
First In-Class Exam Solutions
Math 246, Professor David Levermore

Thursday, 20 September 2018

(1) [6] In the absence of predators the population of mosquitoes in a certain area would
increase at a rate proportional to its current population such that it would triple
every six weeks. There are 180,000 mosquitoes in the area when a flock of birds
arrives that eats 40,000 mosquitoes per week.
(a) [4] Give an initial-value problem that governs M(t), the number of mosquitoes in

the area after the flock of birds arrives. (Do not solve the initial-value problem!)
(b) [2] Is the flock large enough to control the mosquitoes? (Why or why not?)

Solution (a). The population tripling every six weeks means that the growth rate
r satisfies er6 = 3, whereby r = 1

6
log(3). Therefore the initial-value problem that M

satisfies is

dM

dt
= 1

6
log(3)M − 40, 000 , M(0) = 180, 000 .

Solution (b). Because the differential equation is autonomous (as well as linear),
the monotonicity of M(t) can be determined by a sign analysis of its right-hand side.
We see from part (a) that

dM

dt
= 1

6
log(3)

(
M − 240, 000

log(3)

)
is


< 0 for M <

240, 000

log(3)
,

> 0 for M >
240, 000

log(3)
.

This can be visualized with the phase-line portrait, which is

− +
←←←←←← • →→→→→→M

240,000
log(3)

Because log(x) is an increasing function and 3 > e, we know that log(3) > log(e) = 1.
Because 3 is close to e we know that log(3) is close to log(e) = 1. Certainly we have
log(3) < 4

3
, which is equivalent to

M(0) = 180, 000 <
240, 000

log(3)
.

This implies that M(t) is a decreasing function of t. Therefore the flock is large
enough to control the mosquitoes.

Remark. Because 3 is about 10% larger than e, we might expect that log(3) is also
about 10% larger than log(e) = 1. (In fact, 3

e
≈ 1.10363832 and log(3) ≈ 1.09861229.)

This can be made precise as follows. The concavity of the function f(x) = log(x) over
x > 0 implies that the graph of f(x) lies below any tangent line. In particular, the
graph of f(x) lies below the tangent line approximation to f(x) at the point x = e.
This says that for any x > 0 we have

f(x) ≤ f(e) + f ′(e)(x− e) .
1
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We expect that this tangent line approximation is pretty good when x is close to e.
By setting f(x) = log(x) and x = 3, which is close to e, we obtain

log(3) ≤ log(e) +
1

e
(3− e) = 1 +

3

e
− 1 =

3

e
.

Because log(3) ≈ 1.09861229 and 3
e
≈ 1.10363832, this is a pretty good upper bound!

In particular, because e > 27
10

we see that

log(3) ≤ 3

e
<

10

9
<

4

3
.

You were not expected to make such an argument on the exam. Any argument that
log(3) is closer to 1 than 4

3
because 3 is close to e was fine.

(2) [22] Find an explicit solution for each of the following initial-value problems and give
its interval of definition.

(a)
dx

dt
= (x− x2)3t2 , x(0) = 2.

Solution (a). This is a nonautonomous, separable equation. Its right-hand side
is defined everywhere. Because x− x2 = x(1− x), its only stationary points are
x = 0 and x = 1. Because x − x2 is differentiable at these stationary points,
no other solution can touch them. Because its initial value 2 lies to the right of
the stationary point 1, the solution x(t) of the initial-value problem will lie to
the right of the stationary point 1 for so long as it exists. In other words, the
solution x(t) must satisfy x(t) > 1 for every t in its interval of definition. To
determine this interval of definition we must find x(t).

The differential equation has the separated differential form

1

x− x2
dx = 3t2 dt ,

whereby ∫
1

x− x2
dx =

∫
3t2 dt = t3 + c1 .

By the residual (cover up) method we have the partial fraction identity

1

x− x2
=

1

x(1− x)
=

1

x
+

1

1− x
.

This identity plus the fact that |x| = x and |1− x| = x− 1 when x > 1 yield∫
1

x− x2
dx =

∫
1

x
dx+

∫
1

1− x
dx

= log(|x|)− log(|1− x|) + c2

= log(x)− log(x− 1) + c2 = log

(
x

x− 1

)
+ c2 .

By setting c = c1 − c2 we obtain the implicit general solution

log

(
x

x− 1

)
= t3 + c .
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The initial condition x(0) = 2 implies that

log

(
2

2− 1

)
= 03 + c ,

whereby c = log(2). Hence, the solution is governed implicitly by

log

(
x

x− 1

)
= t3 + log(2) .

Upon exponentiating both sides we obtain
x

x− 1
= elog(2)+t3 = 2et

3

,

which becomes the linear expression in x given by

x = 2et
3

(x− 1) .

