
Second In-Class Exam Solutions
Math 246, Professor David Levermore

Thursday, 18 October 2018

(1) [4] Give the interval of definition for the solution of the initial-value problem

y′′′ − e2t

5 + t
y′′ +

sin(5t)

4− t
y =

3 + t

1− t
, y(−2) = y′(−2) = y′′(−2) = 4 .

Solution. The equation is linear and is already in normal form. Notice the following.
� The coefficient of y′′ is undefined at t = −5 and is continuous elsewhere.
� The coefficient of y is undefined at t = 4 and is continuous elsewhere.
� The forcing is undefined at t = 1 and is continuous elsewhere.

Plotting these points along with the inital time t = −2 on a time-line gives

——-◦——————-•——————-◦——————-◦——→ t
−5 −2 1 4

Therefore the interval of definition is (−5, 1) because:
• the initial time t = −2 is in (−5, 1);
• all the coefficients and the forcing are continuous over (−5, 1);
• the coefficient of y′′ is undefined at t = −5;
• the forcing is undefined at t = 1.

Remark. All four reasons must be given for full credit.
◦ The first two reasons are why a (unique) solution exists over the interval (−5, 1).
◦ The last two reasons are why this solution does not exist over a larger interval.

(2) [12] The functions cos(2t) and sin(2t) are a fundamental set of solutions to u′′+4u = 0.
(a) [8] Solve the general initial-value problem

u′′ + 4u = 0 , u(0) = u0 , u′(0) = u1 .

(b) [4] Find the associated natural fundamental set of solutions to u′′ + 4u = 0.

Solution (a). Because we are given that cos(2t) and sin(2t) is a fundamental set of
solutions to u′′ + 4u = 0, a general solution is u(t) = c1 cos(2t) + c2 sin(2t). Because
u′(t) = −2c1 sin(2t) + 2c2 cos(2t), the initial conditions imply

u0 = u(0) = c1 , u1 = u′(0) = 2c2 .

We solve these equations to obtain

c1 = u0 , c2 = 1
2
u1 .

Therefore the solution to the general initial-value problem is

u(t) = u0 cos(2t) + u1
1
2

sin(2t) .

Solution (b). We see from the above solution to the general initial-value problem
that the associated natural fundamental set of solutions is

N0(t) = cos(2t) , N1(t) = 1
2

sin(2t) .
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(3) [4] Suppose that X1(t), X2(t), X3(t), and X4(t) solve the differential equation

x′′′′ − 2x′′′ + etx′ + cos(2t)x = 0 ,

Suppose we know that Wr[X1, X2, X3, X4](1) = 7. Find Wr[X1, X2, X3, X4](t).

Solution. The Abel Theorem says that w(t) = Wr[X1, X2, X3, X4](t) satisfies

w′ − 2w = 0 .

We see that w(t) = ce2t for some c. Because w(t) satisfies the initial condition

w(1) = Wr[X1, X2, X3, X4](1) = 7 ,

we have w(1) = ce2·1 = 7, whereby c = 7e−2. Therefore w(t) = 7e−2e2t = 7e2(t−1),
which shows that

Wr[X1, X2, X3, X4](t) = 7e2(t−1) .

(4) [12] Let L be a linear ordinary differential operator with constant coefficients. Sup-
pose that all the roots of its characteristic polynomial (listed with their multiplicities)
are −2 + i3, −2 + i3, −2− i3, −2− i3, 3, 3, 0, 0, 0, 0.
(a) [2] Give the order of L.
(b) [7] Give a real general solution of the homogeneous equation Lu = 0.
(c) [3] Give the degree d, characteristic µ+ iν, and multiplicity m for the forcing of

the nonhomogeneous equation Lv = t5e3t.

Solution (a). Because 10 roots are listed, the degree of the characteristic polynomial
must be 10, whereby the order of L is 10.

