 —1 1

Then a fundamental matrix for the system is

o3t ot o2t
(t) = (xu(t) xot) x3(t))=[e® 0 —2e
—3t —t 2



5

Alternative Solution (b). Given the V and D from part (a), a fundamental matrix
for the system is

1 1 1 et 0 0 et et e
Tt)=VeP =11 0 -2 0 e 0 f=1[e™ 0 —2
1 -1 1 0 0 e e 3t —et 2

(7) [8] Find a real general solution of the system
d fz\ _ (5 4\ (=
dt\y) \3 1)\y/)~

Solution by Eigen Methods. The characteristic polynomial of A = (g le) is
p(z) =22 —tr(A)z +det(A) =2> — 62— T= (2 —T7)(z + 1).

The eigenvalues of A are the roots of this polynomial, which are 7 and —1. Consider

the matrices
-2 4 6 4
Ao (P ). ana(S).

After checking that the determinant of each matrix is zero, we can read off that

eigenpairs of A are
2 —2
() o G))

Therefore a real general solution of the system is
2 (-2
x(t) = cre™ (1) + cpe” ( 3 ) :

Solution by Formula. The characteristic polynomial of A = (g le) is

p(z) =2 —tr(A)z+det(A) =22 — 62 —T=(2—3)> -9 — 7= (2 —3)* —4°.

This is a difference of squares with © = 3 and v = 4. Then

sin};(llt) (A 31)]

ey )0 )

cosh(4¢) + ; sinh(4¢) sinh(4t)
3 sinh(4¢) cosh(4t) — 5 sinh(4t)

eth = e {cosh(élt)l +

3t



(Check that tr(A — 3I) = 0!) Therefore a real general solution of the system is

cosh(4t) + £ sinh(4t sinh(4¢ c
RPN CECORSERYD (41) 1
3 sinh(4¢) cosh(4t) — £ sinh(4t) 2
cosh(4t) + 1 sinh(4¢) sinh(4¢)
= € 5 . + 6263t L
5 sinh(4¢) cosh(4t) — 5 sinh(4t)

(8) [8] Find a real general solution of the system
d fz\ _ (-1 -1\ (=
dt\y) \1 =3 y)
Solution. The characteristic polynomial of A = (_11 :é) is
p(z) =22 —tr(A)z +det(A) = 2> + 42+ 4 = (2 +2)%.

This is a perfect square with y© = —2. Then
A =B Tt (A (—2)1)]

[ ) )

(Check that tr(A + 2I) = 0!) Therefore a real general solution of the system is

iAot 1+t —t C1
x(t) =ec=e ( i 1-1¢) \e
I B o [ —t
= e <t + coe 1-¢)-

(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0
for the operator D* + 10D? + 9.

Solution from Green Function. The operator D* + 10D? 4 9 has characteristic
polynomial

p(s)=s"+10s* +9 = (s> +1)(s*+9).
We have the partial-fraction identity
1 1 3 —3

8 8
p(s)  (s2+1)(s2+9) s2+1 +32—i—9'

Referring to the table on the last page, item 2 with a = 0 and b = 1 and with a = 0
and b = 3 shows that

/:1{ ! ](t):sin(t), .cl{

s2+1

3
52 + 32

] (t) = sin(3t) .



Therefore the Green function for the operator D* + 10D? + 9 is

o= 7|0 =1 |0 - e g o

= & sin(t) — 55 sin(3t) .

Because we see the characteristic polynomial as
p(s)=s"4+0-5°+10-5°+0-s+9,

the natural fundamental set of solutions associated with the initial-time 0 for the
operator D* + 10D? + 9 is given by

Ns(t) = g(t) =

o= 00|

No(t) = Ni(t) +0-g(t) = 4 cos(t) — £ cos(3t),
Ni(t) = N5(t) +10- g(t) = —+sin(t) + 2 sin(3¢) + 10(§ sin(¢) — 5 sin(3t)) ,
= 2sin(t) — 5; sin(3t),

