
Solutions of the Sample Problems for the First In-Class Exam
Math 246, Spring 2018, Professor David Levermore

(1) (a) Give the integral being evaluated by the following Matlab command.

int(’x/(1+x̂ 4)’,’x’,0,inf)

Solution. It is evaluating the definite integral∫ ∞
0

r

1 + r4
dr .

where you can replace r by any other variable.

(b) Sketch the graph that would be produced by the following Matlab command.

ezplot(’2/t’, [1, 6])

Solution. Your sketch should show a decreasing, concave up function that
decreases from a value of 2 to a value of 1

3
over the interval [1, 6].

(c) Sketch the graph that would be produced by the following Matlab commands.

[X, Y] = meshgrid(−5:0.1:5,−5:0.1:5)
contour(X, Y, X.̂ 2 + Y.̂ 2, [1, 9, 25])
axis square

Solution. Your sketch should show both x and y axes marked from −5 to 5
and circles of radius 1, 3, and 5 centered at the origin.

(2) Find the explicit solution for each of the following initial-value problems and identify
its interval of definition.

(a)
dz

dt
=

cos(t)− z
1 + t

, z(0) = 2.

Solution. The differential equation is a nonhomogeneous, linear equation in z.
Its linear normal form is

dz

dt
+

z

1 + t
=

cos(t)

1 + t
.

Because the initial time is t = 0 while both the coefficient and the forcing are
undefined at t = −1 and are continuous elsewhere, we see that the interval of
definition for the solution of the initial-value problem is t > −1.

We read off from its normal form that an integrating factor for the differential
equation is given by

exp

(∫ t

0

1

1 + s
ds

)
= exp

(
log(1 + t)

)
= 1 + t ,

1
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Upon multiplying the normal form of the equation by (1 + t), we obtain the
integrating factor form

d

dt

(
(1 + t)z

)
= cos(t) .

This is then integrated to obtain

(1 + t)z = sin(t) + c .

The integration constant c is found through the initial condition z(0) = 2 by
setting t = 0 and z = 0, whereby

c = (1 + 0)2− sin(0) = 2 .

Hence, upon solving explicitly for z, the solution is

z =
2 + sin(t)

1 + t
.

The interval of definition for this solution is t > −1, which agrees with what we
found earlier.

(b)
du

dz
= eu + 1 , u(0) = 0.

Solution. The differential equation is autonomus (and therefore is separable).
Its right-hand side is continuous everywhere. It is defined everywhere. It has no
stationary solutions. Its separated differential form is

1

eu + 1
du = dz .

This equation can be integrated to obtain

z =

∫
1

eu + 1
du =

∫
e−u

1 + e−u
du = − log(1 + e−u) + c .

The integration constant c is found through the initial condition u(0) = 0 by
setting z = 0 and u = 0, whereby

c = 0 + log(1 + e0) = log(2) .

Hence, the solution is given implicitly by

z = − log(1 + e−u) + log(2) = − log

(
1 + e−u

2

)
.

This may be solved for u as follows:

e−z =
1 + e−u

2
,

2e−z − 1 = e−u ,

u = − log(2e−z − 1) .

The interval of definition for this solution is z < log(2).



3

(c)
dv

dt
= −3t2e−v , v(2) = 0.

Solution. The differential equation is separable, but is not autonomous. Its
right-hand side is continuous everywhere. It has no stationary solutions. Its
separated differential form is

ev dv = −3t2 dt .

This can be integrated to obtain

ev = −t3 + c .

The initial condition v(2) = 0 implies that c = e0 + 23 = 1 + 8 = 9. Therefore
ev = −t3 + 9, which can be solved as

v = log(9− t3) , with interval of definition t < 9
1
3 .

Here we need 9 > t3 for the log to be defined. The interval of definition is
obtained by taking the cube root of both sides of this inequality.

(3) Give the interval of definition for the solution of the initial-value problem

dx

dt
+

1

t2 − 4
x =

1

sin(t)
, x(1) = 0 .

(You do not have to solve this equation to answer this question!)