Solution (b). A fundamental set of nine real-valued solutions is built as follows.
� The conjugate pair of double roots −2± i3 contributes

e−2t cos(3t) , e−2t sin(3t) , t e−2t cos(3t) , and t e−2t sin(3t) .

� The double real root 3 contributes

e3t , and t e3t .

� The quadruple real root 0 contributes

1 , t , t2 , and t3 .

Therefore a real general solution of the homogeneous equation Lu = 0 is

u = c1e
−2t cos(3t) + c2e

−2t sin(3t) + c3t e
−2t cos(3t) + c4t e

−2t sin(3t)

+ c5e
3t + c6t e

3t + c7 + c8t+ c9t
2 + c10t

3 .

Solution (c). The forcing of the nonhomogeneous linear equation Lv = t5e3t has
degree d = 5 and characteristic µ + iν = 3. Because the characteristic µ + iν = 3
is listed as a double root of the characteristic polynomial, it has multiplicity m = 2.
Therefore, we have

d = 5 , µ+ iν = 3 , m = 2 .
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(5) [8] What answer will be produced by the following Matlab commands?

>> ode = ’D2x – 8*Dx + 12*x = 16*exp(2*t)’;
>> dsolve(ode, ’t’)

ans =

Solution. The commands ask Matlab for a real general solution of the equation

D2x− 8Dx+ 12x = 16e2t , where D =
d

dt
.

While your answer did not have to be given in Matlab format, Matlab will produce
something equivalent to

– 4*exp(2*t) + C1*exp(2*t) + C2*exp(6*t)

This can be seen as follows. This is a nonhomogeneous linear equation for x(t)
with constant coefficients. Its linear differential operator is L = D2 − 8D + 12. Its
characteristic polynomial is

p(z) = z2 − 8z + 12 = (z − 2)(z − 6) ,

which has the two real roots 2 and 6. Therefore a real general solution of the associ-
ated homogeneous problem is

xH(t) = c1e
2t + c2e

6t .

The forcing 16e2t has degree d = 0, characteristic µ+ iν = 2, and multiplicity m = 1.
A particular solution xP (t) can be found by using either Key Identity Evaluations,
the Zero Degree Formula, or Undetermined Coefficients. Below we show that each of
these methods gives the particular solution xP (t) = −4t e2t. Therefore a real general
solution is

x = c1e
2t + c2e

6t − 4t e2t .

Up to notational differences, this is the answer that Matlab produces.

Key Identity Evaluations. Because m = m + d = 1, we must evaluate the first
derivative (with respect to z) of the Key Identity at the characteristic z = µ+ iν = 2.
The Key Identity and its first derivative are

L(ezt) = (z2 − 8z + 12) · ezt ,
L(t ezt) = (z2 − 8z + 12) · t ezt + (2z − 8) · ezt ,

When the first derivative of the Key Identity is evaluated at z = µ+ iν = 2, we find

L(t e2t) = (2 · 2− 8)e2t = −4e2t .

Multiply this by −4 to obtain

L(−4t e2t) = 16e2t .

Therefore a particular solution is

xP (t) = −4t e2t .
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Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

xP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem f(t) = 16e2t and p(z) = z2−8z+12, so that µ+iν = 2, α−iβ = 16,
m = 1, and p′(z) = 2z − 8, whereby the particular solution becomes

xP (t) = t e2t
16

p′(2)
=

16

2 · 2− 8
t e2t =

16

−4
t e2t = −4t et .

Undetermined Coefficients. Because m = m + d = 1 and µ + iν = 2, there is a
particular solution in the form

xP (t) = At e2t .

Because

x′P (t) = 2At e2t + Ae2t , x′′P (t) = 4At e2t + 4Ae2t ,

we see that

LxP (t) = x′′P (t)− 8x′P (t) + 12xP (t)

=
[
4At e2t + 4Ae2t

]
− 8
[
2At e2t + Ae2t

]
+ 12[At e2t]

= (4− 16 + 12)At e2t + (4− 8)Ae2t = −4Ae2t .

