Final Exam Sample Problems, Math 246, Spring 2017

- (1) Consider the differential equation $\frac{\mathrm{d}y}{\mathrm{d}t} = (9 y^2)y^2$.
 - (a) Identify its stationary points and classify their stability.
 - (b) Sketch its phase-line portrait in the interval $-5 \le y \le 5$.
 - (c) If y(0) = -1, how does the solution y(t) behave as $t \to \infty$?
- (2) Find an explicit solution to each of the following initial-value problems. Identify their intervals of definition.

(a)
$$\frac{dy}{dt} + \frac{2ty}{1+t^2} = t^2$$
, $y(0) = 1$.

(b)
$$\frac{dy}{dx} + \frac{e^x y + 2x}{2y + e^x} = 0$$
, $y(0) = 0$.

(3) Consider the following Matlab function m-file.

function [t,y] = solveit(ti, yi, tf, n)

t = zeros(n + 1, 1); y = zeros(n + 1, 1);

$$t(1) = ti; y(1) = yi; h = (tf - ti)/n;$$

for i = 1:n

$$t(i + 1) = t(i) + h; y(i + 1) = y(i) + h*((t(i))^4 + (y(i))^2);$$
end

Suppose that the input values are ti = 1, yi = 1, tf = 5, and n = 40.

- (a) What initial-value problem is being approximated numerically?
- (b) What numerical method is being used?
- (c) What is the step size?
- (d) What are the output values of t(2), y(2), t(3), and y(3)?
- (4) Consider the following Matlab commands.

$$[t,y] = ode45(@(t,y) y.*(y-1).*(2-y), [0,3], -0.5:0.5:2.5);$$

 $plot(t,y)$

The following questions need not be answered in Matlab format!

- (a) What is the differential equation being solved numerically?
- (b) Give the initial condition for each solution being approximated?
- (c) Over what time interval are the solutions being approximated?
- (d) Sketch each of these solutions over this time interval on a single graph. Label the initial value of each solution clearly.
- (e) What is the limiting behavior of each solution as $t \to \infty$?
- (5) Give an explicit real-valued general solution of the following equations.

1

(a)
$$y'' - 2y' + 5y = te^t + \cos(2t)$$

(b)
$$u'' - 3u' - 10u = te^{-2t}$$

$$(c) v'' + 9v = \cos(3t)$$

(6) Solve the following initial-value problems.

(a)
$$w'' + 4w' + 20w = 5e^{2t}$$
, $w(0) = 3$, $w'(0) = -7$.

(a)
$$w'' + 4w' + 20w = 5e^{2t}$$
, $w(0) = 3$, $w'(0) = -7$.
(b) $y'' - 4y' + 4y = \frac{e^{2t}}{3+t}$, $y(0) = 0$, $y'(0) = 5$.

Evaluate any definite integrals that arise.

(7) Give an explicit real-valued general solution of the equation

$$h'' + 2h' + 5h = 0.$$

Sketch a typical solution for $t \geq 0$. If this equation governs a spring-mass system, is the system undamped, under damped, critically damped, or over damped? (Give your reasoning!)

- (8) When a mass of 2 kilograms is hung vertically from a spring, it stretches the spring 0.5 m. (Gravitational acceleration is 9.8 m/sec².) At t=0 the mass is set in motion from 0.3 meters below its rest (equilibrium) position with a upward velocity of 2 m/sec. It is acted upon by an external force of $2\cos(5t)$. Neglect drag and assume that the spring force is proportional to its displacement. Formulate an initial-value problem that governs the motion of the mass for t > 0. (DO NOT solve this initial-value problem; just write it down!)
- (9) Find the Laplace transform Y(s) of the solution y(t) to the initial-value problem

$$y'' + 4y' + 8y = f(t)$$
, $y(0) = 2$, $y'(0) = 4$.

where

$$f(t) = \begin{cases} 4 & \text{for } 0 \le t < 2, \\ t^2 & \text{for } 2 \le t. \end{cases}$$

You may refer to the table of Laplace transforms on the last page. (DO NOT take the inverse Laplace transform to find y(t); just solve for Y(s)!)

(10) Find the function y(t) whose Laplace transform Y(s) is given by

(a)
$$Y(s) = \frac{e^{-3s}4}{s^2 - 6s + 5}$$
, (b) $Y(s) = \frac{e^{-2s}s}{s^2 + 4s + 8}$.

You may refer to the table of Laplace transforms on the last page.