Solution. The differential equation is a nonhomogeneous, linear equation in x and
is already in normal form. The coefficient 1/(t2 − 4) is undefined at t = ±2 and
is continuous elsewhere. The forcing 1/ sin(t) is undefined where t = nπ for some
integer n and is continuous elsewhere. (Alternatively, it is continuous everywhere
except t = 0, ±π, ±2π, · · · , at which it is undefined.) The initial time is t = 1.
Therefore we can see that the interval of definition for the solution of the initial-
value problem is (0, 2) because:
• the initial time t = 1 is in (0, 2),
• both the coefficient and forcing are continuous over (0, 2),
• the forcing is undefined at t = 0,
• the coefficient is undefined at t = 2.

(4) Consider the following Matlab commands.

>> [T, Y] = meshgrid(−5.0:1.0:5.0,−5.0:1.0:5.0);
>> S = T.̂ 2 − Y.̂ 3;
>> L = sqrt(1 + S.̂ 2);
>> quiver(T, Y, 1./L, S./L, 0.5)
>> axis tight, xlabel ’t’, ylabel ’y’

(a) What is the differential equation being studied?
(b) What kind of graph will these Matlab commands produce?

Solution (a). The differential equation being studied is

dy

dt
= t2 − y3 .

This can be read off from the second command.
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Solution (b). These Matlab commands will produce a direction field for the above
equation in the rectangle [−5, 5]× [−5, 5] with an 11× 11 grid of arrows. The fact it
is producing a direction field is seen from the third and fourth commands. The sizes
of the rectangle and the grid can be read off from the first command.

(5) Consider the differential equation

dy

dt
=
y2(y + 2)(y − 4)

y − 2
.

(a) Sketch its phase-line portrait over the interval [−6, 6]. Identify points where it is
undefined. Identify its stationary points and classify each as being either stable,
unstable, or semistable.

Solution. This equation is autonomous. Its right-hand side is undefined at
y = 2 and is differentiable elsewhere. Its stationary points are found by setting

y2(y + 2)(y − 4)

y − 2
= 0 .

Therefore the stationary points are y = −2, y = 0, and y = 4. Because the right-
hand side is differentiable at each of these stationary points, no other solutions
will will touch them. (Uniqueness!)

A sign analysis of the right-hand side shows that the phase-line portrait is

− + + − +
←←←←←←←← • →→→→ • →→→→ ◦ ←←←← • →→→→ y
−6 −2 0 2 4 6

unstable semistable undefined unstable

Remark. The terms stable, unstable, and semistable are applied to solutions.
The point y = 2 is not a solution, so these terms should not be applied to it.

(b) For each stationary point identify the set of initial values y(0) such that the
solution y(t) converges to that stationary point as t→∞.

Solution. As t increases the solutions will move in the direction of the arrows
shown in the phase-line portrait given in the solution to part (a). Moreover, by
uniqueness any nonstationary solution will not touch a stationary one.
• Because the stationary point −2 is unstable y(t) → −2 as t → ∞ if and

only if y(0) = −2.
• Because the stationary point 0 is semistable y(t) → 0 as t → ∞ if and

only if y(0) is in (−2, 0].
• Because the stationary point 4 is unstable y(t)→ 4 as t→∞ if and only

if y(0) = 4.
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(c) For each stationary point identify the set of initial values y(0) such that the
solution y(t) converges to that stationary point as t→ −∞.

Solution. As t decreases the solutions will move in the opposite direction of
the arrows shown in the phase-line portrait given in the solution to part (a).
Moreover, by uniqueness any nonstationary solution will not touch a stationary
one.
• Because the stationary point −2 is unstable y(t)→ −2 as t→ −∞ if and

only if y(0) is in (−∞, 0).
• Because the stationary point 0 is semistable y(t) → 0 as t → −∞ if and

only if y(0) is in [0, 2).
• Because the stationary point 4 is unstable y(t) → 4 as t → −∞ if and

only if y(0) is in (2,∞).

(d) Identify all initial values y(0) such that the interval of definition of the solution
y(t) is (−∞,∞).

Solution. The interval of definition the solution y(t) is (−∞,∞) when either
y(0) is in [−2, 0] or y(0) = 4.