Setting LxP (t) = −4Ae2t = 16e2t, we see that A = −4. Therefore the particular
solution is

xP (t) = −4t e2t .

(6) [8] Find a particular solution vP (t) of the equation v′′ − v = 2t e−t.

Solution. This is a nonhomogeneous linear equation with constant coefficients. Its
linear differential operator is L = D2 − 1. Its characteristic polynomial is

p(z) = z2 − 1 = (z + 1)(z − 1) ,

which has two simple real roots −1 and 1. The forcing 2t e−t has characteristic form
with degree d = 1 and characteristic µ + iν = −1, which has multiplicity m = 1.
Therefore we can use either Key Identity Evaluations or Undetermined Coefficients
to find a particular solution. Both methods give the particular solution

vP (t) = −1
2

(
t2e−t + t e−t

)
.
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Key Identity Evaluations. Because m = 1 and m+d = 2 we need to evaluate the
first and second derivative (with respect to z) of the Key Identity at the characteristic
z = µ+ iν = −1. The Key Identity and its first two derivatives with respect to z are

L
(
ezt
)

= (z2 − 1) · ezt ,
L
(
t ezt

)
= (z2 − 1) · t ezt + 2z · ezt ,

L
(
t2ezt

)
= (z2 − 1) · t2ezt + 2 · 2z · t ezt + 2 · ezt .

(Notice the 2 in the middle term of the second derivative from the Pascal triangle.)
By evaluating the first and second derivative of the Key Identity at z = µ+ iν = −1
we obtain

L
(
t e−t

)
= −2e−t , L

(
t2e−t

)
= −4t e−t + 2e−t .

By adding these two equations we obtain

L
(
t2e−t + t e−t

)
= −4t e−t .

After multiplying this equation by −1
2

it becomes

L
(
− 1

2
(t2e−t + t e−t)

)
= 2t e−t .

Therefore a particular solution of Lv = 2t e−t is

vP (t) = −1
2

(
t2e−t + t e−t

)
.

Undetermined Coefficients. Because m = 1, m + d = 2, and µ + iν = −1, there
is a particular solution in the form

vP (t) = (A0t
2 + A1t) e

−t .

Because

v′P (t) = −(A0t
2 + A1t) e

−t + (2A0t+ A1) e
−t

=
(
− A0t

2 + (2A0 − A1)t+ A1

)
e−t ,

v′′P (t) = −
(
− A0t

2 + (2A0 − A1)t+ A1

)
e−t +

(
− 2A0t+ (2A0 − A1)

)
e−t

=
(
A0t

2 − (4A0 − A1)t+ (2A0 − 2A1)
)
e−t ,

we see that

LvP (t) = v′′P (t)− vP (t)

=
(
A0t

2 − (4A0 − A1)t+ (2A0 − 2A1)
)
e−t − (A0t

2 + A1t) e
−t

=
(
− 4A0t+ 2(A0 − A1)

)
e−t = −4A0t e

−t + 2(A0 − A1)e
−t .

By setting LvP (t) = 2t e−t, the linear independence of t e−t and e−t implies that

−4A0 = 2 , A0 − A1 = 0 ,

which yields A0 = −1
2

and A1 = −1
2
. Therefore a particular solution of Lv = 2t e−t is

vP (t) = −1
2
(t2 + t) e−t .
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(7) [8] Compute the Green function g(t) associated with the differential operator

D2 + 8D + 16 , where D =
d

dt
.

Solution. Because the linear differential operator has constant coefficients, its Green
function g(t) satisfies

D2g + 8Dg + 16g = 0 , g(0) = 0 , g′(0) = 1 .

The characteristic polynomial is

p(z) = z2 + 8z + 16 = (z + 4)2 ,

which has the double root −4. Hence, a general solution of the equation is

g(t) = c1e
−4t + c2t e

−4t .