No(t) = Ny(t) +0-g(t) =

Solution from General Initial-Value Problem. For the operator D* 4+ 10D? + 9
the general initial-value problem for initial-time 0 is

y" 10" +y =0,  y0) =y, YO)=w, ¥ 0)=y2, y"(0)=ys.
Its characteristic polynomial is
p(z) =22+ 1022+ 9= (22 + 1)(2* +9) = (2* + 1)(2* + 3?),
which has roots i, —i, i3 and —i3. Therefore a real general solution is
y(t) = ¢y cos(t) + cosin(t) + ¢ cos(3t) + cysin(3t) .
Because
y'(t) = —cysin(t) 4 ¢ cos(t) — 3eg sin(3t) + 3eq cos(3t),
y"(t) = —cy cos(t) — casin(t) — 9es cos(3t) — ey sin(3t) ,
y"(t) = ¢y sin(t) — g cos(t) + 27cs sin(3t) — 27c4 cos(3t),
the general initial conditions yield the linear algebraic system
Yo = y(0) = ¢ cos(0) + ¢ sin(0) + 3 cos(0) + ¢4 sin(0) = ¢ + c3.
y1 =14 (0) = —c; sin(0) + ¢2 cos(0) — 3ez sin(0) + 3¢y cos(0) = co + 3y,
yo = 14" (0) = —¢; cos(0) — ¢z 8in(0) — 9e3 cos(0) — 9ey sin(0) = —¢; — ez,
ys = y"'(t) = ¢ 8in(0) — ¢z cos(0) + 27¢3 sin(0) — 27¢4 cos(0) = —cg — 27¢y .
This decouples into the two systems

Yo =1c1 +c3, Y1 = Co + 3¢y,
Yo = —c1 — 93, Y3 = —cy — 27cy .



The solutions of these systems are

Yo+ yo 9t ys
a=——7F5", Co=——",
8 8
:_Z/0+3/2 c :_y1+y3
K g 4 2%

Therefore the solution of the general initial-value problem is

9 9
y = M COS(t) + M Sln(t) — w COS(St) —_ w Sln(?)t)
8 8 8 24
= 1o (3 cos(t) — & cos(3t)) + y1 (3 sin(t) — 55 sin(3t))
+ 2 (% cos(t) — £ cos(3t)) + y3 (& sin(t) — 5 sin(3t)) .
We can read off from this that the natural fundamental set of solutions associated
with the initial-time 0 for the operator D* 4 10D? + 9 is

No(t) = 3 cos(t) — & cos(3t), Ni(t) = §sin(t) — 55 sin(3t)

Na(t) = £ cos(t) — & cos(3t), Ns(t) = £sin(t) — 57 sin(3t).

(10) [8] Compute the Laplace transform of f(t) = u(t — 3) e™* from its definition.
(Here u is the unit step function.)

Solution. The definition of Laplace transform gives

T T
cli = tim [ et -9y o= i [ etar

T—o0 0 T—o0 3

When s < —2 this limit diverges to +o00 because in that case we have for every T' > 3

T T
/e_(5+2)tdt2/ dt =T -3,
3 3

which clearly diverges to +o00 as T" — oc.

When s > —2 we have for every T' > 3

T (e42)t e _e—(s+2)t T B _6—(s+2)T e~ (s1+2)3
e dt = = + :
3 s+2 |4 s+ 2 s+ 2
whereby
' e—(s+2)T e—(s+2)3 e—(s+2)3
C[f](s)qug{)lo[— 542 * s—l—Q}: 5+ 2 for s > =2.

Therefore the definition of the Laplace transform shows that
67(s+2)3

LIfi(s) =1 s+2
undefined for s < —2.

for s > —2,



(11) [10] Consider the following (old style) MATLAB commands.

>> syms t s X; f = ['t"2 + heaviside(t — 3)*(6 — t"2) — heaviside(t — 5)*6’];

>> diffeqn = sym('D(D(x))(t) + 2*D(x)(t) + 10*x(t) =" {);

>> eqntrans = laplace(diffeqn, t, s);

>> algeqn = subs(eqntrans, {’laplace(x(t),t,s),t,s)’, 'x(0)’, 'D(x)(0)’}, {X, 3, =7});
>> xtrans = simplify(solve(algeqn, X));

>> x = ilaplace(xtrans, s, t)

(a) [2] Give the initial-value problem for z(¢) that is being solved.
(b) [8] Find the Laplace transform X (s) of the solution z(¢). (DO NOT take the
inverse Laplace transform of X (s) to find x(t), just solve for X (s)!)

You may refer to the table on the last page.
Solution (a). The initial-value problem for y(t) that is being solved is
2"+ 22 4+ 10x = f(t), z(0)=3, 2/(0)=-7,
where the forcing f(t) can be expressed either as the piecewise-defined function
2 for0<t<3,
ft)=496 for2<t<5,
0 forb<t,
or in terms of the unit step function as
f) =1 +u(t—3)(6 —t*) —u(t —5)6.