This can be solved to arrive at the explicit solution

x =
2et

3

2et3 − 1
.

Because the denominator is positive at the initial time t = 0, the interval of
definition is determined by 2et

3 − 1 > 0. Because et
3
> 1

2
implies t3 > − log(2),

we see that the interval of definition is

t > −
(

log(2)
) 1

3 ,

or equivalently, in interval notaion(
−
(

log(2)
) 1

3 , ∞
)
.

(b) (1 + z2)
dy

dz
+ 6zy =

3

1 + z2
, y(0) = 2.

Solution (b). This is a nonhomogeneous linear equation. Its normal form is

dy

dz
+

6z

1 + z2
y =

3

(1 + z2)2
.

Its coefficient 6z/(1+z2) and forcing 3/(1+z2)2 both are continuous everywhere.
Therefore the interval of definition of the solution is (−∞,∞).

An integrating factor is

exp

(∫ z

0

6s

1 + s2
ds

)
= exp

(
3 log(1 + z2)

)
= (1 + z2)3 ,

whereby the equation has the integrating factor form

d

dz

(
(1 + z2)3y

)
= (1 + z2)3

3

(1 + z2)2
= 3 + 3z2 .

By integrating both sides of this equation we find that

(1 + z2)3y =

∫
3 + 3z2 dz = 3z + z3 + c .
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The initial condition y(0) = 2 implies that (1 + 02)32 = 3 · 0 + 03 + c, whereby
c = 2. Therefore the solution is

y =
3z + z3 + 2

(1 + z2)3
.

This foumula confirms that its interval of definition is (−∞,∞).

(3) [12] Consider the differential equation
dv

dt
=

(v2 − 1)(v − 3)2

(v2 + 1)(v + 3)2
.

(a) [7] Sketch its phase-line portrait over the interval −4 ≤ v ≤ 4. Identify with ◦
points where it has no solution. Identify with • its stationary points and classify
each as being either stable, unstable, or semistable.

(b) [5] For each stationary point identify the set of initial-values v(0) such that the
solution v(t) converges to that stationary point as t→∞.

Solution (a). This equation is autonomous. Its right-hand side is undefined at
v = −3 and is differentiable elsewhere. Its stationary points are found by setting

(v2 − 1)(v − 3)2

(v2 + 1)(v + 3)2
= 0 .

Because v2 − 1 = (v + 1)(v− 1), the stationary points are v = −1, v = 1, and v = 3.
(Notice that v2 +1 > 0.) Because the right-hand side is differentiable at each of these
stationary points, no other solutions will touch them. (Uniqueness!)

A sign analysis of the right-hand side shows that the phase-line portrait is

+ + − + +
→→ +→→ ◦ →→→→ • ←←←← • →→→→ • →→ +→→ v
−4 −3 −1 1 3 4

undefined stable unstable semistable

Remark. The terms stable, unstable, and semistable are applied only to solutions.
The point v = −3 is not a solution, so these terms should not be applied to it.

Solution (b). As t increases the solutions v(t) will move in the direction of the arrows
that are shown in the phase-line portrait given in the solution to part (a). Moreover,
uniqueness implies that a nonstationary solution will not touch any stationary one.

• The phase-line portrait shows that for the stable stationary point −1 we have
v(t)→ −1 as t→∞ if and only if v(0) is in the interval (−3, 1).

• The phase-line portrait shows that for the unstable stationary point 1 we have
v(t)→ 1 as t→∞ if and only if v(0) = 1.

• The phase-line portrait shows that for the semistable stationary point 3 we have
v(t)→ 3 as t→∞ if and only if v(0) is in the interval (1, 3].
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(4) [12] Consider the following MATLAB function M-file.

function [t,u] = solveit(tI, uI, tF, n)

t = zeros(n + 1, 1); u = zeros(n + 1, 1);
t(1) = tI; u(1) = uI; h = (tF - tI)/n; hhalf = h/2;
for k = 1:n
t(k + 1) = t(k) + h;
fnow = (u(k))̂ 3 + exp(t(k)*u(k)); uplus = u(k) + h*fnow;
fplus = (uplus)̂ 3 + exp(t(k+1)*uplus); u(k + 1) = u(k) + hhalf*(fnow + fplus);
end

Suppose the input values are tI = 2, uI = 0, tF = 6, and n = 40.
(a) [4] What initial-value problem is being approximated numerically?
(b) [2] What is the numerical method being used?
(c) [2] What is the step size?
(d) [4] What will be the output values of t(2) and u(2)?

Solution (a). The initial-value problem being approximated numerically is

du

dt
= u3 + exp(tu) , u(2) = 0 .