Remark. When y(0) is in either (−∞,−2) or (4,∞) then when |y(t)| gets large
y(t) will behave like a nonzero solution of

dy

dt
= y3 ,

all of which blow up in finite time as t increases.

Remark. When y(0) is in either (0, 2) or (2, 4) then as y(t) approaches 2 it will
behave like a solution of

dy

dt
= − 32

y − 2
,

for all of which y′(t) blows up in finite time as t increases.

(e) Sketch a graph of y versus t showing several solution curves. The graph should
show all of the stationary solutions as well as solution curves above and below
each of them. Every value of y for which the equation is defined should lie on at
least one sketched solution curve.

Solution. This will be given during the review session. You can sketch it below.
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(6) In the absence of predators the population of mosquitoes in a certain area would
increase at a rate proportional to its current population such that it would triple
every five weeks. There are 85,000 mosquitoes in the area when a flock of birds
arrives that eats 25,000 mosquitoes per week. Write down an initial-value problem
that governs M(t), the population of mosquitoes in the area after the flock of birds
arrives. (You do not have to solve the initial-value problem!)

Solution. The population tripling every five weeks corresponds to a growth factor
of 3

t
5 = (elog(3))

t
5 = e

1
5
log(3)t, which implies a growth rate of 1

5
log(3). Therefore the

initial-value problem that M satisfies is

dM

dt
= 1

5
log(3)M − 25, 000 , M(0) = 85, 000 .

Remark. This equation is a nonhomogeneous linear equation that is also au-
tonomous. If you were asked for an analytic solution then it is best to think of
it as linear. However, for some questions it is better to think of it as autonomous.
For example, if you are asked whether the flock of birds is big enough to control the
mosquitoes then a phase-line portrait is a quick route to the answer.

(7) A tank initially contains 100 liters of pure water. Beginning at time t = 0 brine (salt
water) with a salt concentration of 2 grams per liter (gr/lit) flows into the tank at a
constant rate of 3 liters per minute (lit/min) and the well-stirred mixture flows out
of the tank at the same rate. Let S(t) denote the mass (gr) of salt in the tank at
time t ≥ 0.
(a) Write down an initial-value problem that governs S(t).

Solution. Because brine flows in and out of the tank at the same rate, the tank
will contain 100 liters of brine for every t > 0. The salt concentration of the
brine in the tank at time t will therefore be S(t)/100 gr/lit. Because this is also
the concentration of the outflow, S(t), the mass of salt in the tank at time t,
will satisfy

dS

dt
= RATE IN− RATE OUT = 2 · 3− S

100
· 3 = 6− 3

100
S .

Because there is no salt in the tank initially, the initial-value problem that gov-
erns S(t) is

dS

dt
= 6− 3

100
S , S(0) = 0 .

(b) Is S(t) an increasing or decreasing function of t? (Give your reasoning.)

Solution. We see from part (a) that

dS

dt
= 3

100
(200− S) > 0 for S < 200 ,

whereby S(t) is an increasing function of t that will approach the stationary
value of 200 gr as t→∞.
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(c) What is the behavior of S(t) as t→∞? (Give your reasoning.)

Solution. The argument given for part (b) already shows that S(t) is an in-
creasing function of t that approaches the stationary value of 200 gr as t→∞.

(d) Derive an explicit formula for S(t).

Solution. The differential equation given in the answer to part (a) is linear, so
write it in the form

dS

dt
+ 3

100
S = 6 .

An integrating factor is e
3

100
t, whereby

d

dt

(
e

3
100

tS
)

= 6e
3

100
t .

This is the integrated to obtain

e
3

100
tS = 200e

3
100

t + c .

The integration constant c is found by setting t = 0 and S = 0, whereby

c = e0 · 0− 200 · e0 = −200 .

Then solving for S gives

S(t) = 200− 200e−
3

100
t .

(e) How does the answer to part (a) change if the well-stirred mixture flows out of
the tank at a constant rate of 2 liters per minute?