Solution (b). The Laplace transform of the initial-value problem is
L[z"](s) + 2L[2"](s) + 10L[z](s) = L[f](s)

Because

Llz](s) = X(s),

L[2'|(s) = 5 L[z](s) — z(0) = s X(s) — 3,

L[z"](s) = s L]2'](s) — 2/ (0) = s* X (s) — 35+ 7,
the Laplace transform of the initial-value problem becomes

(s°X(s) =35+ 7) +2(sX(s) — 3) + 10X (s) = L[f](s) -
This simplifies to
(s> 4+ 25+ 10)X (s) — 3s + 1 = L[f](s),

whereby
1

125510 (33 -1 +£[f](s)) .

X(s) =
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To compute L[f](s), we write f(t) as
f(t) =t +u(t —3)(6 —t*) —u(t —5)6
="+ ut = 3)ji(t — 3) + u(t — 5)ja(t = 5),

where by setting j;(t — 3) = 6 — t* and jo(t — 5) = —6 we see by the shifty step
method that

Jit) =6—(t+3>=6—t>—6t—9=—t>—6t—3,  jat)=—6.

Referring to the table on the last page, item 1 with a = 0 and n = 0, with ¢« = 0 and
n =1, and with ¢ = 0 and n = 2 shows that

L) =2 L) =5, LR =
whereby item 6 with ¢ = 3 and j(t) = ji(¢) and with ¢ = 5 and j(t) = j2(t) shows
that
Llut—3)ji(t —3)|(s) = e *L[j1](s) = —e > L[t* + 6t + 3](s)
£fu(t = 5)jalt = )] (5) = € LLial(s) = —e£[6)(5) = —e**2.
Therefore

LIf1(s) = L[t* +ult = 3)j1(t = 3) +u(t — 5)ja(t — 5)](s)

2 (2,6 3\ 56
=— —e¢ — 4+ =4+ - —e "=
53 s3  s2 s s

Upon placing this result into the expression for Y'(s) found earlier, we obtain

1 2 2 6 3 6
X(s)=——(3s—14 2 —e3 (S 424 2] —e2).
(s) 52+25+1O(S +s3 ‘ (53+52+5) ‘ 5)

(12) [8] Find the inverse Laplace transform £7[Y(s)](¢) of the function
—3s 5—6

s2+4s+20°
You may refer to the table on the last page.

Y(s) =

Solution. Referring to the table on the last page, item 6 with ¢ = 3 implies that
L7 e J(s)] = u(t —3)j(t—3), where  j(t) = L7'[J(s)](¢).
We apply this formula to
5s—6
s2+4s+20°

J(s) =
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Because s? + 4s + 20 = (s + 2)* + 4%, we have the partial fraction identity
J(s) = s—6 (s+2)—8 _ 5+2 B 8 .
2445420 (s+2)2+4%2  (s+2)2+4%2  (s+2)2+42
Referring to the table on the last page, items 2 and 3 with a = —2 and b = 4 imply
that

-1 s+2 —2t -1 4 —2t
— | = 4 — | = 4t) .
[(s+2)2+42} e “'cos(4t) , L {(3+2)2+42} e~ sin(4¢)
The above formulas and the linearity of the inverse Laplace transform yield
[ -6
(1) = L7 J(s))(t) = £ | —2— | ¢
0 = £ = | 5 |
[ +2 8
S = t
o
L s+2 -1
= ——|(t) — 2 ——— | (£
£ _(s+2)2+42}() £ [(s+2)2—|—42]()
= e % cos(4t) — 2e~* sin(4t) .
Therefore

LY ()] (t) = L7 e T (9)](t)
=u(t—3)j(t—3)

= u(t — 3) (e_z(t_g) cos(4(t — 3)) — 2¢ 23 gin (4t - 3))) :

Table of Laplace Transforms

n at . TZ'
L[t"e ](3)——(8_@7“rl for s > a.
Le™ cos(bt)](s) = S - for s > a
 (s—a)?+b? '
b
at _: _
L[e” sin(bt)](s) = Goaiir for s >a.

LIE"j()](s) = (=1)"T")(s) where J(s) = L[5()](s) -

where J(s) = L[j(t)](s) .
where J(s) = L[j(t)](s)

and w is the unit step function.

where ¢ is the unit impluse.