The first initial condition implies 0 = g(0) = c1, whereby

g(t) = c2te
−4t .

Because
g′(t) = c2e

−4t − 4c2t e
−2t ,

the second initial condition implies 1 = g′(0) = c2, whereby c2 = 1. Therefore the
Green function associated with the differential operator is

g(t) = te−4t .

(8) [8] Solve the initial-value problem

q′′ + 8q′ + 16q =
8e−4t

1 + t2
, q(0) = q′(0) = 0 .

Solution. This is a nonhomogeneous linear equation with constant coefficients. Be-
cause its forcing does not have characteristic form, we cannot use either Key Identity
Evaluations or Undetermined Coefficients. Because this is an initial-value problem
with homogeneous initial conditions, we will use the Green function method, which
leads directly to the answer.

By the previous problem the Green function for this problem is g(t) = t e−4t.
Because the equation is in normal form, the initial time is 0, and both of the initial
values are 0, the solution to this inital-value problem is given by the Green formula

q(t) =

∫ t

0

g(t− s)f(s) ds =

∫ t

0

(t− s)e−4(t−s) 8e−4s

1 + s2
ds

= 8e−4t
∫ t

0

t− s
1 + s2

ds

= 8t e−4t
∫ t

0

1

1 + s2
ds− 8e−4t

∫ t

0

s

1 + s2
ds

= 8t e−4t tan−1(t)− 4e−4t log(1 + t2) .

Remark. Notice that the interval of definition for this solution is (−∞,∞), which is
a fact that could have been read off directly from the initial-value problem beforehand.
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Remark. This problem can also be solved by the general Green function method.
However that approach is not as efficient because it does not use the fact the Green
function g(t) was already computed in the solution of the preceeding problem. The
integrals end up being the same.

Remark. This problem can also be solved by using variation of parameters. However
that approach is not as efficient because it does not directly solve the initial-value
problem. Rather, it yields a general solution after which the parameters c1 and c2 in
it must be determined to satisfy the initial conditions.

(9) [10] The functions 1 + 2t and e2t are solutions of the homogeneous equation

t x′′ − (1 + 2t)x′ + 2x = 0 over t > 0 .

(You do not have to check that this is true!)
(a) [3] Show that these functions are linearly independent.
(b) [7] Give a general solution of the nonhomogeneous equation

t y′′ − (1 + 2t)y′ + 2y =
16t2

1 + 2t
over t > 0 .

Solution (a). The Wronskian of 1 + 2t and e2t is

Wr[1 + 2t, e2t](t) = det

(
1 + 2t e2t

2 2e2t

)
= (1 + 2t)2e2t − 2e2t = 4t e2t .

Because Wr[1 + 2t, e2t](t) 6= 0 for t > 0, the functions 1 + 2t and e2t are linearly
independent.

Solution (b). The nonhomogeneous equation for y(t) has variable coefficients, so
we must use either the variation of parameters method or the general Green function
method to solve it. Because we seek a general solution, neither method is favored.
To apply either method we must first bring the equation into its normal form,

y′′ − 1 + 2t

t
y′ +

2

t
y =

16t

1 + 2t
over t > 0 .

Because 1 + 2t and e2t are linearly independent, they constitute a fundamental set of
solutions to the associated homogeneous equation.

Variation of Parameters. Because 1 + 2t and e2t constitute a fundamental set of
solutions to the associated homogeneous equation, we seek a general solution of the
nonhomogeneous equation in the form

y(t) = (1 + 2t)u1(t) + e2tu2(t) ,

where u′1(t) and u′2(t) satisfy the linear algebraic system

(1 + 2t)u′1(t) + e2tu′2(t) = 0 ,

2u′1(t) + 2e2tu′2(t) =
16t

1 + 2t
.

The solution of this system is

u′1(t) = − 4

1 + 2t
, u′2(t) = 4e−2t .
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Integrate these equations over t > 0 to obtain

u1(t) = c1 − 2 log(1 + 2t) , u2(t) = c2 − 2e−2t .

