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8. Theory for First-Order Systems

8.1. Normal Forms and Solutions. We will now consider first-order systems of n
ordinary differential equations for functions xj(t), j = 1, 2, · · · , n that can be put into
the normal form

(8.1)

dx1

dt
= f1(t, x1, x2, · · · , xn) ,

dx2

dt
= f2(t, x1, x2, · · · , xn) ,

...

dxn

dt
= fn(t, x1, x2, · · · , xn) .

We say that n is the dimension of this system.

System (8.1) can be expressed more compactly in vector notation as

(8.2)
dx

dt
= f(t,x) ,

where x and f(t,x) are given by the n-dimensional column vectors

x =


x1

x2
...
xn

 , f(t,x) =


f1(t, x1, x2, · · · , xn)
f2(t, x1, x2, · · · , xn)

...
fn(t, x1, x2, · · · , xn)

 .

We thereby express the system of n equations (8.1) as the single vector equation (8.2).
We say x1, x2, · · · , xn are the entries of the vector x. Similarly, we say that the functions
f1(t, x1, x2, · · · , xn), f2(t, x1, x2, · · · , xn), · · · , fn(t, x1, x2, · · · , xn) are the entries of the
vector-valued function f(t,x).

Remark. We will use boldface, lowercase letters like x and f to denote column vectors.

Other common notations include an underline like x and f , or an arrow like ~x and ~f .
Some advanced books do not use any special notation for vectors, but expect the reader
to recall what each letter represents from when it was introduced.

Here we recall from multi-variable calculus what it means for a vector-valued function
u(t) to be either continuous or differentiable at a point.

• We say u(t) is continuous at time t if every entry of u(t) is continuous at t.
• We say u(t) is differentiable at time t if every entry of u(t) is differentiable at t.

Given these definitions, we define what it means for a vector-valued function u(t) to be
either continuous, differentiable, or continuously differentiable over a time interval.

• We say u(t) is continuous over a time interval (tL, tR) if it is continuous at every
t in (tL, tR).
• We say u(t) is differentiable over a time interval (tL, tR) if it is differentiable at

every t in (tL, tR).
• We say u(t) is continuously differentiable over a time interval (tL, tR) if it is

differentiable over (tL, tR) and its derivative is continuous over (tL, tR).
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We are now ready to define what we mean by a solution of system (8.2).

Definition. We say that x(t) is a solution of system (8.2) over a time interval
(t

L
, t

R
) when

1. x(t) is differentiable at every t in (t
L
, t

R
);

2. f(t,x(t)) is defined for every t in (t
L
, t

R
);

3. equation (8.2) holds at every t in (t
L
, t

R
).

Remark. This definition is similar to definitions of solutions to single differential
equations that we gave earlier. The first point states that the left-hand side of the
equation makes sense. The second point states that the right-hand side of the equation
makes sense. The third point states that the two sides are equal.

8.2. Initial-Value Problems. We will consider initial-value problems of the form

(8.3)
dx

dt
= f(t,x) , x(tI) = xI .

Here tt is the initial time, xI is the initial value or initial data, and x(tI) = xI is the
initial condition. Below we will give conditions on f(t,x) that insure this problem has
a unique solution that exists over some time interval that contains tI . We begin with a
definition.

Definition 8.1. Let S be a set in R×Rn. A point (to,xo) is said to be in the interior of
S if there exists a box (tL, tR)× (xL

1 , x
R
1 )× · · · × (xL

n , x
R
n ) that contains the point (to,xo)

and also lies within the set S.

Our basic existence and uniqueness theorem is the following.

Theorem 8.1. Let f(t,x) be a vector-valued function defined over a set S in R × Rn

such that

• f is continuous over S,
• f is differentiable with respect to each xi over S,
• each ∂xi

f is continuous over S.

Then for every inital time tI and every initial value xI such that (tI ,x
I) is in the

interior of S there exists a unique solution x(t) to initial-value problem (8.3) that is
defined over some time interval (a, b) such that

• tI is in (a, b),
• {(t,x(t)) : t ∈ (a, b)} lies within the interior of S.

Moreover, x(t) extends to the largest such time interval and x′(t) is continuous over
that time interval.

Remark. This is not the most general theorem we could state, but it applies to the
first-order systems you will face in this course. It asserts that the initial-value problem
(8.3) has a unique solution x(t) that will exist until (t,x(t)) leaves the interior of S.
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8.3. Recasting Higher-Order Problems as First-Order Systems. Many higher-
order differential equation problems can be recast in terms of a first-order system in
the normal form (8.2). For example, every nth-order ordinary differential equation in
the normal form

y(n) = g
(
t, y, y′, · · · , y(n−1)

)
,

can be expressed as an n-dimensional first-order system in the form (8.2) with

dx

dt
= f(t,x) =


x2
...
xn

g(t, x1, x2, · · · , xn)

 , where x =


x1

x2
...
xn

 =


y
y′

...
y(n−1)

 .

Notice that the first-order system is expressed solely in terms of the entries of x. The
“dictionary” that relates x to y, y′, · · · , y(n−1) is given as a separate equation.

Example. Recast as a first-order system

y′′′ + yy′ + ety2 = cos(3t) .

Solution. Because this single equation is third order, the first-order system will have
dimension three. It will be

d

dt

x1

x2

x3

 =

 x2

x3

cos(3t)− x1x2 − etx 2
1

 , where

x1

x2

x3

 =

 y
y′

y′′

 .