Remark. An initial-value problem consists of both a differential equation and an
initial condition. Both must be given for full credit.

Solution (b). The solution is being approximated by the Runge-trapezoidal method.
(This is clear from the “hhalf*(fnow + fplus)” in last line of the “for” loop.)

Solution (c). Because tF = 6, tI = 2, and n = 40, the step size is

h =
tF− tI

n
=

6− 2

40
=

4

40
=

1

10
= 0.1 .

Remark. The correct values for tF, tI, and n had to be plugged in to get full credit.

Solution (d). Because h = 0.1, we have hhalf = 0.05.
Because tI = 2 and uI = 0, we have t(1) = tI = 2, and x(1) = xI = 0.
Setting k = 1 inside the “for” loop then yields

t(2) = t(1) + h = 2 + 0.1 = 2.1 ,

fnow = (u(1))3 + exp(t(1) * u(1)) = 03 + exp(2 · 0) = 0 + 1 = 1 ,

uplus = u(1) + h * fnow = 0 + 0.1 · 1 = 0.1 ,

fplus = uplus3 + exp(t(2) * uplus) = (0.1)3 + exp(2.1 · 0.1) = (0.1)3 + exp(0.21) ,

u(2) = u(1) + hhalf*(fnow + fplus) = 0 + 0.05
(
1 + (0.1)3 + exp(0.21)

)
.

Remark. This expression for u(2) did not have to be simplified to get full credit.
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(5) [6] Give the interval of definition for the solution of the initial-value problem

dk

dt
+

cos(t)

sin(t)
k =

t

t2 − 16
, k(−5) = 4 .

(Do not solve the equation to answer this question, but give reasoning!)

Solution. This problem is linear in k. It is already in normal form. The interval of
definition can be read off as follows.
− First, notice that the coefficient cos(t)/ sin(t) is undefined at t = nπ for every

integer n and is continuous elsewhere.
− Next, notice that the forcing t/(t2−16) is undefined at t = ±4 and is continuous

elsewhere.
Therefore the interval of definition is (−2π,−4) because
• the initial time t = −5 is in (−2π,−4),
• both the coefficient and forcing are continuous over (−2π,−4),
• the coefficient is undefined at t = −2π,
• the forcing is undefined at t = −4.

(6) [6] Sketch the graph that would be produced by the following Matlab commands.

[X, Y] = meshgrid(−5:0.1:5,−5:0.1:5)
contour(X, Y, X − Y.̂ 2, [−4, 0, 4])
axis square

Solution. The meshgrid command says the sketch should show both x and y axes
marked from −5 to 5. The contour command plots the graph of the curve x− y2 = c
for the values c = −4, c = 0, and c = 4, which are the graphs of the three parabolas

x = y2 − 4 , x = y2 , x = y2 + 4 .

A sketch will be shown during discussion.
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(7) [8] Suppose you have used a numerical method to approximate the solution of an
initial-value problem over the time interval [1, 10] with 900 uniform time steps. What
step size is needed to reduce the global error of your approximation by a factor of
1

625
if the method you had used was each of the following? (Notice that 625 = 54.)

(a) Runge-Kutta method

(b) Runge-midpoint method

(c) Runge-trapezoidal method

(d) explicit Euler method

Remark. Notice that the step size used in the original calculation is

h =
tF − tI
N

=
10− 1

900
=

1

100
.

Solution (a). The Runge-Kutta method is fourth order, so its error scales like h4.

To reduce the error by a factor of 1
625

, we must reduce h by a factor of 1
625

1
4 = 1

5
.

Because the original h was 1
100

, we must set

h =
1

100
· 1

5
=

1

500
.

Solution (b). The Runge-midpoint method is second order, so its error scales like

h2. To reduce the error by a factor of 1
625

, we must reduce h by a factor of 1
625

1
2 = 1

25
.

Because the original h was 1
100

, we must set

h =
1

100
· 1

25
=

1

2500
.

Solution (c). The Runge-trapezoidal method is second order, so its error scales like

h2. To reduce the error by a factor of 1
625

, we must reduce h by a factor of 1
625

1
2 = 1

25
.

Because the original h was 1
100

, we must set

h =
1

100
· 1

25
=

1

2500
.

Solution (d). The explicit Euler method is first order, so its error scales like h. To
reduce the error by a factor of 1

625
, we must reduce h by a factor of 1

625
. Because the

original h was 1
100

, we must set

h =
1

100
· 1

625
=

1

62500
.

Remark. The number of time steps needed to reduce the error by a factor of 1
625

is
respectively

(a) 900 · 5 , (b) 900 · 25 , (c) 900 · 25 , (d) 900 · 625 .