Therefore a general solution of the nonhomogeneous equation over t > 0 is

y(t) = (1 + 2t)u1(t) + e2tu2(t)

= (1 + 2t)
(
c1 − 2 log(1 + 2t)

)
+ e2t

(
c2 − 2e−2t

)
= (1 + 2t)c1 + e2tc2 − 2(1 + 2t) log(1 + 2t)− 2 .

Remark. Another way to find u′1(t) and u′2(t) is to use the formulas

u′1(t) = − Y2(t) f(t)

Wr[Y1, Y2](t)
, u′2(t) =

Y1(t) f(t)

Wr[Y1, Y2](t)
,

with Y1(t) = 1 + 2t, Y2(t) = e2t, and f(t) = 16t/(1 + 2t). They yield

u′1(t) = − e2t

4t e2t
16t

1 + 2t
= − 4

1 + 2t
,

u′2(t) =
1 + 2t

4t e2t
16t

1 + 2t
= 4e−2t .

This approach requires knowing two formulas. The General Green Function method
shown next requires knowing just one formula.

General Green Function. The Green function G(t, s) is given by

G(t, s) =
1

Wr[1 + 2s, e2s](s)
det

(
1 + 2s e2s

1 + 2t e2t

)
=
e2t(1 + 2s)− (1 + 2t)e2s

4s e2s
.

The Green Formula then yields the particular solution

yP (t) =

∫ t

0

G(t, s) f(s) ds =

∫ t

0

e2t(1 + 2s)− (1 + 2t)e2s

4s e2s
16s

1 + 2s
ds

= 4e2t
∫ t

0

e−2s ds− 4(1 + 2t)

∫ t

0

1

1 + 2s
ds

= 2e2t
(
1− e−2t

)
− 2(1 + 2t) log(1 + 2t) .

Therefore a general solution of the nonhomogeneous equation over t > 0 is

y(t) = c1(1 + 2t) + c2e
2t + 2e2t − 2− 2(1 + 2t) log(1 + 2t) .

Remark. Because the integrands are both continuous except at s = −1
2
, and because

we want our solution to be defined for every t > 0, the lower endpoint of integration
in the Green Formula can be any tI > −1

2
. We took tI = 0 because it simplified

the evaluation of the primitives at tI . Had we been asked to solve an initial-value
problem then we would have taken tI to be the initial time. For any tI > −1

2
the

resulting particular solution would satisfy

yP (tI) = y′P (tI) = 0 .

Remark. Notice that the general solutions produced by the Variation of Parameters
and General Green Function methods differ because they are built from different
particular solutions. If we replace the c2 in these first of these general solutions by
c2 + 2 then we get the second.
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(10) [8] Give a real general solution of the equation

D2v − 8Dv + 20v = 8 cos(5t) + sin(5t) , where D =
d

dt
.

Solution. This is a nonhomogeneous linear equation with constant coefficients. Its
linear differential operator is L = D2 − 8D + 20. Its characteristic polynomial is

p(z) = z2 − 8z + 20 = (z − 4)2 + 22 ,

which has the conjugate pair of roots 4 ± i2. The forcing 8 cos(5t) + sin(5t) has
characteristic form with degree d = 0 and characteristic µ + iν = i5, which has
multiplicity m = 0. Therefore we can use either Key Identity Evaluations, the Zero
Degree Formula, or Undetermined Coefficients to find a particular solution. Each of
these methods gives the real particular solution

vP (t) = −1
5

sin(5t) .

Therefore a real general solution is

v(t) = c1e
4t cos(2t) + c2e

4t sin(2t)− 1
5

sin(5t) .

Key Identity Evaluations. Notice that the forcing has the phasor form

8 cos(5t) + sin(5t) = Re
(
(8− i)ei5t

)
.

