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5. Functions, Continuity, and Limits

5.1. Functions. We now turn our attention to the study of real-valued functions that are
defined over arbitrary nonempty subsets of R. The subset of R over which such a function f
is defined is called the domain of f , and is denoted Dom(f). We will write f : Dom(f) → R

to indicate that f maps elements of Dom(f) into R. For every x ∈ Dom(f) the function f
associates the value f(x) ∈ R. The range of f is the subset of R defined by

(5.1) Rng(f) =
{

f(x) : x ∈ Dom(f)
}

.

Sequences correspond to the special case where Dom(f) = N.
When a function f is given by an expression then, unless it is specified otherwise, Dom(f)

will be understood to be all x ∈ R for which the expression makes sense. For example, if
functions f and g are given by f(x) =

√
1 − x2 and g(x) = 1/(x2 − 1), and no domains are

specified explicitly, then it will be understood that

Dom(f) = [−1, 1] , Dom(g) =
{

x ∈ R : x 6= ±1
}

.

These are natural domains for these functions. Of course, if these functions arise in the context
of a problem for which x has other natural restrictions then these domains might be smaller.
For example, if x represents the population of a species or the amount of a product being
manufactured then one must further restrict x to [0,∞). If f(x) =

√
1 − x2, g(x) = 1/(x2 −1),

and no domains are specified explicitly in such a context then it will be understood that

Dom(f) = [0, 1] , Dom(g) =
{

x ∈ [0,∞) : x 6= 1
}

.

These are natural domains for these functions when x is naturally restricted to [0,∞).

Given any two functions, f : Dom(f) → R and g : Dom(g) → R with Dom(f) ⊂ R and
Dom(g) ⊂ R, we define their sum f + g, product fg, quotient f/g, and composition g(f) to be
the functions given by

(5.2)

(f + g)(x) = f(x) + g(x) ∀x ∈ Dom(f + g) ,

(fg)(x) = f(x)g(x) ∀x ∈ Dom(fg) ,

(f/g)(x) = f(x)/g(x) ∀x ∈ Dom(f/g) ,

g(f)(x) = g
(

f(x)
)

∀x ∈ Dom
(

g(f)
)

.

where the natural domains appearing above are defined by

(5.3)

Dom(f + g) = Dom(f) ∩ Dom(g) ,

Dom(fg) = Dom(f) ∩ Dom(g) ,

Dom(f/g) =
{

x ∈ Dom(f) ∩ Dom(g) : g(x) 6= 0
}

,

Dom
(

g(f)
)

=
{

x ∈ Dom(f) : f(x) ∈ Dom(g)
}

.

Notice that these domains are exactly the largest sets for which the respective expressions in
(5.2) make sense.

Remark. A common notation for composition is g ◦ f . We prefer the notation g(f) because
it makes the noncommutative aspect of the operation explicit.
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Example. Polynomials are a class of functions. A polynomial is classified by a natrual number
called its degree. A polynomial of degree 0 is a constant. A polynomial p of degree n > 0 has
the form

(5.4) p(x) = a0x
n + a1x

n−1 + · · ·+ an−1x + an , where a0 6= 0 .

The natural domain of a polynomial function is R. The class of polynomial functions is closed
under addition, multiplication, and composition, but not under division.

Exercise. Show that the class of polynomials is closed under addition, multiplication, and
composition, but not under division.

Example. A function r is said to be rational if it has the form

(5.5) r(x) =
p(x)

q(x)
, where p and q are polynomial functions .

The natural domain of such a rational function is all x ∈ R where q(x) 6= 0. The class of
rational functions is closed under addition, multiplication, division, and composition.

Exercise. Show that the class of rational functions is closed under addition, multiplication,
division, and composition.

Example. A function f is said to be algebraic if for some m > 0 there exist polynomials
{pk(x)}m

k=0 with p0(x) nonzero at some point in Dom(f) such that y = f(x) solves

(5.6) p0(x)ym + p1(x)ym−1 + · · ·+ pm−1(x)y + pm(x) = 0 for every x ∈ Dom(f) .

It is beyond the scope of this course to show that the class of algebraic functions is closed under
addition, multiplication, division, and composition.

5.2. Continuity. Continuity is one of the most important concepts in mathematics. Here we
introduce it in the context of real-valued functions with domains in R.

Definition 5.1. A function f : Dom(f) → R with Dom(f) ⊂ R is said to be continuous at a
point x ∈ Dom(f) if for every ǫ > 0 there exists δ > 0 such that for every y ∈ Dom(f) one has

(5.7) |y − x| < δ =⇒ |f(y) − f(x)| < ǫ .

Otherwise f is said to be discontinuous at x or to have a discontinuity at x. A function f that
is continuous at every point in a set S ⊂ Dom(f) is said to be continuous over S. A function
f that is continuous over Dom(f) is said to be continuous.

This definition states that f is continuous at x when one can insure that f(y) is arbitarily close
to f(x) (within any ǫ of f(x)) by requiring that y is sufficiently close to x (within some δ of x).
It is important to understand that the δ whose existence is asserted in this definition generally
depends on both x and ǫ. Sometimes we will emphasize this dependence by explicitly writing
δx,ǫ or δǫ, but more often this dependence will not be shown explicitly.

Being continuous at a point can be characterized in terms of sequences.

Proposition 5.1. Let f : Dom(f) → R with Dom(f) ⊂ R. If x ∈ Dom(f) then f is continuous
at x if and only if for every sequence {xn} ⊂ Dom(f) that converges to x, the sequence {f(xn)}
converges to f(x) — i.e. if and only if

(5.8) ∀{xn} ⊂ Dom(f) lim
n→∞

xn = x =⇒ lim
n→∞

f(xn) = f(x) .
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Proof. (=⇒) Let f be continuous at x ∈ Dom(f). Let {xn} ⊂ Dom(f) be a sequence such
that xn → x as n → ∞. We must show that f(xn) → f(x) as n → ∞.

Let ǫ > 0. Because f is continuous at x there exists δ > 0 such that (5.7) holds. Because
xn → x as n → ∞ there exist nδ ∈ N such that n > nδ implies |xn − x| < δ. It thereby follows
that

n > nδ =⇒ |xn − x| < δ =⇒ |f(xn) − f(x)| < ǫ .

Therefore f(xn) → f(x) as n → ∞.

(⇐=) Let (5.8) hold at x ∈ Dom(f). We will argue that f is continuous at x by contradiction.
Suppose that f is not continuous at x. Upon negating (5.1) we see there exists ǫ > 0 such that
for every δ > 0 there exists y ∈ Dom(f) such that

|y − x| < δ and |f(y) − f(x)| ≥ ǫ .

In particular, for every n ∈ N there exists xn ∈ Dom(f) such that

|xn − x| <
1

2n
and |f(xn) − f(x)| ≥ ǫ .

It follows that xn → x as n → ∞ while, because |f(xn)−f(x)| ≥ ǫ for every n ∈ N, the sequence
{f(xn)} does not converge to f(x). But this contradicts the fact (5.8) holds at x ∈ Dom(f).
Therefore f must be continuous at x. �

Remark. One can equally well have defined continuity by the sequence characterization given
by Proposition 5.1. This is what Fitzpatrick does.

Remark. Roughly speaking, when drawing the graph of a function f that is continuous over
an interval, you need not lift the pen or pencil from the paper. This is because (5.1) states
that as the pen moves along the graph (x, f(x)) it will approach the point (a, f(a)) as x tends
to a. The graph of f will consequently have no breaks, jumps, or holes over each interval over
which it is defined. You should be able to tell by looking at the graph of a function where it is
continuous.

The following proposition shows how continuity behaves with respect to combinations of
functions.

Proposition 5.2. Let f : Dom(f) → R and g : Dom(g) → R where Dom(f) and Dom(g) are
subsets of R.

If f and g are continuous at x ∈ Dom(f) ∩ Dom(g) then the functions f + g and f g will be
continuous at x, as will be the function f/g provided g(x) 6= 0.

If f is continuous at x ∈ Dom
(

g(f)
)

while g is continuous at f(x) then the function g(f)
will be continuous at x.

In particular, if f and g are continuous then so are the combinations f + g, f g, f/g, and
g(f) considered over their natural domains.

Proof. Exercise. (Do this both using the δ-ǫ definition and the sequence characterization.)

Examples. Every elementary function is continuous. This includes all rational functions,
which are built up from combinations of the function x with constant functions. For example,
the function f(x) = 1/x is continuous because it is undefined at x = 0. This also includes all
trigonometric functions that are built up from combinations of the functions cos(x) and sin(x)
with constant functions. For example, tan(x), cot(x), sec(x), and csc(x) are continuous because
they are undefined at points near which they behave badly.



4

5.3. Extreme-Value Theorem. We now consider the question of when a function whose
range is bounded below (above) might take on a smallest (largest) value.

Definition 5.2. Let D ⊂ R and f : D → R. We say that f has a minimum (maximum) over
D if the set f(D) = {f(x) : x ∈ D} has a minimum (maximum). In this case min{f(D)}
(max{f(D)}) is called the minimum (maximum) of f over D, and any p ∈ D for which
f(p) = min{f(D)} (f(p) = max{f(D)}) is called a minimizer (maximizer) of f over D.

A point that is either a minimizer or a maximizer of f over D is called an extremizer of f
over D and its corresponding value is called an extremum of f over D.

It should be clear from this definition that a function can have at most one minimum and one
maximum, but might have many minimizers or maximizers. Some functions f defined over a
set D may have neither a minimum nor a maximum. For example, consider

f(x) = tanh(x) over (−∞,∞) ,

f(x) = tan(x) over (−π
2
, π

2
) ,

f(x) = x3 over (−∞,∞) .

Some may have one but not the other. For example, consider

f(x) = sech(x) over (−∞,∞) ,

f(x) = sec(x) over (−π
2
, π

2
) ,

f(x) = (x2 − 1)2 over (−∞,∞) .

And some may have both. For example, consider

f(x) = sin(x) over (−∞,∞) ,

f(x) =
x

1 + x2
over (−∞,∞) ,

f(x) = xe−x over [0,∞) .

In particular, f(x) = sin(x) has infinitely many minimizers and maximizers over (−∞,∞).

We now establish a theorem that asserts the existence of extrema in settings where the
function is continuous and the domain is closed and bounded (hence, sequentially compact).
This theorem will play a central role in the proofs of many subsequent propositions.

Proposition 5.3. Extreme-Value Theorem. Let D ⊂ R be closed and bounded. Let f :
D → R be continuous. Then f has both a minimum and a maximum over D. (In particular,
Rng(f) is bounded.)

Proof. We first prove that f has a minimum over D. Let m = inf{Rng(f)}. There are two
possibilities: either m > −∞ or m = −∞. We claim that in either case we can find a sequence
{xk} ⊂ D such that f(xk) → m as k → ∞. Indeed, if m > −∞ then for every k ∈ N there
exist xk ∈ Dom(f) such that f(xk) ∈ [m, m + 1

2k ), whereby {f(xk)} → m as k → ∞. On the
other hand, if m = −∞ then for every k ∈ N there exist xk ∈ Dom(f) such that f(xk) < −k,
whereby {f(xk)} → −∞(= m) as k → ∞. In either case f(xk) → m as k → ∞.

