$h(t) = \mathcal{L}^{-1}[H](t)$)	$H(s) = \mathcal{L}[h](s)$	
$t^n e^{at}$	for $n \ge 0$	$\frac{n!}{(s-a)^{n+1}}$	for $s > a$
$e^{at}\cos(bt)$		$\frac{s-a}{(s-a)^2+b^2}$	for $s > a$
$e^{at}\sin(bt)$		$\frac{b}{(s-a)^2+b^2}$	for $s > a$
$e^{at}\cosh(bt)$		$\frac{s-a}{(s-a)^2 - b^2}$	for $s > a + b $
$e^{at}\sinh(bt)$		$\frac{b}{(s-a)^2 - b^2}$	for $s > a + b $
$t^n j(t)$	for $n \ge 0$	$(-1)^n J^{(n)}(s)$	where $J(s) = \mathcal{L}[j](s)$
j'(t)		s J(s) - j(0)	where $J(s) = \mathcal{L}[j](s)$
$e^{at}j(t)$		J(s-a)	where $J(s) = \mathcal{L}[j](s)$
u(t-c)j(t-c)	for $c \ge 0$	$e^{-cs}J(s)$	where $J(s) = \mathcal{L}[j](s)$
$\delta(t-c)j(t)$	for $c \ge 0$	$e^{-cs}j(c)$	

Table of Laplace Transforms

Here a, b, and c are real numbers; n is an integer; j(t) is any function that is nice enough; u(t) is the unit step (Heaviside) function; $\delta(t)$ is the unit impulse (Dirac delta).