Solution. Because brine flows into the tank at 3 lit/min and out of it at 2
lit/min, the tank will contain 100 + t liters of brine for every t > 0. The salt
concentration of the brine in the tank at time t will therefore be S(t)/(100 + t)
gr/lit. Because this is also the concentration of the outflow, S(t), the mass of
salt in the tank at time t, will satisfy

dS

dt
= RATE IN− RATE OUT = 2 · 3− S

100 + t
· 2 = 6− 2

100 + t
S .

Because there is no salt in the tank initially, the initial-value problem that gov-
erns S(t) is

dS

dt
= 6− 2

100 + t
S , S(0) = 0 .

Remark. Can you see how the answers to parts (b-d) change for this problem?

(8) A 2 kilogram (kg) mass initially at rest is dropped in a medium that offers a resistance
of v2/40 newtons (= kg m/sec2) where v is the downward velocity (m/sec) of the mass.
The gravitational acceleration is 9.8 m/sec2.
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(a) What is the terminal velocity of the mass?

Solution. The terminal velocity is the velocity at which the force of resistence
balances that of gravity. This happens when

1
40
v2 = mg = 2 · 9.8 .

Upon solving this for v we obtain

v =
√

40 · 2 · 9.8 m/sec (full marks)

=
√

4 · 2 · 98 =
√

4 · 2 · 2 · 49

=
√

42 · 72 = 4 · 7 = 28 m/sec .

(b) Write down an initial-value problem that governs v as a function of time. (You
do not have to solve it!)

Solution. The net downward force on the falling mass is the force of gravity
minus the force of resistence. By Newton (ma = F ), this leads to

m
dv

dt
= mg − 1

40
v2 .

Because m = 2 and g = 9.8, and because the mass is initially at rest, this yields
the initial-value problem

dv

dt
= 9.8− 1

80
v2 , v(0) = 0 .

Remark. You should be able to solve this initial-value problem.

(9) Give an implicit general solution to each of the following differential equations.

(a)

(
y

x
+ 3x

)
dx+

(
log(x)− y

)
dy = 0 .

Solution. This equation is not linear or separable. Because

∂y

(
y

x
+ 3x

)
=

1

x
= ∂x

(
log(x)− y

)
=

1

x
,

the equation is exact. Therefore we can find H(x, y) such that

∂xH(x, y) =
y

x
+ 3x , ∂yH(x, y) = log(x)− y .

The first of these equations implies that

H(x, y) = y log(x) + 3
2
x2 + h(y) .

Plugging this into the second equation then shows that

log(x)− y = ∂yH(x, y) = log(x) + h′(y) .

Hence, h′(y) = −y, which yields h(y) = −1
2
y2. Therefore a general solution is

governed implicitly by

y log(x) + 3
2
x2 − 1

2
y2 = c , where c is an arbitrary constant .
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(b) (x2 + y3 + 2x) dx+ 3y2 dy = 0 .

Solution. This equation is not linear or separable. Because

∂y(x
2 + y3 + 2x) = 3y2 6= ∂x(3y2) = 0 ,

the equation is not exact. Seek an integrating factor µ(x, y) such that

∂y
(
(x2 + y3 + 2x)µ

)
= ∂x(3y2µ) .

This means that µ must satisfy

(x2 + y3 + 2x)∂yµ+ 3y2µ = 3y2∂xµ .

If we assume that µ depends only on x (so that ∂yµ = 0) then this reduces to

µ = ∂xµ ,

which depends only on x. We see from this that µ = ex is an integrating factor.
This implies that

(x2 + y3 + 2x)ex dx+ 3y2ex dy = 0 is exact .

Therefore we can find H(x, y) such that

∂xH(x, y) = (x2 + y3 + 2x)ex , ∂yH(x, y) = 3y2ex .

The second of these equations implies that

H(x, y) = y3ex + h(x) .

Plugging this into the first equation then yields

(x2 + y3 + 2x)ex = ∂xH(x, y) = y3ex + h′(x) .

Hence, h satisfies

h′(x) = (x2 + 2x)ex .

This can be integrated to obtain h(x) = x2ex. Therefore a general solution is
governed implicitly by

(y3 + x2)ex = c , where c is an arbitrary constant .

(10) Suppose we are using the Runge-midpoint method to numerically approximate the
solution of an initial-value problem over the time interval [0, 5]. By what factor would
we expect the error to decrease when we increase the number of time steps taken from
500 to 2000?