Because D is closed and bounded, it is sequentially compact. Because {xk} ⊂ D and D is
sequentially compact, there exists a subsequence {xnk

} of {xk} and a point x ∈ D such that
xnk

→ x as k → ∞. The fact f is continuous over D then implies that f(xnk
) → f(x) as

k → ∞. But we also know that f(xnk
) → m as k → ∞. It follows that m = f(x) > −∞,

whereby m is a minimum and x is a minimizer of f over D.



5

The proof that f has a maximum over D goes similarly, and is left as an exercise. �

Exercise. Give examples that illustrate that none of the hypotheses in Proposition 5.3 can
simply be dropped. Specifically, give examples of (a) a continuous function over a closed domain
that has no extremum, (b) a continuous function over a bounded domain that has no extremum,
and (c) a discontinuous function over a closed and bounded domain that has no extremum.

5.4. Intermediate-Value Theorem. Another important property of continuous functions is
established by the following theorem.

Proposition 5.4. Intermediate-Value Theorem. Let a < b and let f : [a, b] → R be
continuous. Then f takes all values that lie between f(a) and f(b).

Proof. There is nothing to prove if f(a) = f(b). We will give the proof for the case f(a) < f(b).
The case f(a) > f(b) then follows by applying the first case to −f .

Let q ∈
(

f(a), f(b)
)

. We want to show there exists an c ∈ (a, b) such that f(c) = q. We do
this by constructing a nested sequence of closed intervals whose endpoints converge to c. The
construction is by the so-called bisection method. Set [a0, b0] = [a, b]. Given [ak, bk] for some
k ∈ N let mk = 1

2
(ak + bk) denote the midpoint and define

[ak+1, bk+1] =

{

[ak, mk] if f(mk) > q ,

[mk, bk] if f(mk) ≤ q .

Because [ak+1, bk+1] ⊂ [ak, bk] for every k ∈ N, {[ak, bk]}k∈N is a nested sequence of closed
intervals such that bk − ak = (b − a)/2k and f(ak) ≤ q < f(bk). By the Nested-Interval
Theorem there exists c ∈ (a, b) such that

∞
⋂

k=0

[ak, bk] = {c} , where c = lim
k→∞

ak = lim
k→∞

bk .

By the continuity of f and the fact f(ak) ≤ q < f(bk) we then see that

f(c) = lim
k→∞

f(ak) ≤ q ≤ lim
k→∞

f(bk) = f(c) .

Hence, f(c) = q. �

An consequence of the Intermediate-Value Theorem is that continuous functions map inter-
vals into intervals.

Proposition 5.5. Let D ⊂ R. Let f : D → R be continuous. If I ⊂ D is an interval then
f(I) is an interval.

Proof. We will employ the Interval Characterization Theorem. Specifically, we will show
that if p, q ∈ f(I) then all points that lie between p and q are also in f(I). The Interval
Characterization Theorem then implies that f(I) is an interval.

Let p, q ∈ f(I) be distinct points. Without loss of generality we may assume that p < q.
We must show that (p, q) ⊂ f(I). Let r ∈ (p, q). Because p, q ∈ f(I), we know that p = f(a)
and q = f(b) for some a, b ∈ I. Either a < b or b < a. If a < b then [a, b] ⊂ I and f is
continuous over [a, b]. The Intermediate-Value Theorem then implies there exists c ∈ (a, b)
such that f(c) = r. On the other hand, if b < a then [b, a] ⊂ I and f is continuous over [b, a].
The Intermediate-Value Theorem then implies there exists c ∈ (b, a) such that f(c) = r. In
both cases we conclude that r ∈ f(I). Therefore (p, q) ⊂ f(I). �
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Remark. While continuous functions map intervals into intervals, a function that maps inter-
vals to intervals need not be continuous. An example defined over R is

f(x) =

{

cos(1/x) if x 6= 0 ,

0 if x = 0 .

Exercise. Show that the function f given in the above remark maps intervals to intervals, yet
is not continuous.

5.5. Limits of a Function. In this section we introduce three notions of limits of a function:
limits at a point, one-sided limits at a point, and limits at infinity.

5.5.1. Limits at a Point. Limits of a function at a point are defined as follows.

Definition 5.3. Given

• a function f : Dom(f) → R with Dom(f) ⊂ R,
• a limit point a ∈ R of Dom(f),
• a number b ∈ R,

we say the limit of f(x) as x approaches a is b when for every ǫ > 0 there exists δ > 0

(5.9) ∀x ∈ Dom(f) 0 < |x − a| < δ =⇒ |f(x) − b| < ǫ .

We denote this as
lim
x→a

f(x) = b ,

or as
f(x) → b as x → a .

If limx→a f(x) = b for some b ∈ R then we say that “limx→a f(x) exists.” Otherwise we say
that “limx→a f(x) does not exist.”

These limits can be characterized in terms of convergent sequences.

Proposition 5.6. Let f : Dom(f) → R with Dom(f) ⊂ R, a ∈ R be a limit point of Dom(f),
and b ∈ R. Then limx→a f(x) = b if and only if

(5.10) ∀{xn} ⊂ Dom(f) − {a} lim
n→∞

xn = a =⇒ lim
n→∞

f(xn) = b .

Proof. Exercise.

The existence of the limit of a function at a point in its domain is related to the continuity
of the function at that point by the following.

Proposition 5.7. A function f : Dom(f) → R is continuous at a point a ∈ Dom(f) if and
only if

(5.11) lim
x→a

f(x) = f(a) .

Remark. Here (5.11) is asserting two things:

• the limit on the left side of (5.11) exists;
• the limit equals f(a).

A function can fail to be continuous at a point in its domain when the limit on the left of (5.11)
fails to exist or when the limit exists but does not equal f(a).

Proof. Exercise.
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5.5.2. One-Sided Limits at a Point. One-Sided limits of a function are defined as follows.

Definition 5.4. Given

• a function f : Dom(f) → R with Dom(f) ⊂ R,
• a limit point a ∈ R of Dom(f),
• a number b ∈ R,

we say the limit of f(x) as x approaches a from the right (left) is b when for every ǫ > 0 there
exists δ > 0 such that

(5.12)
∀x ∈ Dom(f) 0 < x − a < δ =⇒ |f(x) − b| < ǫ

(

∀x ∈ Dom(f) 0 < a − x < δ =⇒ |f(x) − b| < ǫ
)

.

We denote this as
lim

x→a+
f(x) = b

(

lim
x→a−

f(x) = b
)

,

or as
f(x) → b as x → a+

(

f(x) → b as x → a−
)

.

If limx→a± f(x) = b for some b ∈ R then we say that “limx→a± f(x) exists.” Otherwise we say
that “limx→a± f(x) does not exist.”

These limits can be characterized in terms of convergent sequences.

Proposition 5.8. Let f : Dom(f) → R with Dom(f) ⊂ R, a ∈ R be a limit point of Dom(f),
and b ∈ R. Then limx→a+ f(x) = b if and only if

(5.13) ∀{xn} ⊂ Dom(f) ∩ (a,∞) lim
n→∞

xn = a =⇒ lim
n→∞

f(xn) = b ,

and limx→a− f(x) = b if and only if

(5.14) ∀{xn} ⊂ Dom(f) ∩ (−∞, a) lim
n→∞

xn = a =⇒ lim
n→∞

f(xn) = b .

Proof. Exercise.

5.5.3. Limits at Infinity. Limits at infinity of a function are defined as follows.

Definition 5.5. Given

• a function f : Dom(f) → R with Dom(f) ⊂ R,
• Dom(f) in not bounded above (below),
• a number b ∈ R,

we say the limit of f(x) as x approaches +∞ (−∞) is b when for every ǫ > 0 there exists
m ∈ R such that

(5.15)
∀x ∈ Dom(f) x > m =⇒ |f(x) − b| < ǫ

(

∀x ∈ Dom(f) x < m =⇒ |f(x) − b| < ǫ
)

.

We denote this as
lim

x→+∞
f(x) = b

(

lim
x→−∞

f(x) = b
)

,

or as
f(x) → b as x → +∞

(

f(x) → b as x → −∞
)

.

If limx→±∞ f(x) = b for some b ∈ R then we say that “limx→±∞ f(x) exists.” Otherwise we say
that “limx→±∞ f(x) does not exist.”
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Remark. It is common to write ∞ in place of +∞. We will often do so too.

These limits can be characterized in terms of sequences.

Proposition 5.9. Let f : Dom(f) → R with Dom(f) ⊂ R and b ∈ R. When Dom(f) is not
bounded above (below) then limx→±∞ f(x) = b if and only if

(5.16) ∀{xn} ⊂ Dom(f) lim
n→∞

xn = ±∞ =⇒ lim
n→∞

f(xn) = b .

Proof. Exercise.

5.5.4. Limits of Combinations of Functions. The basic theorem regarding limits of an algebraic
combination of functions is the following.

Proposition 5.10. Let f : Dom(f) → R and g : Dom(g) → R where Dom(f) ⊂ R and
Dom(g) ⊂ R. Let b, c ∈ R such that

lim f(x) = b , and lim g(x) = c ,

where “lim” stands either for one of

lim
x→a

, lim
x→a+

, lim
x→a−

, for some a ∈ R ,

or for one of

lim
x→+∞

, lim
x→−∞

.

Then
lim

(

f(x) + g(x)
)

= b + c ,

lim
(

f(x)g(x)
)

= bc ,

lim
f(x)

g(x)
=

b

c
provided c 6= 0 .

Proof. Exercise.

The story regarding the limits of a composition of functions is more complicated. The
simplest result is the following.

Proposition 5.11. Let f : Dom(f) → R and g : Dom(g) → R where Dom(f) ⊂ R and
Dom(g) ⊂ R. Let b ∈ R such that

lim f(x) = b ,

where “lim” stands either for one of

lim
x→a

, lim
x→a+

, lim
x→a−

, for some a ∈ R ,

or for one of

lim
x→+∞

, lim
x→−∞

.

If b ∈ Dom(g) and g is continuous at b then

lim g(f(x)) = g(b) .

Proof. Exercise.
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5.6. Monotonic Functions. We now extend the notions associated with monotonic sequences
to more general functions.

Definition 5.6. Given a function f : Dom(f) → R with Dom(f) ⊂ R, we say that f is

increasing whenever f(x) < f(y) for every x, y ∈ Dom(f) with x < y ,

nondecreasing whenever f(x) ≤ f(y) for every x, y ∈ Dom(f) with x < y ,

decreasing whenever f(y) < f(x) for every x, y ∈ Dom(f) with x < y ,

nonincreasing whenever f(y) ≤ f(x) for every x, y ∈ Dom(f) with x < y .

We say that f is monotonic if it is either nondecreasing or nonincreasing. We say that f is
strictly monotonic if it is either increasing or decreasing.

Remark. Sequences are functions whose domain is N. The definitions give above are consistent
with our earlier usage of the same terms in the context of sequences.

An important fact about monotonic functions over and interval is that its one-sided limits
exists. This restricts both the kind and number of discontinuities such functions can have.

Proposition 5.12. Let f : (a, b) → R be monotonic. Then the one-sided limits of f exist at
every x ∈ (a, b). When f is nondecreasing one has

lim
y→x−

f(y) = sup
{

f(y) : a < y < x
}

≥ f(x) ,

lim
y→x+

f(y) = inf
{

f(y) : x < y < b
}

≤ f(x) .