- (11) Consider two interconnected tanks filled with brine (salt water). The first tank contains 80 liters and the second contains 30 liters. Brine flows with a concentration of 3 grams of salt per liter flows into the first tank at a rate of 2 liters per hour. Well stirred brine flows from the first tank to the second at a rate of 6 liters per hour, from the second to the first at a rate of 4 liters per hour, and from the second into a drain at a rate of 3 liters per hour. At t=0 there are 7 grams of salt in the first tank and 25 grams in the second.
 - (a) Give an initial-value problem that governs the amount of salt in each tank as a function of time.
 - (b) Give the interval of definition for the solution of this initial-value problem.

- (12) Consider the real vector-valued functions $\mathbf{x}_1(t) = \begin{pmatrix} 1 \\ t \end{pmatrix}$, $\mathbf{x}_2(t) = \begin{pmatrix} t^3 \\ 3 + t^4 \end{pmatrix}$.
 - (a) Compute the Wronskian $W[\mathbf{x}_1, \mathbf{x}_2](t)$.
 - (b) Find $\mathbf{A}(t)$ such that \mathbf{x}_1 , \mathbf{x}_2 is a fundamental set of solutions to the linear system $\mathbf{x}' = \mathbf{A}(t)\mathbf{x}$.
 - (c) Give a general solution to the system you found in part (b).
- (13) Give a real, vector-valued general solution of the linear planar system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ for

(a)
$$\mathbf{A} = \begin{pmatrix} 6 & 4 \\ 4 & 0 \end{pmatrix}$$
, (b) $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$.

(14) What answer will be produced by the following Matlab command?

$$>> A = [1 4; 3 2]; [vect, val] = eig(sym(A))$$

You do not have to give the answer in Matlab format.

(15) A real 2×2 matrix **B** has the eigenpairs

$$\left(2, \begin{pmatrix} 3\\1 \end{pmatrix}\right)$$
 and $\left(-1, \begin{pmatrix} -1\\2 \end{pmatrix}\right)$.

- (a) Give a general solution to the linear planar system $\mathbf{x}' = \mathbf{B}\mathbf{x}$.
- (b) Give an invertible matrix V and a diagonal matrix D that diagonalize B.
- (c) Compute $e^{t\mathbf{B}}$.
- (d) Sketch a phase-plane portrait for this system and identify its type. Classify the stability of the origin. Carefully mark all sketched orbits with arrows!
- (16) Solve the initial-value problem $\mathbf{x}' = \mathbf{A}\mathbf{x}$, $\mathbf{x}(0) = \mathbf{x}^{\mathrm{I}}$ and describe how its solution behaves as $t \to \infty$ for the following \mathbf{A} and \mathbf{x}^{I} .

(a)
$$\mathbf{A} = \begin{pmatrix} 3 & 10 \\ -5 & -7 \end{pmatrix}$$
, $\mathbf{x}^{\mathrm{I}} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$.

(b)
$$\mathbf{A} = \begin{pmatrix} 8 & -5 \\ 5 & -2 \end{pmatrix}$$
, $\mathbf{x}^{\mathrm{I}} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$.

(17) Consider the nonlinear planar system

$$x' = 2xy$$
, $y' = 9 - 9x - y^2$.

- (a) Find all of its stationary points.
- (b) Find a nonconstant function H(x, y) such that every orbit of the system satisfies H(x, y) = c for some constant c.
- (c) Classify the type and stability of each stationary point.
- (d) Sketch the stationary points plus the level set H(x,y) = c for each value of c that corresponds to a stationary point that is a saddle. (Carefully mark all sketched orbits with arrows!)

(18) Consider the nonlinear planar system

$$u' = -5v$$
, $v' = u - 4v - u^2$.

- (a) Find all of its stationary points.
- (b) Compute the Jacobian matrix at each stationary point.
- (c) Classify the type and stability of each stationary point.
- (d) Sketch a phase-plane portrait of the system that shows its behavior near each stationary point. (Carefully mark all sketched orbits with arrows!)
- (19) Consider the nonlinear planar system

$$p' = p(3 - 3p + 2q),$$
 $q' = q(6 - p - q).$

- (a) Find all of its stationary points.
- (b) Compute the Jacobian matrix at each stationary point.
- (c) Classify the type and stability of each stationary point.
- (d) Sketch a phase-plane portrait of the system that shows its behavior near each stationary point. (Carefully mark all sketched orbits with arrows!)
- (e) Add the orbits of all semistationary solutions to the phase-plane portrait sketched for part (d). (Carefully mark these sketched orbits with arrows!)
- (f) Why do solutions that start in the first quadrant stay in the first quadrant?