Solution. The Runge-midpoint method is second order, which means its (global)
error scales like h2 where h is the step size. When the number of time steps taken
increases from 500 to 2000, the step size h decreases by a factor of 1/4. Therefore
the error will decrease (like h2) by a factor of 1/42 = 1/16.

Remark. You should be able to answer similar questions about the explicit Euler,
Runge-trapezoidal, and Runge-Kutta methods.
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(11) Consider the following Matlab function m-file.

function [t,y] = solveit(tI, yI, tF, n)

t = zeros(n + 1, 1); y = zeros(n + 1, 1);
t(1) = tI; y(1) = yI; h = (tF - tI)/n;
for i = 1:n
z = t(i)̂ 4 + y(i)̂ 2;
t(i + 1) = t(i) + h;
y(i + 1) = y(i) + (h/2)*(z + t(i + 1)̂ 4 + (y(i) + h*z)̂ 2);
end

Suppose the input values are tI = 1, yI = 1, tF = 5, and n = 20.

(a) What is the initial-value problem being approximated numerically?

Solution. The initial-value problem being approximated is

dy

dt
= t4 + y2 , y(1) = 1 .

Remark. You should not confuse the y(1) above with the y(1) appearing in the
Matlab program. The y(1) denotes the solution y(t) of the initial-value problem
evaluated at t = 1. The y(1) denotes the first entry of the Matlab array y. Here
they have the same value because tI = 1 but they will be different in general.

(b) What is the numerical method being used?

Solution. The Runge-Trapezoidal method is being used.

(c) What is the step size?

Solution. Because tF = 5, tI = 1, and n = 20, the step size is

h =
tF− tI

n
=

5− 1

20
=

4

20
= .2 .

Remark. You must plug in the correct values for tF, tI, and n to get any credit.

(d) What are the output values of t(2) and y(2)?

Remark. Notice that this is asking for the values of the second entries of the
Matlab arrays t and y produced by the above m-file. In particular, y(2) is not
the solution y(t) of the initial-value problem evaluated at t = 2!

Solution. The step size is given by h = .2. The initial time and value are given
by t(1) = tI = 1 and y(1) = yI = 1. By setting i = 1 inside the “for loop” we
see that

z = t(1)4 + y(1)2 = 1 + 1 = 2 ,

t(2) = t(1) + h = 1 + .2 = 1.2 ,

y(2) = y(1) + (h/2)
(
z + t(2)4 + (y(1) + h z)2

)
= 1 + .1

(
2 + (1.2)4 + (1 + .2 · 2)2

)
.
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(12) Suppose we have used a numerical method to approximate the solution of an initial-
value problem over the time interval [1, 6] with 1000 uniform time steps. How many
uniform time steps do we need to reduce the global error of our approximation by
roughly a factor of 1

81
if the method we had used was each of the following?

(a) Explicit Euler method
(b) Runge-trapezoidal method
(c) Runge-midpoint method
(d) Runge-Kutta method

Solution (a). The explicit Euler method is first order, so its error scales like h. To
reduce the error by a factor of 1

81
, we must reduce h by a factor of 1

81
. We must

increase the number of time steps by a factor of 81, which means we need 81, 000
uniform time steps.

Solution (b). The Runge-trapezoidal method is second order, so its error scales like

h2. To reduce the error by a factor of 1
81

, we must reduce h by a factor of 1
81

1
2 = 1

9
.

We must increase the number of time steps by a factor of 9, which means you need
9, 000 uniform time steps.

Solution (c). The Runge-midpoint method is second order, so its error scales like

h2. To reduce the error by a factor of 1
81

, we must reduce h by a factor of 1
81

1
2 = 1

9
.

We must increase the number of time steps by a factor of 9, which means you need
9, 000 uniform time steps.

Solution (d). The Runge-Kutta method is fourth order, so its error scales like h4.

To reduce the error by a factor of 1
81

, we must reduce h by a factor of 1
81

1
4 = 1

3
. We

must increase the number of time steps by a factor of 3, which means you need 3, 000
uniform time steps.