When f is nonincreasing one has

lim
y→x−

f(y) = inf
{

f(y) : a < y < x
}

≤ f(x) ,

lim
y→x+

f(y) = sup
{

f(y) : x < y < b
}

≥ f(x) .

Proof. Exercise.

Proposition 5.13. Let f : (a, b) → R be nondecreasing (nonincreasing). Define f : (a, b) → R

and f : (a, b) → R for every x ∈ (a, b) by

f(x) = lim
y→x−

f(y) , f(x) = lim
y→x+

f(y) .

(

f(x) = lim
y→x+

f(y) , f(x) = lim
y→x−

f(y) .
)

Then f and f are nondecreasing (nonincreasing) with f(x) ≤ f(x) ≤ f(x) for every x ∈ (a, b).

Moreover, f is left (right) continuous while f is right (left) continuous over (a, b).
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6. Differentiability and Derivatives

6.1. Differentiability. Given any function f : Dom(f) → R with Dom(f) ⊂ R, the equation
of the secant line through any two points (a, f(a)) and (b, f(b)) on its graph is

(6.1) y = f(a) +
f(b) − f(a)

b − a
(x − a) .

The slope of this secant line is given by the difference quotient

(6.2)
f(b) − f(a)

b − a
.

This quantity is defined for every a, b ∈ Dom(f) such that b 6= a. It is undefined when b = a.

Definition 6.1. A function f : Dom(f) → R is said to be differentiable at a point a ∈ Dom(f)
whenever

(6.3) lim
b→a

f(b) − f(a)

b − a
exists .

A function f that is differentiable at every point in a set S ⊂ Dom(f) is said to be differentiable
over S. If f is differentiable at every point in Dom(f) then it is said to be differentiable.

This definition should be viewed geometrically as follows. When f is differentiable at a we
see from (6.1) and (6.3) that the equation of the tangent line is given by

(6.4) y = f(a) + f ′(a)(x − a) ,

where slope of the tangent line is given by

(6.5) f ′(a) = lim
b→a

f(b) − f(a)

b − a
.

By replacing b by a + h in (6.5), the slope of this tangent line may be expressed as

(6.6) f ′(a) = lim
h→0

f(a + h) − f(a)

h
.

It should be evident to you that (6.6) is equivalent to (6.5). Visually, if the graph of a function
f at (a, f(a)) either has no unique tangent line or has a vertical tangent line then f is not
differentiable at the point a.

It is easy to see that if f is differentiable at the point a then it is continuous at a. Indeed,
for every x ∈ Dom(f) such that x 6= a one has the identity

f(x) = f(a) +
f(x) − f(a)

x − a
(x − a) .

If we let x approach a in this identity then because f is differentiable at a one sees that

lim
x→a

f(x) = f(a) + lim
x→a

f(x) − f(a)

x − a
· lim

x→a
(x − a)

= f(a) + f ′(a) · 0 = f(a) ,

whereby f is continuous at a. The converse is not true. For example, the functions |x| and x1/3

are continuous over R but are not differentiable at 0 for different reasons. At this stage you
should be able to give such examples of functions that are continuous but not differentiable at
some point. Later in the course we will construct functions that are continuous everywhere yet
are differentiable nowhere. Indeed, most continuous function are differentiable nowhere.



11

Examples. Consider the functions f and g given by

f(x) =

{

0 for x = 0

x sin(1/x) otherwise ,
g(x) =

{

0 for x = 0

x2 cos(1/x) otherwise .

Can you see that

(1) f and g are even?
(2) f oscillates between the lines y = x and y = −x near zero?
(3) g oscillates between the parabolas y = x2 and y = −x2 near zero?
(4) f has an horizontal asymptote of y = 1 as |x| → ∞?
(5) g behaves like x2 as |x| → ∞?
(6) f and g are continuous at x = 0?
(7) f is not differentiable at x = 0?
(8) g is differentiable at x = 0 with g′(0) = 0?

Computers often have difficulty rendering accurate graphs of such functions near zero, so they
must be understood analytically.

6.2. Derivatives. The derivative of a function f , which is defined at every point x where f is
differentiable, is the function f ′ whose value at x is the slope of the tangent line to the graph
of f at x. Hence,

(6.7) Dom(f ′) ≡
{

x ∈ Dom(f) : f is differentiable at x
}

,

and by (6.6) the value of f ′(x) is given by

(6.8) f ′(x) =
d

dx
f(x) ≡ lim

y→x

f(y) − f(x)

y − x
.

Then f is differentiable if and only if Dom(f ′) = Dom(f). Otherwise Dom(f ′) is a strict
subset of Dom(f). If f is differentiable and f ′ is continuous then f is said to be continuously
differentiable.

The second derivative of f is the derivative of its derivative. It is defined by

f ′′(x) =
d2

dx2
f(x) ≡ d

dx

(

d

dx
f(x)

)

,

with

Dom(f ′′) =
{

x ∈ Dom(f ′) : f ′ is differentiable at x
}

.

If Dom(f ′′) = Dom(f) then f is said to be twice differentiable. If f is twice differentiable and
f ′′ is continuous then f is said to be twice continuously differentiable.

In a similar way the nth derivative of f is defined by

f (n)(x) =
dn

dxn
f(x) ≡ d

dx

(

dn−1

dxn−1
f(x)

)

.

with

Dom(f (n)) =
{

x ∈ Dom(f (n−1)) : f (n−1) is differentiable at x
}

.

If Dom(f (n)) = Dom(f) then f is said to be n-times differentiable. If f is n-times differentiable
and f (n) is continuous then f is said to be n-times continuously differentiable. If f has deriva-
tives at a point a, it is said to be infinitely differentiable at a. If f is infinitely differentiable at
every point in Dom(f), it is said to be smooth.
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If the variable z is a function of the variable x then we will sometimes denote the first, second,
and nth derivatives of this function by

dz

dx
,

d2z

dx2
, and

dnz

dxn
.

There are many other commonly used notations for derivatives. By now you have likely seen
a few others. Such a variety is not too surprising when you realize that derivatives are among
the most useful objects in all of mathematics.

6.3. Differentiation. Differentiation is the processs by which one computes derivatives. The
classical differentiation rules that you recall from calculus can now be derived.

6.3.1. Linear Combinations of Differentiable Functions. Given any two differentiable functions
u and v, and any constant k, the functions ku and u + v are also differentiable and their
derivatives are given by the so-called multiplication rule and sum rule:

(6.9)
d

dx
(ku) = k

du

dx
,

d

dx
(u + v) =

du

dx
+

dv

dx
.

These rules follow from the definition of the derivative (6.8) and the algebraic identities

ku(y) − ku(x)

y − x
= k

u(y)− u(x)

y − x
,

u(y) + v(y)− u(x) − v(x)

y − x
=

u(y)− u(x)

y − x
+

v(y) − v(x)

y − x
.

The multiplication and sum rules (6.9) express the fact that differentiation is a linear operation.
The linear combinations of n given functions {u1, u2, · · · , un} are all those functions of the
form k1u1 + k2u2 + · · ·+ knun for some choice of n constants {k1, k2, · · · , kn}. In other words,
the linear combinations are all those function that can be built up from the given functions
{u1, u2, · · · , un} by repeated multiplication by constants and addition. If each of the given
functions {u1, u2, · · · , un} is differentiable then repeated applications of the multiplication and
sum rules (6.9) show that each such linear combination is also differentiable and its derivative
is given by the linear combination rule:

(6.10)
d

dx

(

k1u1 + k2u2 + · · · + knun

)

= k1
du1

dx
+ k2

du2

dx
+ · · ·+ kn

dun

dx
.

6.3.2. Algebraic Combinations of Differentiable Functions. Given any two differentiable func-
tions u and v, the function uv is also differentiable and its derivative is given by the so-called
product (or Leibnitz) rule:

(6.11)
d

dx
(uv) =

du

dx
v + u

dv

dx
.

This is not as simple to express in words as say the sum rule, but may be rendered as “the
derivative of a product is the derivative of the first times the second plus the first times the
derivative of the second”. This rule follows directly from the definition and the algebraic
identity

u(y)v(y)− u(x)v(x)

y − x
=

u(y)− u(x)

y − x
v(y) + u(x)

v(y) − v(x)

y − x
.

The product rule is a very important general rule for differentiation. In fact, most other rules
in this section will essentially follow from the product rule.
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If one considers the product of three differentiable functions u, v, and w then two applications
of (6.11) show that

d

dx
(uvw) =

du

dx
vw + u

dv

dx
w + uv

dw

dx
.

More generally, given n differentiable functions {u1, u2, · · · , un}, their product u1u2 · · ·un is
differentiable and its derivative is given by the general Leibnitz rule:

(6.12)
d

dx
(u1u2 · · ·un) =

du1

dx
u2 · · ·un + u1

du2

dx
· · ·un + · · ·+ u1u2 · · ·

dun

dx
.

A consequence of setting v = 1/u in the product rule (6.11) is the reciprocal rule:

(6.13)
d

dx

(

1

u

)

= − 1

u2

du

dx
wherever u 6= 0 .

If the reciprocal rule is combined with the product rule then you obtain the quotient rule:

(6.14)
d

dx

(

u

v

)

=

du

dx
v − u

dv

dx
v2

wherever v 6= 0 .

If the general Leibnitz rule (6.12) is specialized to the case where all the functions uk are the
same function u then it reduces to the monomial power rule:

(6.15)
d

dx
un = nun−1du

dx
.

The monomial power rule was derived above for positive integers n. When it is combined with
the reciprocal rule (6.13), one sees that it extends to negative integers n. This rule can be
extended further. Namely, given any differentiable function u and any rational number p for
which up is defined, the function up is differentiable wherever up−1 is defined and its derivative
is given by the rational power rule:

(6.16)
d

dx
up = pup−1du

dx
.

Wherever u 6= 0 this rule can be derived as follows. Because p is rational it can be expressed
as p = m/n where m and n are integers and n > 0. If the monomial power rule (6.15) is then
applied to each side of the identity (up)n = um, one finds that

n(up)n−1 d

dx
up = mum−1du

dx
,

which is equivalent to the rational power rule wherever u 6= 0. Points where u = 0 and p ≥ 1
can be treated directly from the definition of the derivative.

6.3.3. Compositions of Differentiable Functions. Given two differentiable functions v and u,
the derivative of their composition v(u) is given by the chain rule:

(6.17)
d

dx
v(u) = v′(u)

du

dx
.

The chain rule is the most important general rule for differentiation. It is natural to think that
it can be derived by letting y approach y in the algebraic identity

v(u(y))− v(u(x))

y − x
=

v(u(y))− v(u(x))

u(y) − u(x)

u(y)− u(x)

y − x
.
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However, this argument does not work because the identity breaks down wherever the u(y) −
u(x) that appears in the denominator becomes zero. This difficulty is overcome by observing
that if v is differentiable at a point b then a continuous difference quotient may be defined for
every z ∈ Dom(v) by

Q
b
v(z) ≡







v(z) − v(b)

z − b
for z 6= b ,

v′(b) for z = b .

This is a continuous function of z at b and satisfies

v(z) − v(b) = Q
b
v(z) (z − b) .