Had you computed these then the associated step sizes can be expressed as

(a)
10− 1

900 · 5
, (b)

10− 1

900 · 25
, (c)

10− 1

900 · 25
, (d)

10− 1

900 · 625
.

The arithmetic did not have to be carried out for full credit.



8

(8) [8] A tank has a square base with 5 meter edges, a height of 3 meters, and an open
top. It is initially empty when water begins to fill it at a rate of 7 liters per minute.
The water also drains from the tank through a hole in its bottom at a rate of 4

√
h

liters per minute where h(t) is the height of the water in the tank in meters.
(a) [6] Give an initial-value problem that governs h(t). (Recall 1 m3 = 1000 lit.)

(Do not solve the initial-value problem!)
(b) [2] Does the tank overflow? (Why or why not?)

Solution (a). Let V (t) be the volume (lit) of water in the tank at time t minutes.
We have the following (optional) picture.

inflow
7 lit/min

−→

height 3 m

water height h(t) m
water volume V (t) lit

base area 25 m2

−→ outflow

4
√
h(t) lit/min

initial conditions
h(0) = 0 m,
V (0) = 0 lit.

We want to write down an initial-value problem that governs h(t).

Because the tank has a base with an area of 25 m2, the volume of water in the
tank is 25h(t) m3. Because 1 m3 = 1000 lit, V (t) = 1000 · 25h(t) = 25000h(t) lit.
Because

dV

dt
= RATE IN− RATE OUT = 7− 4

√
h ,

and V = 25000h, the initial-value problem that governs h(t) is

25000
dh

dt
= 7− 4

√
h , h(0) = 0 .

Each term in the differential equation has units of lit/min.

Solution (b). The differential equation is autonomous. Its right-hand side is defined
for h ≥ 0 and is differentiable for h > 0. It has one stationary point at h = 49

16
. Its

phase-line portrait for h > 0 is

+ −
→→→→→→ • ←←←←←← h

49
16

This portrait shows that if h(0) = 0 then h(t) → 49
16

as t → ∞. Because the height

of the tank is 3 and 49
16
> 3, the tank will overflow.
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(9) [20] For each of the following differential forms determine if it is exact or not. If it
is exact then give an implicit general solution. Otherwise find an integrating factor.
(You do not need to find a general solution in the last case.)

(a)
(

cos(x+ y)− ex
)

dx+
(

cos(x+ y) + 2 + y2
)

dy = 0 .

Solution (b). This differential form is exact because

∂y
(

cos(x+ y)− ex
)

= − sin(x+ y) = ∂x
(

cos(x+ y) + 2 + y2
)

= − sin(x+ y) .

Therefore we can find H(x, y) such that

∂xH(x, y) = cos(x+ y)− ex , ∂yH(x, y) = cos(x+ y) + 2 + y2 .

Integrating the first equation with respect to x shows

H(x, y) = sin(x+ y)− ex + h(y) ,

which implies that

∂yH(x, y) = cos(x+ y) + h′(y) .

Plugging this expression for ∂yH(x, y) into the second equation gives

cos(x+ y) + h′(y) = cos(x+ y) + 2 + y2 ,

which shows h′(y) = 2+y2. Taking h(y) = 2y+ 1
3
y3, an implicit general solution

is
sin(x+ y)− ex + 2y + 1

3
y3 = c .

(b) (y3 + 4x3y) dx+ (5xy2 + 3x4) dy = 0 .

Solution (b). This differential form is not exact because

∂y(y
3 + 4x3y) = 3y2 + 4x3 6= ∂x(5xy2 + 3x4) = 5y2 + 12x3 .

We seek an integrating factor ρ that satisfies

∂y
[
(y3 + 4x3y)ρ

]
= ∂x

[
(5xy2 + 3x4)ρ

]
.

Expanding the partial derivatives yields

(y3 + 4x3y)∂yρ+ (3y2 + 4x3)ρ = (5xy2 + 3x4)∂xρ+ (5y2 + 12x3)ρ .

Grouping the ρ terms together gives

(y3 + 4x3y)∂yρ = (5xy2 + 3x4)∂xρ+ (2y2 + 8x3)ρ .

If we set ∂xρ = 0 then this reduces to y∂yρ = 2ρ, which yields the integrating
factor ρ = y2.

Remark. Because the differential form was not exact, all we were asked to do
was find an integrating factor. If we had been asked to find an implicit general
solution then we would seek H(x, y) such that

∂xH(x, y) = y5 + 4x3y3 , ∂yH(x, y) = 5xy4 + 3x4y2 .

These equations can be integrated to find H(x, y) = xy5 + x4y3. Therefore an
implicit general solution is

xy5 + x4y3 = c .