More generally, every d-dimensional mth-order ordinary differential system in the
normal form

y(m) = g
(
t,y,y′, · · · ,y(n−1)) ,

can be expressed as an md-dimensional first-order system in the form (8.2) with

dx

dt
= f(t,x) =


x2
...

xm

g(t,x1,x2, · · · ,xm)

 , where x =


x1

x2
...

xm

 =


y
y′

...
y(m−1)

 .

Here each xk is a d-dimensional vector while x is the md-dimensional vector constructed
by stacking the vectors x1 through xm on top of each other.

Example. Recast as a first-order system

q′′1 + f1(q1, q2) = 0 , q′′2 + f2(q1, q2) = 0 .

Solution. Because this two dimensional system is second order, the first-order system
will have dimension four. It will be

d

dt


x1

x2

x3

x4

 =


x3

x4

−f1(x1, x2)
−f2(x1, x2)

 , where


x1

x2

x3

x4

 =


q1
q2
q′1
q′2

 .



5

When faced with a higher-order initial-value problem, we use the dictionary to obtain
the initial values for the first-order system from those for the higher-order problem.

Example. Recast as an initial-value problem for a first-order system

y′′′′ − ey = 0 , y(0) = 2 , y′(0) = −1 , y′′(0) = 5 , y′′′(0) = −4 .

Solution. The first-order initial-value problem is

d

dt


x1

x2

x3

x4

 =


x2

x3

x4

ex1

 ,


x1(0)
x2(0)
x3(0)
x4(0)

 =


2
−1
5
−4

 , where


x1

x2

x3

x4

 =


y
y′

y′′

y′′′

 ,

Remark. We can also find single higher-order equations that are satisfied by the entries
of a first-order system. We will not discuss how this is done because it is not as useful.

8.4. Linear First-Order Systems. The n-dimensional first-order system (8.1) is
called linear when it has the form

(8.4)

dx1

dt
= a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn + f1(t) ,

dx2

dt
= a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn + f2(t) ,

...

dxn

dt
= an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn + fn(t) .

The functions ajk(t) are called coefficients while the functions fj(t) are called forcings.

We can use matrix notation to write the linear system (8.4) compactly as

(8.5)
dx

dt
= A(t)x + f(t) ,

where x and f(t) are the n-dimensional column vectors

x =


x1

x2
...
xn

 , f(t) =


f1(t)
f2(t)

...
fn(t)

 ,

while A(t) is the n×n matrix

A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

...
...

an1(t) an2(t) · · · ann(t)

 .

We call A(t) the coefficient matrix and f(t) the forcing vector. System (8.5) is said to
be homogeneous if f(t) = 0 and nonhomogeneous otherwise.
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The product A(t)x appearing in system (8.5) denotes the column vector that results
from the matrix multiplication of the matrix A(t) with the column vector x. The sum
appearing in (8.5) denotes the column vector that results from the matrix addition of
the column vector A(t)x with the column vector f(t).

Remark. Any nth-order linear equation in the normal form

dny

dtn
+ a1(t)

dn−1y

dtn−1
+ · · ·+ an−1(t)

dy

dt
+ an(t)y = f(t) ,

can be recast as the n-dimensional first-order linear system

dx

dt
= A(t)x + f(t) , where x =


x1

x2
...
xn

 =


y
y′

...
y(n−1)

 ,

with

A(t) =


0 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . 0 1 0
0 · · · 0 0 1

−an(t) · · · −a3(t) −a2(t) −a1(t)

 , f(t) =


0
0
...
0

f(t)

 .

Therefore the study of first-order linear systems contains the study of higher-order linear
equations. Conversely, solving a first-order linear system can be reduced to solving a
higher-order linear equation.

We will consider linear initial-value problems in the form

(8.6)
dx

dt
= A(t)x + f(t) , x(tI) = xI ,

where xI is called the vector of initial values, or simply the initial vector.

Many facts that we studied about higher-order linear equations have analogous facts
about linear first-order systems. For example, the basic existence and uniqueness the-
orem is the following.

Theorem 8.2. If A(t) and f(t) are continuous over the time interval (tL, tR)
then for every initial time tI in (tL, tR) and every initial vector xI the initial-value
problem (8.6) has a unique solution x(t) that is continuously differentiable over
(tL, tR). Moreover, if A(t) and f(t) are k-times continuously differentiable over the
time interval (tL, tR) then x(t) will be is (k + 1)-times continuously differentiable
over (tL, tR).

The Basic Existence and Uniqueness Theorem can be used to identify the interval of
definition for solutions of the initial-value problem (8.6). This is done very much like the
way we identified intervals of definition for solutions of higher-order linear equations.
Specifically, if x(t) is the solution of the initial-value problem (8.6) then its interval of
definition will be (tL, tR) whenever:
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• every entry of the coefficient matrix A(t) and the forcing vector f(t) are contin-
uous over (tL, tR),
• the initial time tI is in (tL, tR),
• an entry of either the coefficient matrix or the forcing vector is undefined at

each of t = tL and t = tR.

We can do this because the first two bullets along with the Basic Existence and Unique-
ness Theorem imply that the interval of definition will be at least (tL, tR), while the last
two bullets along with our definition of solution imply that the interval of definition
can be no bigger than (tL, tR) because the equation breaks down at t = tL and t = tR.
This argument works when tL = −∞ or tR =∞.
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