Now set b = u(x) and z = u(y) in this relation and divide by y − x to obtain

v(u(y))− v(u(x))

y − x
= Q

u(x)
v
(

u(y)
) u(y) − u(x)

y − x
.

The chain rule (6.17) then follows from the compostion limit rule and the definition of the
derivative (6.8) by letting y approach x.

If one considers the composition of three differentiable functions, w, v, and u, then two
applications of (6.17) show that

d

dx
w(v(u)) = w′(v(u)) v′(u)

du

dx
.

More generally, if one considers n differentiable functions {u1, u2, · · · , un}, then n − 1 applica-
tions of (6.17) show their composition u1(u2(u3(· · · (un) · · · ))) is differentiable and its derivative
is given by the linked chain rule:

(6.18)
d

dx
u1(u2(u3(· · · (un) · · · ))) = u′

1(u2(u3(· · · (un) · · · ))) u′
2(u3(· · · (un) · · · )) · · ·

dun

dx
.

6.3.4. Inverses of Differentiable Functions. Because a function f is “undone” when composed
with its inverse function f−1 in the sense that u = f(f−1(u)), the chain rule (6.17) can be used
to derive the inverse function rule:

(6.19)
d

dx
f−1(u) =

1

f ′
(

f−1(u)
)

du

dx
.

To find the derivative formula for v = f−1(u), we derive the identity f(v) = u to obtain

f ′(v)
dv

dx
=

du

dx
.

Then solve for dv/dx and use v = f−1(u) to eliminate the v in f ′(v). This gives (6.19).
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6.4. Local Extrema and Critical Points. In introductory calculus you learned how to use
derivatives to find a minimum or maximum of a given function. Here we put those methods on
a firm theoretical foundation.

6.4.1. Local Extrema. We begin with the concept of local extrema, which arises natrually when
calculus is used to find extrema.

Definition 6.2. Let D ⊂ R and f : D → R. We say that p ∈ D is a local minimizer
(maximizer) of f over D if p is a minimizer (maximizer) of f restricted to D∩ (p−δ, p+ δ) for
some δ > 0. The value f(p) is then called a local minimum (maximum) of f over D. In this
context, a minimizer (maximizer) of f over D is referred to as a global minimizer (maximizer)
while a minimum (maximum) of f over D is referred to as a global minimum (maximum).

A point that is either a local minimizer or local maximizer of f over D is called a local
extremizer and its corresponding value is called a local extremum. One similarly defines global
extremizer and global extremum.

Remark. The terms relative and absolute are sometimes used rather than local and global.

Remark. It is clear that every global extremum of a function is also a local extremum.
However, a function can have many local extrema without having any global extremum. For
example, consider

f(x) = x + 2 sin(x) over (−∞,∞) .

6.4.2. Transversality Lemma. A key step in developing calculus tools for finding local extrema
is the following lemma.

Proposition 6.1. Transversality Lemma. Let D ⊂ R. Let f : D → R be differentiable at
p ∈ D. If f ′(p) > 0 then there exists a δ > 0 such that

x ∈ D ∩ (p − δ, p) =⇒ f(x) < f(p) ,

x ∈ D ∩ (p, p + δ) =⇒ f(x) > f(p) ,

while if f ′(p) < 0 then there exists a δ > 0 such that

x ∈ D ∩ (p − δ, p) =⇒ f(x) > f(p) ,

x ∈ D ∩ (p, p + δ) =⇒ f(x) < f(p) .

Remark. The lemma states that if f ′(p) 6= 0 the graph of f will lie below the line y = f(p) on
one side of p, and above it on the other. In other words, it says the graph of f is transversal to
the line y = f(p). Hence, it is called the Transversality Lemma. One cannot expect much more.
For example, it is not generally true that if f : D → R is differentiable at p ∈ D and f ′(p) > 0
(f ′(p) < 0) that then f is increasing (decreasing) near p. This is seen from the example

f(x) =

{

0 for x = 0

mx + x2 cos(1/x) otherwise ,

where m ∈ (0, 1). Because

f ′(x) =

{

m for x = 0

m + sin(1/x) + 2x cos(1/x) otherwise ,

you see that f ′(0) = m > 0, yet f is not an increasing function over any interval containing 0.
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Proof. By the definition of the derivative one has

lim
x→p

f(x) − f(p)

x − p
= f ′(p) .

When f ′(p) > 0 we use the ǫ-δ characterization of this limit with ǫ = f ′(p) to conclude that
there exists a δ > 0 such that for every x ∈ D

0 < |x − p| < δ =⇒
∣

∣

∣

∣

f(x) − f(p)

x − p
− f ′(p)

∣

∣

∣

∣

< f ′(p) =⇒ f(x) − f(p)

x − p
> 0 .

This implication is equivalent to the first assertion of the Lemma.

Similarly, when f ′(p) < 0 we use the ǫ-δ characterization of the limit with ǫ = −f ′(p) to
conclude that there exists a δ > 0 such that for every x ∈ D

0 < |x − p| < δ =⇒
∣

∣

∣

∣

f(x) − f(p)

x − p
− f ′(p)

∣

∣

∣

∣

< −f ′(p) =⇒ f(x) − f(p)

x − p
< 0 .

This implication is equivalent to the second assertion of the Lemma. �

6.4.3. One-Sided Limit Point Test.

Definition 6.3. Let D ⊂ R and p be a limit point of D. Then p is called a one-sided limit
point of D whenever p is not a limit point of both D ∩ (p,∞) and D ∩ (−∞, p).

One consequence of the Transversality Lemma is the following test for when a one-sided limit
point is a local minimizer or maximizer.

Proposition 6.2. One-Sided Limit Point Test. Let D ⊂ R. Let f : D → R be differentiable
at p ∈ D. If p is not a limit point of D ∩ (p,∞)

(

D ∩ (−∞, p)
)

then

if f ′(p) > 0 then p is a local maximizer (minimizer) of f over D ,

if f ′(p) < 0 then p is a local minimizer (maximizer) of f over D ,

if f ′(p) = 0 then there is no information .

Proof. Exercise.

Remark. When D is either [a, b], [a, b), or (a, b] then this test applies to a or b when it is a
closed endpoint of D.

6.4.4. Critical Points. The following corollary of the Transversality Lemma states that certain
points cannot be local extremizers.

Proposition 6.3. Transversality Corollary. Let D ⊂ R. Let f : D → R be differentiable
at p ∈ D. If p is a limit point of D ∩ (p,∞)

(

D ∩ (−∞, p)
)

then

f ′(p) > 0 =⇒ p is not a local maximizer (minimizer) of f over D ,

f ′(p) < 0 =⇒ p is not a local minimizer (maximizer) of f over D .

In particular, if p is a limit point of both D ∩ (p,∞) and D ∩ (−∞, p) then

f ′(p) 6= 0 =⇒ p is not a local extremizer of f over D .
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Proof. Observe that if p is a limit point of D∩ (p,∞) then for every δ > 0 the set D∩ (p, p+δ)
is nonempty. Similarly, if p is a limit point of D ∩ (−∞, p) then for every δ > 0 the set
D∩ (p− δ, p) is nonempty. Given these observations, the result follows from the Transversality
Lemma. The details are left as an exercise. �

Remark. When f : D → R is differentiable at p ∈ D, the definition requires p to be a limit
point of D. It follows that p must be a limit point of at least one of D∩ (p,∞) or D∩ (−∞, p).
However, p does not generally have to be a limit point of both D∩ (p,∞) and D∩ (−∞, p). For
example, this will be the case when D is either [a, b], [a, b), or (a, b] and p is a closed endpoint
of D.

The above corollary motivates the following definition.

Definition 6.4. Let D ⊂ R and f : D → R. Then p ∈ D is called a critical point of f over D
if either

• f is not differentiable at p,
• f ′(p) = 0,
• or p is a one-sided limit point of D.

The last assertion of the Transversality Corollary can then be recast as follows.

Proposition 6.4. Fermat Critical Point Theorem. Let D ⊂ R and f : D → R. Then
every local extremizer of f over D is a critical point of f over D.

6.5. Intermediate-Value and Sign Dichotomy Theorems. When the Extreme-Value The-
orem and the Fermat Critical Point Theorem are combined with the One-Sided Limit Point
Theorem, we obtain a result that lies at the heart of some of the tests for analyzing the mono-
tonicity of a function.

Proposition 6.5. Derivative Intermediate-Value Theorem. Let a < b and f : [a, b] → R

be differentiable. Then f ′ takes all values that lie between f ′(a) and f ′(b).

Proof. The theorem holds when f ′(a) = f ′(b) because in that case there are no values between
f ′(a) and f ′(b). Now consider the case when f ′(a) < f ′(b). Let m be any value between f ′(a)
and f ′(b), so that

f ′(a) < m < f ′(b) .

Define a function g : [a, b] → R for every x ∈ [a, b] by

g(x) ≡ f(x) − m x .

Clearly, as a function of x:

• g is continuous over [a, b];
• g is differentiable over [a, b] with g′(x) = f ′(x) − m;
• g′(a) = f ′(a) − m < 0 while g′(b) = f ′(b) − m > 0.

The One-Sided Limit Point Theorem then implies that both a and b are local maxima and
not local minima of g over [a, b]. But by the Extreme-Value Theorem g must therefore have a
global minimum at some p in (a, b). Because g is differentiable over (a, b), the Fermat Critical
Point Theorem implies that g′(p) = f ′(p) −m = 0. Hence, f ′(p) = m for some p in (a, b). The
case where f ′(a) > f ′(b) is argued similarly. �

Remark. The Derivative Intermediate-Value Theorem is stronger than the Intermediate-Value
Theorem for continuous functions that we studied earlier. We know that derivatives are not
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generally continuous, so this theorem does not follow from the earlier one. It will be a conse-
quence of the Second Fundamental Theorem of Calculus that every function that is continuous
over an interval [a, b] is the derivative of some other function over that interval. The class of
functions considered by the Derivative Intermediate-Value Theorem is therefore strictly larger
than that considered by the earlier theorem.

We will employ the following consequence of the Derivative Intermediate-Value Theorem to
obtain tests for analyzing the monotonicity of a function.

Proposition 6.6. Derivative Sign Dichotomy Theorem. Let a < b and f : (a, b) → R be
differentiable. If f has no critical points in (a, b) then either

f ′ > 0 over (a, b) or f ′ < 0 over (a, b) .

Proof. Suppose not. Then there are points q, r ∈ (a, b) such that f ′(q) < 0 < f ′(r). In the
case q < r, the Derivative Intermediate-Value Theorem applied to f over [q, r] implies that
there exists a p ∈ (q, r) such that f ′(p) = 0. This would imply that p ∈ (a, b) is a critical point
of f . The case q > r leads to the same conclusion. However f has no critical points over (a, b),
so our supposition must be false. Hence, the values of f ′ can only take one sign over (a, b). �

Remark. The converse of this theorem is trivially true because if f ′ is either always positive
over (a, b) or always negative over (a, b) then it is never zero over (a, b), whereby f has no
critical points in (a, b).

6.6. Convex and Concave Functions. We begin by recalling what it means for a function
to be either convex or concave over an interval.