Because m = m + d = 0, we must evaluate the Key Identity at the characteristic
z = µ+ iν = i5. The Key Identity is

L
(
ezt
)

= (z2 − 8z + 20) · ezt .

By evaluating it at z = µ+ iν = i5 we get

L
(
ei5t
)

=
(
(i5)2 − 8 · (i5) + 20

)
· ei5t

= (−25− i40 + 20)ei5t = (−5− i40)ei5t = 5(−1− i8)ei5t .

We divide this by 5(−1− i8) and multiply it by 8− i to obtain

L

(
1

5

8− i
−1− i8

ei5t
)

= (8− i)ei5t .

Therefore a real particular solution is

vP (t) = 1
5

Re

(
8− i
−1− i8

ei5t
)

= 1
5

Re
(
i ei5t

)
= 1

5
Re
(
i
(

cos(5t) + i sin(5t)
))

= −1
5

sin(5t) .

Remark. In the first line above we used the fact that (8− i)/(−1− i8) = i, which
can be seen by noticing that 8− i = i(−1− i8). This fact can also be found through
the direct calculation

8− i
−1− i8

=
8− i
−1− i8

· −1 + i8

−1 + i8

=

(
8 · (−1)− (−1) · 8

)
+ i
(
(−1) · (−1) + 8 · 8

)
(−1)2 + 82

= i .
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Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the real particular solution

vP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem f(t) = 8 cos(5t)+sin(5t) and p(z) = z2−8z+20, so that µ+iν = i5,
α− iβ = 8− i, and m = 0, whereby the particular solution becomes

vP (t) = Re

(
8− i
p(i5)

ei5t
)

= Re

(
8− i
−5− i40

ei5t
)

= 1
5

Re

(
8− i
−1− i8

ei5t
)

= 1
5

Re
(
i ei5t

)
= 1

5
Re
(
i
(

cos(5t) + i sin(5t)
))

= −1
5

sin(5t) .

Remark. In the second line above we used the fact that (8− i)/(−1− i8) = i, which
is explained in the previous remark.

Undetermined Coefficients. Because m = m+ d = 0, and µ+ iν = i5, there is a
particular solution in the form

vP (t) = A cos(5t) +B sin(5t) .

Because

v′P (t) = −5A sin(5t) + 5B cos(5t) , v′′P (t) = −25A cos(5t)− 25B sin(5t) ,

we see that

LvP (t) = v′′P (t)− 8v′P (t) + 20vP (t)

=
[
− 25A cos(5t)− 25B sin(5t)

]
− 8
[
− 5A sin(5t) + 5B cos(5t)

]
+ 20

[
A cos(5t) +B sin(5t)

]
=
(
− 25A− 40B + 20A

)
cos(5t) +

(
− 25B + 40A+ 20B

)
sin(5t)

= (−5A− 40B) cos(5t) + (40A− 5B) sin(5t) .

By setting LvP (t) = 8 cos(5t)+sin(5t), the linear independence of cos(5t) and sin(5t)
implies that

−5A− 40B = 8 , 40A− 5B = 1 ,

which yields A = 0 and B = −1
5
. Therefore a real particular solution is

vP (t) = −1
5

sin(5t) .
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(11) [10] The vertical displacement of a spring-mass system is governed by the equation

ḧ+ 18ḣ+ 1681h = a cos(ωt− φ) ,

where a > 0, ω > 0, and 0 ≤ φ < 2π. Assume CGS units.
(a) [2] Give the natural frequency and period of the system.
(b) [4] Show the system is under damped and give its damped frequency and period.
(c) [4] Give the steady state solution in its phasor form Re(Γ eiωt).

Solution (a). The natural frequency is

ωo =
√

1681 = 41 rad/sec .

The natural period is then

To =
2π

ωo
=

2π√
1681

=
2π

41
sec .

Remark. You did not need to evaluate
√

1681 = 41 for full credit.