Definition 6.5. Let f : D → R for some D ⊂ R. Let I ⊂ D be an interval. The function f is
said to be convex (strictly convex) over I if for every x, z ∈ I with x < z

(6.20)
f
(

tx + (1 − t)z
)

≤ tf(x) + (1 − t)f(z) ∀t ∈ (0, 1) .
(

f
(

tx + (1 − t)z
)

< tf(x) + (1 − t)f(z) ∀t ∈ (0, 1) .
)

The function f is said to be concave (strictly concave) over I if for every x, z ∈ I with x < z

(6.21)
f
(

tx + (1 − t)z
)

≥ tf(x) + (1 − t)f(z) ∀t ∈ (0, 1) .
(

f
(

tx + (1 − t)z
)

> tf(x) + (1 − t)f(z) ∀t ∈ (0, 1) .
)

Remark. The geometric picture is that chords drawn between two points on the graph of
a function over an interval will lie above the graph if the function is strictly convex over the
interval, and lie below the graph if the function is strictly concave over the interval.

Remark. A function f is convex (strictly convex) over an interval I if and only if the function
−f is concave (strictly concave) over I. We will therefore often only state results or give proofs
for the convex or strictly convex cases.

Remark. Many elementary calculus textbooks now use the terms concave up for convex and
concave down for concave. This terminology was introduced because students had trouble
remembering which picture went with convex and which picture went with concave. It became
widely used by elementary textbooks in the second half of the twentith century, but advanced
textbooks and reseach papers have largely stuck with the traditional terminology used here.
Indeed, the term convex is used more often in advanced literature than concave. You will find
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many works about convex sets, convex analysis, convex optimization, convex programming, and
locally convex topological vector spaces, but far fewer that use concave in a similar way.

Remark. Other elementary calculus textbooks use the terms convex up for convex and concave
down for concave. Unfortunately, some students still get confused and will say that f(x) = −x2

is convex down. It would be smarter for elementary calculus textbooks to use the terms convex
up for convex and convex down for concave. There are two reasons for this. First, convex is
the dominant term they will see in more advanced textbooks, so seeing in their first course is
better than not seeing it. Second, the region over (up) the graph of a convex function is convex
while the region under (down) the graph of a concave function is convex.

A useful characterization of these concepts in terms of difference quotients is provided by the
following proposition.

Proposition 6.7. Let f : D → R for some D ⊂ R. Let I ⊂ D be an interval. Then

• f is convex over I if and only if for every x, y, z ∈ I

x < y < z =⇒ f(y) − f(x)

y − x
≤ f(z) − f(y)

z − y
.

• f is strictly convex over I if and only if for every x, y, z ∈ I

x < y < z =⇒ f(y) − f(x)

y − x
<

f(z) − f(y)

z − y
.

• f is concave over I if and only if for every x, y, z ∈ I

x < y < z =⇒ f(y) − f(x)

y − x
≥ f(z) − f(y)

z − y
.

• f is strictly concave over I if and only if for every x, y, z ∈ I

x < y < z =⇒ f(y) − f(x)

y − x
>

f(z) − f(y)

z − y
.

Proof. We will only prove the first characterization. The other characterizations have similar
proofs, which are left as exercises.

(=⇒) Suppose that f is convex over I. Let x, y, z ∈ I such that x < y < z. By setting
t = z−y

z−x
into (6.20) we obtain

f(y) ≤ z − y

z − x
f(x) +

y − x

z − x
f(z) .

But this inequality is equivalent to the inequality given in the first characterization.

(⇐=) Suppose that f has the first property given in the proposition. Let x, z ∈ I with x < z.
Let t ∈ (0, 1) be arbitrary. Set y = tx+(1− t)z. Then x < y < z, whereby the inequality given
in the first characterization is satisfied. But this inequality is equivalent to

f(y) ≤ z − y

z − x
f(x) +

y − x

z − x
f(z) ,

which when expressed in terms of t becomes

f
(

tx + (1 − t)z
)

≤ tf(x) + (1 − t)f(z) ,

where t ∈ (0, 1) was arbitrary. Therefore f satifies (6.20) and is thereby convex. �
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An immediate corollary of Proposition 6.7 is the following.

Proposition 6.8. Let f : D → R for some D ⊂ R. If f is convex or concave over (a, b) ⊂ D
then f is continuous over (a, b).

Proof. We will give the proof only for the case when f is convex over (a, b). Let x ∈ (a, b).
Let q, r, s, t ∈ (a, b) such that q < r < x < s < t. Then by Proposition 6.7 we can show that

f(r) − f(q)

r − q
≤ f(y) − f(x)

y − x
≤ f(t) − f(s)

t − s
for every y ∈ (r, s) such that y 6= x .

From these inequalities we can derive the bound

|f(y) − f(x)| ≤ L |y − x| for every y ∈ (r, s) ,

where

L = max

{
∣

∣

∣

∣

f(r) − f(q)

r − q

∣

∣

∣

∣

,

∣

∣

∣

∣

f(t) − f(s)

t − s

∣

∣

∣

∣

}

.

This bound implies that f is continuous at x. Because x ∈ (a, b) was arbitrary, we conclude
that f is continuous over (a, b). �
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7. Mean-Value Theorems and Their Applications

In this section we study the mean-value theorems of Lagrange and Cauchy. Their proofs rest
upon the Extreme-Value Theorem and the Fermat Critical-Point Theorem. Their usefulness
will be illustrated by using them to establish the monotonicity tests that you used in calculus,
an error bound for the tangent line approximation, a convergence estimate for the Newton
method, error bounds for the Taylor approximation, and various l’Hospital rules for evaluating
limits of indeterminant form.

7.1. Lagrange Mean-Value Theorem. We begin by proving a special case of the Lagrange
Mean-Value Theorem, from which the full theorem follows easily. This special case is called the
Rolle Theorem. Because it isolates the key step in the proofs of both the Lagrange and Cauchy
Mean-Value Theorems, it might be more accurate to call it the Rolle Lemma. However, we
will stick with its classical moniker. Its proof simply specializes Lagrange’s proof to the special
case considered. It rests upon a combination of the Extreme-Value Theorem with the Fermat
Critical-Point Theorem.

Proposition 7.1. Rolle Theorem. Let a, b ∈ R such that a < b. Let

• f : [a, b] → R be continuous;
• f(a) = f(b);
• f be differentiable over (a, b).

Then f ′(p) = 0 for some p ∈ (a, b).

Remark. This result can be motivated by simply graphing any such function and noticing
that f ′ will vanish at points in (a, b) where f takes extreme values. Indeed, this intuition is all
that lies behind the proof.

Proof. The Extreme-Value Theorem asserts that there exist points p and p in [a, b] such that

f(p) ≤ f(x) ≤ f(p) for every x ∈ [a, b] .

Let k = f(a) = f(b). By setting x = a or x = b above, we see that

f(p) ≤ k ≤ f(p) .

At least one of the following three cases must then hold:

• f(p) = k = f(p) ;
• f(p) < k ;
• k < f(p) .

If f(p) = k = f(p) then f(x) = k over [a, b] and f ′(p) = 0 for every p in (a, b). If f(p) < k
then p must be in (a, b). But because f is thereby differentiable at p, the Fermat Critical-Point
Theorem then implies that f ′(p) = 0. Finally, the argument when k < f(p) goes similarly,
yielding f ′(p) = 0. At least one such p can therefore be found in each case. �

We are now ready for the full Lagrange Mean-Value Theorem.

Proposition 7.2. Lagrange Mean-Value Theorem. Let a, b ∈ R such that a < b. Let

• f : [a, b] → R be continuous;
• f be differentiable over (a, b).

Then

f ′(p) =
f(b) − f(a)

b − a
for some p in (a, b) .
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Remark. The geometric interpretation of this theorem is that (p, f(p)) is a point on the graph
of f where the slope of the tangent line equals the slope of the secant line through the points
(a, f(a)) and (b, f(b)). Notice that this theorem reduces to the Rolle Theorem in the case when
f(a) = f(b).

Proof. Define g : [a, b] → R for every x ∈ [a, b] by

g(x) ≡ f(x) − f(a) − m (x − a) , where m =
f(b) − f(a)

b − a
.

Clearly, as a function of x:

• g is continuous over [a, b];
• g(a) = g(b) = 0;
• g is differentiable over (a, b) with g′(x) = f ′(x) − m.

The Rolle Theorem then implies that there exists p ∈ (a, b) such that g′(p) = f ′(p) − m = 0.
Hence, f ′(p) = m for this p. �

7.2. Lipschitz Bounds. An easy consequence of the Lagrange Mean-Value Theorem is the
existence of so-called Lipschitz bounds for functions with a bounded derivative.

Definition. If D ⊂ R then f : D → R is said to be Lipschitz continuous over D if there exists
a constant L such that

|f(x) − f(y)| ≤ L|x − y| for every x, y ∈ D .

Such a bound is called a Lipschitz bound or Lipschitz condition, while L is called a Lipschitz
constant.

Proposition 7.3. Lipschitz Bound Theorem. Let I ⊂ R be either (a, b), [a, b), (a, b] or
[a, b] for some a < b. Let f : I → R be continuous over I and differentiable over (a, b). If
f ′ : (a, b) → R is bounded then f satifies the Lipschitz bound

(7.1) |f(x) − f(y)| ≤ L|x − y| for every x, y ∈ I ,

where L = sup{|f ′(z)| : z ∈ (a, b)}. Moreover, this is the smallest possible Lipschitz constant
for f over I.

Proof. Let x, y ∈ I. If x = y then bound (7.1) holds for every L ≥ 0. If x < y then by the
Lagrange Mean-Value Theorem there exists p ∈ (x, y) such that

f ′(p) =
f(y) − f(x)

y − x
.

It then follows that

|f(x) − f(y)| = |f ′(p)||x − y| ≤ L|x − y| .
The case when y < x goes similarly. The proof that L is the smallest possible Lipschitz constant
for f over I is left as an exercise. �
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7.3. Monotonicity. We now introduce notions of monotonicity of a function over a set.

Definition 7.1. Given a function f : Dom(f) → R with Dom(f) ⊂ R and a set S ⊂ Dom(f),
we say that f is

increasing over S whenever f(x) < f(y) for every x, y ∈ S with x < y ,

nondecreasing over S whenever f(x) ≤ f(y) for every x, y ∈ S with x < y ,

decreasing over S whenever f(y) < f(x) for every x, y ∈ S with x < y ,

nonincreasing over S whenever f(y) ≤ f(x) for every x, y ∈ S with x < y .

We say that f is monotonic over S if it is either nondecreasing or nonincreasing over S. We
say that f is strictly monotonic over S if it is either increasing or decreasing over S.

In calculus you learned how to determine the monotonicity of a function through a sign analysis
of its first derivative. You probably used the following theorem, which is a consequence of the
Lagrange Mean-Value Theorem. Of course, that theorem is a consequence of the Extreme-Value
and Fermat Critical-point Theorems.

Proposition 7.4. Monotonicity Theorem. Let I be either (a, b), [a, b), (a, b] or [a, b] for
some a < b. Let f : I → R be continuous over I and differentiable over (a, b). Then

(i) f ′ > 0 over (a, b) =⇒ f is increasing over I;
(ii) f ′ < 0 over (a, b) =⇒ f is decreasing over I;
(iii) f ′ ≥ 0 over (a, b) ⇐⇒ f is nondecreasing over I;
(iv) f ′ ≤ 0 over (a, b) ⇐⇒ f is nonincreasing over I;
(v) f ′ = 0 over (a, b) ⇐⇒ f is constant over I.

Proof. (=⇒) We will prove only case (i). The other cases are argued similarly. Suppose that
f ′ > 0 over (a, b). Let x, y ∈ I with x < y. The Lagrange Mean-Value Theorem states that
there exists a p such that x < p < y and f(y) − f(x) = f ′(p)(y − x). Because any such p
must lie in (a, b), one must have f ′(p) > 0, whereby f(y) − f(x) = f ′(p)(y − x) > 0. By the
arbitrariness of x and y, we conclude that f is increasing over I.

(⇐=) We will prove only case (iii). Cases (iv) and (v) are argued similarly. Suppose that f
is nondecreasing over I. Let x ∈ (a, b). Because f is nondecreasing over I we know that

f(y) − f(x)

y − x
≥ 0 for every y ∈ I with y 6= x .

Because f is differentiable at x, the above inequality implies that

f ′(x) = lim
y→x

f(y) − f(x)

y − x
≥ 0 .

By the arbitrariness of x, we conclude that f ′ ≥ 0 over (a, b). �

Remark. The converses of (i) and (ii) are false because the derivative of a strictly monotonic
function can vanish at isolated points. The next proposition will add a hypothesis under which
the converses of (i) and (ii) hold.

In practice, you may have also used the following theorem, which is a consequence of both
the Lagrange Mean-Value Theorem and the Derivative Sign Dichotomy Theorem. That latter
theorem is a consequence of the Derivative Intermediate-Value Theorem, which also follows
from the Extreme-Value and Fermat Critical-Point Theorems.
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Proposition 7.5. Strict Monotonicity Theorem. Let I be either (a, b), [a, b), (a, b] or [a, b]
for some a < b. Let f : I → R be continuous over I and differentiable over (a, b). If f has no
critical points in (a, b) then the following are equivalent:

(i) f ′ > 0 over (a, b);
(ii) f is increasing over I;
(iii) f(q) < f(r) for some q and r in I with q < r;
(iv) f ′(p) > 0 for some p in (a, b).

Similarly, the following are equivalent:

(i′) f ′ < 0 over (a, b);
(ii′) f is decreasing over I;
(iii′) f(q) > f(r) for some q and r in I with q < r;
(iv′) f ′(p) < 0 for some p in (a, b).

Remark. This proposition is usually used by applying criterion (iv) or (iv′) to infer the
monotonicity of f over I. In other words, it allows you to read off the monotonicity from by
checking the sign of f ′ at a single point in (a, b).

Proof. We will prove that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). The proof of the
equivalence of (i′-iv′) is similar.

The fact (i) implies (ii) is just the first assertion of the Monotonicity Theorem (Proposition
7.4). It is clear from the definition of “increasing over I” that (ii) implies (iii). Given (iii), the
Lagrange Mean-Value Theorem implies there exists p ∈ (q, r) ⊂ (a, b) such that

f ′(p) =
f(r) − f(q)

r − q
> 0 .

Hence, (iii) implies (iv). Finally, the fact that (iv) implies (i) is a consequence of the Derivative
Sign Dichotomy Theorem. �

7.4. Convexity. Finding the intervals over which a given function is either convex or concave
is called analyzing the convexity of the function. In calculus you learned that the convexity of a
function is related to the monotonicity of its first derivative. The following characterizations are
a consequence of the Lagrange Mean-Value Theorem (Proposition 7.2) and the characterizations
of convexity by difference quotients given in Proposition 6.7.

Proposition 7.6. Convexity Characterization Theorem. Let I be either (a, b), (a, b],
[a, b), or [a, b] for some a < b. Let f : I → R be continuous over I and differentiable over (a, b).
Then

(i) f ′ is increasing over (a, b) ⇐⇒ f is strictly convex over I;
(ii) f ′ is decreasing over (a, b) ⇐⇒ f is strictly concave over I;
(iii) f ′ is nondecreasing over (a, b) ⇐⇒ f is convex over I;
(iv) f ′ is nonincreasing over (a, b) ⇐⇒ f is concave over I;
(v) f ′ is constant over (a, b) ⇐⇒ f is affine over I.

Proof. We will prove only characterization (iii). The others are left as an exercise. The proofs
of characterizations (iv) and (v) are very similar. The proofs of characterizations (i) and (ii)
will require care because strict inequalities must be established.
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(=⇒) Suppose f ′ is nondecreasing over (a, b). Let x, y, z ∈ I with x < y < z. By the
Lagrange Mean-Value Theorem there exists p ∈ (x, y) and q ∈ (y, z) such that

f(y)− f(x)

y − x
= f ′(p) ,

f(z) − f(y)

z − y
= f ′(q) .

Because f ′ is nondecreasing over (a, b) while p, q ∈ (a, b) with p < q, we see that f ′(p) ≤ f ′(q).
This implies that

f(y) − f(x)

y − x
≤ f(z) − f(y)

z − y
.

Because this inequality holds for every x, y, z ∈ I with x < y < z, the difference quotient
criterion of Proposition 6.7 implies that f is convex over I.

(⇐=) Suppose f is convex over I. Let x, z ∈ (a, b) with x < z. By Proposition 6.7

f(y) − f(x)

y − x
≤ f(z) − f(y)

z − y
for every y ∈ (x, z) .

By letting y → x+ and y → z− in this inequality we find that

f ′(x) = lim
y→x+

f(y) − f(x)

y − x
≤ lim

y→x+

f(z) − f(y)

z − y
=

f(z) − f(x)

z − x
,

f(z) − f(x)

z − x
= lim

y→z−

f(y) − f(x)

y − x
≤ lim

y→z−

f(z) − f(y)

z − y
= f ′(z) ,

whereby f ′(x) ≤ f ′(z). Because this holds for every x, z ∈ (a, b) with x < z, we conclude that
f ′ is nondecreasing over (a, b). �

In calculus you learned how to determine the convexity of a function through a sign analysis
of its second derivative. You probably used the following theorem, which is a consequence
of the Monotonicity Theorem (Proposition 7.4) and the Convexity Characterization Theorem
(Proposition 7.6).

Proposition 7.7. Convexity Theorem. Let I be either (a, b), [a, b), (a, b] or [a, b] for some
a < b. Let f : I → R be continuous over I and twice differentiable over (a, b). Then

(i) f ′′ > 0 over (a, b) =⇒ f is strictly convex over I;
(ii) f ′′ < 0 over (a, b) =⇒ f is strictly concave over I;
(iii) f ′′ ≥ 0 over (a, b) ⇐⇒ f is convex over I;
(iv) f ′′ ≤ 0 over (a, b) ⇐⇒ f is concave over I;
(v) f ′′ = 0 over (a, b) ⇐⇒ f is affine over I.

Proof. Because f ′ : (a, b) → R is differentiable over (a, b), it follows from Proposition 7.4 that

(i) f ′′ > 0 over (a, b) =⇒ f ′ is increasing over (a, b);
(ii) f ′′ < 0 over (a, b) =⇒ f ′ is decreasing over (a, b);
(iii) f ′′ ≥ 0 over (a, b) ⇐⇒ f ′ is nondecreasing over (a, b);
(iv) f ′′ ≤ 0 over (a, b) ⇐⇒ f ′ is nonincreasing over (a, b);
(v) f ′′ = 0 over (a, b) ⇐⇒ f ′ is constant over (a, b).

The assertions of Proposition 7.7 then follow from Proposition 7.6. �

Remark. The converses of (i) and (ii) are false because the second derivative of a function
that is strictly convex or strictly concave can vanish at isolated points. The next proposition
will add a hypothesis under which the converses of (i) and (ii) hold.
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In practice, you may have also used the following theorem, which is a consequence of the
Strict Monotonicity Theorem (Proposition 7.5) and the Convexity Characterization Theorem
(Proposition 7.6).

Proposition 7.8. Strict Convexity Theorem. Let I be either (a, b), [a, b), (a, b] or [a, b]
for some a < b. Let f : I → R be continuous over I and twice differentiable over (a, b). If f ′

has no critical points in (a, b) then the following are equivalent:

(i) f ′′ > 0 over (a, b);
(ii) f is strictly convex over I;
(iii) f ′ is increasing over (a, b);
(iv) f ′(q) < f ′(r) for some q and r in (a, b) with q < r;
(v) f ′′(p) > 0 for some p in (a, b).

Similarly, the following are equivalent:

(i′) f ′′ < 0 over (a, b);
(ii′) f is strictly concave over I;
(iii′) f ′ is decreasing over (a, b);
(iv′) f ′(q) > f ′(r) for some q and r in (a, b) with q < r;
(v′) f ′′(p) < 0 for some p in (a, b).

Remark. This proposition is usually used by applying criterion (v) or (v′) to infer the convexity
of f over I. In other words, it allows you to read off the convexity from by checking the sign
of f ′′ at a single point in (a, b).

Remark. A critical point of f ′ is sometimes called a degenerate point of f .

Proof. Equivalences (ii) ⇐⇒ (iii) and (ii′) ⇐⇒ (iii′) were established by Proposition 7.6.
Equivalences (i) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) and (i′) ⇐⇒ (iii′) ⇐⇒ (iv′) ⇐⇒ (v′) follow
by applying Proposition 7.5 to f ′ considered over (a, b). �

7.5. Error of the Tangent Line Approximation. Recall that if D ⊂ R and f : D → R is
differentiable at c ∈ D then the tangent line approximation to f and c is given by

f(x) ≈ f(c) + f ′(c)(x − c) .

For every x ∈ D we define Rcf(x) by the relation

f(x) = f(c) + f ′(c)(x − c) + Rcf(x) .

The function Rcf : D → R is called is called the remainder or correction of the tangent line
approximation at c because it is what you add to the approximation to recover the exact value
of f(x). It is the negative of the error.

It follows from the definition of differentiability that

(7.2) lim
x→c

Rcf(x)

x − c
= lim

x→c

f(x) − f(c) − f ′(c)(x − c)

x − c
= 0 .

This states that |Rcf(x)| vanishes faster than |x−c| as x approaches c. This is the best you can
expect to say if all you know is that f is differentiable at c. However, if f has more regularity
then you can say how much faster |Rcf(x)| vanishes.

Another consequence of the Rolle Theorem (and hence, of the Extreme-Value Theorem) is
the following expression for the remainder of the tangent line approximation.
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Proposition 7.9. Tangent Line Remainder Theorem. Let f : (a, b) → R be twice differ-
entiable over an interval (a, b). Let c ∈ (a, b). Then for every x ∈ (a, b) such that x 6= c there
exists a point p between c and x such that

(7.3) f(x) = f(c) + f ′(c)(x − c) + 1
2
f ′′(p) (x − c)2 .

Remark. For a given c the point p will also depend on x, and this theorem does not give you
a clue as to what that dependence might be. However, formula (7.3) does allow you to bound
the size of the remainder by bounding the possible values of f ′′(p). For example, if you can find
a number K such that |f ′′(z)| < K for every z ∈ (a, b), then you see that for every x ∈ (a, b)
one has

(7.4) |Rcf(x)| = |f(x) − f(c) − f ′(c)(x − c)| = 1
2
|f ′′(p)| (x − c)2 ≤ 1

2
K (x − c)2 .

This bound shows that the remainder vanishes at least as fast as (x − c)2 as x approaches c.
This is a stronger statement than (7.2), which only said the remainder vanishes faster than
x − c as x approaches c.