Solution (b). The characteristic polynomial of the equation is

p(z) = z2 + 18z + 1681 = (z + 9)2 + 1681− 81

= (z + 9)2 + 1600 = (z + 9)2 + 402 .

This has the conjugate pair of roots −9± i40. Therefore the system is under damped.
Its damped frequency ωη is

ωη =
√

1600 = 40 rad/sec .

The damped period Tη is then

Tη =
2π

ωη
=

2π√
1600

=
2π

40
=

π

20
sec .

Remark. You did not need to evaluate
√

1600 = 40 for full credit.

Alternative Solution (b). The system is under damped because the damping rate
η = 9 is less that the natural frequency ωo =

√
1681 = 41. The damped frequency

ωη is then given by

ωη =
√
ω 2
o − η2 =

√
1681− 81 =

√
1600 = 40 rad/sec .

The damped period Tη is found as before.

Solution (c). The forcing f(t) = a cos(ωt− φ) has the phasor form

f(t) = Re
(
γ eiωt

)
, where the phasor is γ = ae−iφ .

Therefore the steady state solution has the phasor form

hP (t) = Re
(
Γ eiωt

)
, where the phasor is Γ =

γ

p(iω)
.

Because γ = ae−iφ and p(z) = z2 + 18z + 1681, the phasor Γ is

Γ =
ae−iφ

1681− ω2 + i18ω
.

We are not asked to give the solution in either its Cartesian or polar phasor form, so
we can stop here.
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(12) [8] When a 10 gram mass is hung vertically from a spring, at rest it stretches the
spring 4.9 cm. (Gravitational acceleration is g = 980 cm/sec2.) A dashpot imparts
a damping force of 900 dynes (1 dyne = 1 gram cm/sec2) when the speed of the
mass is 3 cm/sec. Assume that the spring force is proportional to displacement, that
the damping force is proportional to velocity, and that there are no other forces. At
t = 0 the mass is displaced 3 cm below its rest position and is released with a upward
velocity of 5 cm/sec.
(a) [6] Give an initial-value problem that governs the displacement h(t) for t > 0.

(DO NOT solve this initial-value problem, just write it down!)
(b) [2] Is this system undamped, under damped, critically damped, or over damped?

(Give your reasoning!)

Solution (a). Let h(t) be the displacement in centimeters at time t in seconds of
the mass from its rest position, with upward displacements being positive. Because
there is no external forcing, the governing initial-value problem has the form

mḧ+ cḣ+ kh = 0 , h(0) = −3 , ḣ(0) = 5 ,

where m is the mass, c is the damping coefficient, and k is the spring constant. The
problem says that m = 10 grams. The damping coefficient c is found by equating
the damping force imparted by the dashpot when the speed of the mass is 3 cm/sec,
which is c 3 dynes, with the force of 900 dynes. This gives c 3 = 900, or

c =
900

3
= 300 dynes sec/cm .

The spring constant k is found by equating the force of the spring when it is stetched
4.9 cm, which is k 4.9 dynes, with the weight of the mass, which is mg = 10 · 980
dynes. This gives k 4.9 = 10 · 980, or

k =
10 · 980

4.9
= 2000 dynes/cm .

Therefore the governing initial-value problem is

10ḧ+ 300 ḣ+ 2000h = 0 , h(0) = −3 , ḣ(0) = 5 .

Remark. With the equation in normal form the answer is

ḧ+ 30 ḣ+ 200h = 0 , h(0) = −3 , ḣ(0) = 5 .

Remark. If we had chosen downward displacements to be positive then the governing
initial-value problem would be the same except for the initial conditions, which would
be h(0) = 3 and ḣ(0) = −5.

Solution (b). The damping rate is η = 30/2 = 15. Because η2 = 225 > 200 = ω 2
o ,

the system is over damped.

Alternative Solution (b). The characteristic polynomial is

p(z) = z2 + 30z + 200 = (z + 10)(z + 20) .

This polynomial has the negative roots −10 and −20, so the system is over damped.