Remark. Formula (7.3) also allows you determine the sign of the remainder when you know
the sign of f ′′(p). For example, if you know that f ′′(z) > 0 for every z ∈ (a, b), then you know
that the tangent line approximation lies below f .

Remark. Finally, when f ′′ is continuous at c you can refine (7.2) even further by using (7.3)
to show that

lim
x→c

Rcf(x)

(x − c)2
= lim

x→c

f(x) − f(c) − f ′(c)(x − c)

(x − c)2
= lim

x→c

1
2
f ′′(p) = 1

2
f ′′(c) .

This limit follows because f ′′ is continuous at c and because p is trapped between c and x as x
approaches c. It shows that when f ′′(c) 6= 0 the remainder vanishes exactly as fast as (x − c)2

as x approaches c, and that when f ′′(c) = 0 it vanishes faster than (x − c)2 as x approaches c.

We now prove the Tangent Line Remainder Theorem.

Proof. First consider the case when c < x < b. Fix this x and let M be determined by the
equation

f(x) = f(c) + f ′(c)(x − c) +
1

2
M (x − c)2 .

For each t ∈ [c, x] define g(t) by

g(t) ≡ f(x) − f(t) − f ′(t)(x − t) − 1

2
M (x − t)2 .

Clearly, one sees that as a function of t:

• g is continuous over the interval [c, x];
• g(c) = g(x) = 0;
• g is differentiable over (c, x) with

g′(t) = −f ′′(t)(x − t) + M (x − t) =
(

M − f ′′(t)
)

(x − t) .

The Rolle Theorem then implies there exists p ∈ (c, x) such that g′(p) = 0. Hence,

0 = g′(p) =
(

M − f ′′(p)
)

(x − p) ,

whereby M = f ′′(p) for some p ∈ (c, x). The case a < x < c is argued similarly. �
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7.6. Convergence of the Newton Method. The zeros of a function f are the solutions of
the equation f(x) = 0. One of the fastest ways to compute the zeros of a differentiable function
is the Newton method. It iteratively constructs a sequence {xn}n∈N of approximate zeros as
follows. Given the guess xn, we let our next guess xn+1 be the x-intercept of the tangent line
approximation to f at xn. In other words, we let xn+1 be the solution of

f(xn) + f ′(xn)(x − xn) = 0 .

Provided f ′(xn) 6= 0 this can be solved to obtain

(7.5) xn+1 = xn − f(xn)

f ′(xn)
.

The points so-obtained are called Newton iterates. Of course, they depend on the initial guess
x0. The process will terminate at some n either if f ′(xn) = 0 or if xn+1 given by (7.5) lies
outside the domain of f . Otherwise it produces a sequence of iterates {xn}n∈N which may or
may not converge.

The Newton method works best if a single root has been isolated in an interval without critical
points. Some bounds on the error made by the iterates can then be obtained by analyzing the
convexity of f near the root. For example, if we denoted the root by x∗ then one can see the
following.

• If f is increasing and strictly convex near x∗, or is decreasing and strictly concave near
x∗, then the sequence {xn} will approach x∗ monotonically from above.

• If f is increasing and strictly concave near x∗, or is decreasing and strictly convex near
x∗, then the sequence {xn} will approach x∗ monotonically from below.

These observations can be expressed as follows.

• If f ′(x∗)f
′′(x∗) > 0 then the sequence {xn} will approach x∗ monotonically from above.

• If f ′(x∗)f
′′(x∗) < 0 then the sequence {xn} will approach x∗ monotonically from below.

Hence, the sequence {xn} will always approach x∗ from the side on which f(x)f ′′(x) > 0. If
you take your initial guess x0 on this side the sequence {xn} will be strictly monotonic. It will
converge very quickly, eventually doubling the number of correct digits with each new iterate.
This fast rate of convergence is governed by the following theorem.

Proposition 7.10. Newton Method Convergence Theorem. Let f : [a, b] → R be twice
differentiable over [a, b]. Let f(a)f(b) < 0. Let L and M be positive constants such that

• L ≤ |f ′(z)| for every z ∈ (a, b);
• |f ′′(z)| ≤ M < ∞ for every z ∈ (a, b);
• b − a < 2L/M .

Let {xn}n∈N be any sequence of Newton iterates that lies within [a, b]. Then f has a unique
zero x∗ ∈ (a, b) and the Newton iterates satisfy

(7.6) |xn − x∗| ≤
1

K

(

K |x0 − x∗|
)2n

<
1

K

(

K(b − a)
)2n

,

where K = M/(2L), so that K(b − a) < 1.

Proof. Because f(a)f(b) < 0 and f is continuous over [a, b], f must have a zero in (a, b) by the
Intermediate-Value Theorem. Because L ≤ |f ′(z)| for every z ∈ (a, b), f has no critical points
in (a, b), and is thereby strictly montonic over [a, b]. It must therefore have a unique zero in
(a, b). Let x∗ denote this zero.
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By (7.5) the Newton iterates satisfy

0 = f(xn) + f ′(xn)(xn+1 − xn) .

On the other hand, the Tangent Line Remainder Theorem states that

0 = f(x∗) = f(xn) + f ′(xn)(x∗ − xn) +
1

2
f ′′(pn)(x∗ − xn)2 ,

for some pn between x∗ and xn. Subtracting this from the previous equation yields

f ′(xn)(xn+1 − x∗) =
1

2
f ′′(pn)(x∗ − xn)2 .

Hence, because xn and pn are in (a, b), one has

|xn+1 − x∗| =
|f ′′(pn)|
2|f ′(xn)| (x∗ − xn)2 ≤ M

2L
|xn − x∗|2 = K|xn − x∗|2 .

If we set Rn = K|xn −x∗| then the above inequality takes the form Rn+1 ≤ R 2
n . You can easily

use induction to show that Rn ≤ R 2n

0 . Bound (7.6) then follows because R0 = K|x0 − x∗| <
K(b − a). �

Remark. The proof actually shows that once K|xn −x∗| < .1 for some n then K|xn+2 −x∗| <
.0001, K|xn+3 − x∗| < .00000001, and K|xn+4 − x∗| < .0000000000000001. This means that
once you have an iterate for which Kxn is correct to within one decimal point, it will be correct
to within machine round-off in three or four iterations.

7.7. Error of the Taylor Polynomial Approximation. Recall that if f : (a, b) → R is n
times differentiable at a point c ∈ (a, b) then the nth order Taylor approximation to f(x) at c
is given by the polynomial

(7.7)

T n
c f(x) ≡ f(c) + f ′(c)(x − c) +

1

2
f ′′(c)(x − c)2 + · · · + 1

n!
f (n)(c)(x − c)n

=

n
∑

k=0

1

k!
f (k)(c)(x − c)k .

For every x ∈ (a, b) we define Rn
c f(x) by the relation

f(x) = T n
c f(x) + Rn

c f(x) .

The function Rn
c f : (a, b) → R is called is called the remainder or correction of the Taylor

approximation at c because it is what you add to the approximation to recover the exact value
of f(x). It is the negative of the error.

The method used to establish the Tangent Line Remainder Theorem can be extended to
yield an expression for the remainder of the Taylor polynomial approximation.

Proposition 7.11. Lagrange Remainder Theorem. Let f : (a, b) → R be (n + 1) times
differentiable. Let c ∈ (a, b). Let T n

c f(x) denote the nth order Taylor approximation to f at c.
Then for every x ∈ (a, b) such that x 6= c there exists a point p between c and x such that

(7.8) f(x) = T n
c f(x) +

1

(n + 1)!
f (n+1)(p)(x − c)n+1 .
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Remark. The last term in (7.8) is called the remainder or correction of the Taylor approxi-
mation because it is what you add to the approximation to recover the exact value of f(x). It
is the negative of the error.

Remark. This formula is easy to remember because it has the same form as the new term
that would appear in the (n + 1)st order Taylor polynomial (7.7) except that instead of f (n+1)

being evaluated at c, it is being evaluated at an unspecified point p that lies between c and x.

Remark. For a given c the point p will also depend on both x and n, and this formula does
not give you a clue as to what those dependences might be. However, it does allow you to
bound the size of the error by bounding the possible values of f (n+1)(p). For example, if you
can find a number K such that |f (n+1)(z)| < K for every z ∈ (a, b), then you see that

∣

∣f(x) − T n
c f(x)

∣

∣ ≤ 1

(n + 1)!
K (x − c)n+1 .

It also allows you determine the sign of the error when n + 1 is even and you know the sign of
f (n+1)(p).

Example. We can use the Lagrange Remainder Theorem to prove that

ex =
∞

∑

k=0

1

k!
xk for every x ∈ R .

The fact that the above series is absoluely convergent for every x ∈ R is easy to see from, for
example, the ratio test. What we are showing here is that it converges to ex.

Let f(x) = ex. Because f (k)(x) = ex for every k ∈ N, we see that f (k)(0) = 1 for every k ∈ N.
The nth order Taylor approximation to ex at 0 is therefore given by the polynomial

T n
0 f(x) =

n
∑

k=0

1

k!
xk .

These are the partial sums of the infinite sum we are considering. They will converge to
f(x) = ex provided the remainder vanishes as n → ∞.

The Lagrange Remainder Theorem implies that for every x 6= 0 there exists a p between 0
and x such that

∣

∣

∣
f(x) − T n

0 f(x)
∣

∣

∣
=

1

(n + 1)!
ep|x|n+1 .

Because p ∈ (−|x|, |x|) and because x 7→ ex is increasing, we know that ep < e|x|, whereby
∣

∣

∣
f(x) − T n

0 f(x)
∣

∣

∣
≤ 1

(n + 1)!
e|x||x|n+1 .

This bound also holds when x = 0, so it holds for every x ∈ R. For every x ∈ R we can show

lim
n→∞

1

(n + 1)!
e|x||x|n+1 = 0 .

We thereby conclude the series converges to f(x) = ex for every x ∈ R.

Exercise. Prove that for every x ∈ R one has

cos(x) =

∞
∑

k=0

(−1)k

(2k)!
x2k .
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We now give a proof of the Lagrange Remainder Theorem. You should note the similarity
with the argument used to establish the Tangent Line Remainder Theorem.

Proof. This proof is built upon the observation is that T n
t f(x) is a differentiable function of t

over (a, b) with (notice the telescoping sum)

d

dt
T n

t f(x) =
d

dt

(

f(t) +
n

∑

k=1

(x − t)k

k!
f (k)(t)

)

= f ′(t) +
n

∑

k=1

(

(x − t)k

k!
f (k+1)(t) − (x − t)(k−1)

(k − 1)!
f (k)(t)

)

(7.9)

=
(x − t)n

n!
f (n+1)(t) .

First consider the case when c < x < b. Fix this x and let M be determined by the relation

f(x) = T n
c f(x) +

1

(n + 1)!
M (x − c)n+1 .

Define g(t) for every t ∈ [c, x] by

g(t) ≡ f(x) − T n
t f(x) − 1

(n + 1)!
M (x − t)n+1 .

Clearly, as a function of t,

• g is continuous over [c, x];
• g(c) = g(x) = 0;
• g is differentiable over (c, x) with

g′(t) = − 1

n!
f (n+1)(t)(x − t)n +

1

n!
M (x − t)n =

1

n!

(

M − f (n+1)(t)
)

(x − t)n .

The Rolle Theorem then implies that g′(p) = 0 for some p in (c, x). Hence,

g′(p) =
1

n!

(

M − f (n+1)(p)
)

(x − p)n = 0 ,

whereby M = f (n+1)(p) for some p in (c, x). The case a < x < c is argued similarly. �
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7.8. Cauchy Mean-Value Theorem. We now present a useful extension of the Lagrange
Mean-Value Theorem that is attributed to Cauchy. It also is a consequence of the Rolle Theorem
(and hence, of the Extreme-Value Theorem).

Proposition 7.12. Cauchy Mean-Value Theorem. Let f : [a, b] → R and g : [a, b] → R be
continuous over [a, b] and differentiable over (a, b). Then for some p ∈ (a, b) one has

(7.10)
(

f(b) − f(a)
)

g′(p) =
(

g(b) − g(a)
)

f ′(p) .

If moreover g′(x) 6= 0 for every x ∈ (a, b) then

(7.11)
f(b) − f(a)

g(b) − g(a)
=

f ′(p)

g′(p)
.

Remark. This theorem does not have a geometric interpretation as simple as the tangent line
interpretation of the Lagrange Mean-Value Theorem. Of course, it reduces to that theorem
when g(x) = x.

Remark. This theorem does not follow by simply applying the Lagrange Mean-Value Theorem
separately to f and g. That would yeild a p ∈ (a, b) such that f(b) − f(a) = f ′(p)(b − a) and
a q ∈ (a, b) such that g(b) − g(a) = g′(q)(b − a), which leads to

(

f(b) − f(a)
)

g′(q) =
(

g(b) − g(a)
)

f ′(p) .

However, p and q produced by this argument will not generally be equal. The fact that f ′ and
g′ are evaluated at the same point in (7.10) gives the Cauchy Mean-Value Theorem its power.

Proof. For every x ∈ [a, b] define h(x) by

h(x) =
(

f(b) − f(a)
)

g(x) −
(

g(b) − g(a)
)

f(x) .

Clearly,

• h is continuous over [a, b];
• h(a) = h(b) = f(b)g(a) − g(b)f(a);
• h is differentiable over (a, b) with

h′(x) =
(

f(b) − f(a)
)

g′(x) −
(

g(b) − g(a)
)

f ′(x) .

The Rolle Theorem then implies that there exists p ∈ (a, b) such that h′(p) = 0. Upon using
the above expression for h′(x), we see that equation (7.10) holds for this p.

Now assume that g′(x) 6= 0 for every x ∈ (a, b). Notice that equation (7.11) follows directly
from (7.10) provided there is no division by zero. By the Derivative Sign Dichotomy Theorem,
either g′ > 0 or g′ < 0 over (a, b). By the Monotonicity Theorem g is strictly monotonic over
(a, b). Hence, g(b) − g(a) 6= 0. �
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Here is an alternative proof of the Lagrange Remainder Theorem (Proposition 7.11) that is
based on the Cauchy Mean-Value Theorem. Some students find this proof easier to understand
than the one based on the observation (7.9) that we gave earlier.

Proof. Define F : (a, b) → R and G : (a, b) → R for every x ∈ (a, b) by

F (x) = f(x) − T n
c f(x) , G(x) =

1

(n + 1)!
(x − c)n+1 .

Clearly F and G are (n + 1) times differentiable over (a, b) with

F (k)(c) = 0 and G(k)(c) = 0 for every k = 0, 1, · · · , n ,

and with
F (n+1)(x) = f (n+1)(x) , G(n+1)(x) = 1 .

It is also clear that G(k)(x) 6= 0 for every x 6= c and every k = 0, 1, · · · , n + 1.

First consider the case c < x < b. By the Cauchy Mean-Value Theorem there exists p1 ∈ (c, x)
such that

F (x)

G(x)
=

F (x) − F (c)

G(x) − G(c)
=

F ′(p1)

G′(p1)
.

By the Cauchy Mean-Value Theorem there exists p2 ∈ (c, p1) such that

F (x)

G(x)
=

F ′(p1)

G′(p1)
=

F ′(p1) − F ′(c)

G′(p1) − G′(c)
=

F ′′(p2)

G′(p2)
.

After repeating this argument n + 1 times, we obtain a set of points {pk}n+1
k=1 such that

c < pn+1 < pn < · · · < p2 < p1 < x ,

and

F (x)

G(x)
=

F ′(p1)

G′(p1)
=

F ′′(p2)

G′′(p2)
= · · · =

F (n)(pn)

G(n)(pn)
=

F (n+1)(pn+1)

G(n+1)(pn+1)
= f (n+1)(pn+1) .

Upon setting p = pn+1, we obtain F (x) = f (n+1)(p)G(x) for some p ∈ (c, x), which is the desired
result. The case a < x < c is argued similarly. �

Remark. Our earlier proof is appealing because it requires only one application of the Lagrange
Mean-Value Theorem rather than n + 1 applications of the Cauchy Mean-Value Theorem.
However, this proof is appealing because it does not require the insight of observation (7.9).
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7.9. l’Hospital Rule. The most important application of the Cauchy Mean-Value Theorem
is to the proof of the l’Hospital rule.

Proposition 7.13. l’Hospital Rule Theorem. Let f : (a, b) → R and g : (a, b) → R be
differentiable with g′(x) 6= 0 for every x ∈ (a, b). Suppose either that

(7.12) lim
x→a

f(x) = lim
x→a

g(x) = 0 ,

or that

(7.13) lim
x→a

f(x) = lim
x→a

g(x) = ∞ .

If

(7.14) lim
x→a

f ′(x)

g′(x)
= L for some L ∈ Rex ,

then

(7.15) lim
x→a

f(x)

g(x)
= L .

Remark. The theorem is stated for the right-sided limit limx→a. Of course, the theorem also
holds for the left-sided limit limx→b. In particular, the theorem statement includes the limit
limx→−∞ when a = −∞, and the theorem also holds for the limit limx→∞. You can apply the
l’Hospital rule to any two-sided limit by thinking of it as two one-sided limits.

Proof. We will give the proof for the case L ∈ R. The cases L = ±∞ are left as an exercise.
The proof will be given so that it covers the cases a ∈ R and a = −∞ at the same time.

First suppose that f and g satisfy (7.12). Let ǫ > 0. By (7.14) there exists dǫ ∈ (a, b) such
that

a < x < dǫ =⇒
∣

∣

∣

∣

f ′(x)

g′(x)
− L

∣

∣

∣

∣

<
ǫ

2
.

For every x, y ∈ (a, dǫ) with y < x the Cauchy Mean-Value Theorem implies there exists
p ∈ (y, x) such that.

f(x) − f(y)

g(x) − g(y)
=

f ′(p)

g′(p)
.

Because p ∈ (y, x) ⊂ (a, dǫ), it follows that
∣

∣

∣

∣

f(x) − f(y)

g(x) − g(y)
− L

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(p)

g′(p)
− L

∣

∣

∣

∣

<
ǫ

2

Hence, we have shown that

a < y < x < dǫ =⇒
∣

∣

∣

∣

f(x) − f(y)

g(x) − g(y)
− L

∣

∣

∣

∣

<
ǫ

2
.

Upon taking the limit of the last inequality above as y approaches a while using the fact that
f and g satisfy (7.12), we see that

a < x < dǫ =⇒
∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

≤ ǫ

2
< ǫ .

Hence, the limit (7.15) holds.
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Now suppose that f and g satisfy (7.13). Let ǫ > 0. By (7.14) there exists dǫ ∈ (a, b) such
that

a < x < dǫ =⇒
∣

∣

∣

∣

f ′(x)

g′(x)
− L

∣

∣

∣

∣

<
ǫ

2
.

Because f and g satisfy (7.13) we may assume that

a < x < dǫ =⇒ f(x) > 0 , g(x) > 0 .

Here we fix y ∈ (a, dǫ). For every x ∈ (a, y) the Cauchy Mean-Value Theorem implies there
exists p ∈ (x, y) such that

(7.16)
f(x) − f(y)

g(x) − g(y)
=

f ′(p)

g′(p)
.

The idea is now to rewrite the above relation as

f(x)

g(x)
=

f ′(p)

g′(p)

1 − g(y)
g(x)

1 − f(y)
f(x)

,

and to argue that the first factor on the right-hand side is near L while the second can be made
near enough to 1 as x approaches a.

Let r(x) denote this second factor — specifically, let

r(x) =
1 − g(y)

g(x)

1 − f(y)
f(x)

.

Because

lim
x→a

f(y)

f(x)
= lim

x→a

g(y)

g(x)
= 0 ,

for any ηǫ > 0 (to be chosen) there exists cǫ ∈ (a, y) such that

a < x < cǫ =⇒ 0 <
f(y)

f(x)
< ηǫ , 0 <

g(y)

g(x)
< ηǫ .

Provided ηǫ < 1, for every x ∈ (a, cǫ) one has the bounds

r(x) <
1

1 − ηǫ
, |1 − r(x)| <

ηǫ

1 − ηǫ
,

whereby for every x ∈ (a, cǫ) one has the bound
∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(p)

g′(p)
r(x) − L

∣

∣

∣

∣

≤
∣

∣

∣

∣

f ′(p)

g′(p)
− L

∣

∣

∣

∣

r(x) + |L||1 − r(x)| <
ǫ

2

1

1 − ηǫ
+

|L| ηǫ

1 − ηǫ
.

A short calculation shows that the right-hand side above becomes ǫ if we choose ηǫ = 1
2
ǫ/(ǫ+|L|).

We thereby see that

a < x < cǫ =⇒
∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

< ǫ .

Hence, the limit (7.15) holds. �

Exercise. Prove the l’Hospital Theorem for the case L = ∞ when f and g satisfy (7.12).

Exercise. Prove the l’Hospital Theorem for the case L = ∞ when f and g satisfy (7.13).
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An nice application of the l’Hospital rule is the following.

Proposition 7.14. Taylor Polynomial Approximation Theorem. Let f : (a, b) → R

be (n − 1) times differentiable over (a, b) for some n ∈ Z+. Let c ∈ (a, b) and let f (n−1) be
differentiable at c. Let T n

c f(x) denote the nth order Taylor approximation to f at c. Then

lim
x→c

f(x) − T n
c f(x)

(x − c)n
= 0 .

Remark. This proposition states that the nth order Taylor remainder vanishes faster than
(x − c)n as x approaches c. Of course, if f was (n + 1) times differentiable then the Lagrange
Remainder Theorem would imply that this remainder vanishes at least as fast as (x− c)n+1 as
x approaches c. However, here we are assuming that f (n) exists only at c and nowhere else, so
we cannot take this approach. Rather, we will apply the l’Hospital rule (n − 1) times.

Proof. Define F : (a, b) → R and G : (a, b) → R by

F (x) = f(x) − T (n−1)
c f(x) , G(x) =

1

n!
(x − c)n .

Clearly these functions are (n − 1) times differentiable over (a, b) with F (k)(c) = G(k)(c) = 0
for every k = 0, 1, . . . , n− 1. Because G(k)(x) 6= 0 for every x 6= c and every k = 0, 1, . . . , n− 1,
we can apply the l’Hospital rule (n − 1) times to obtain

lim
x→c

F (x)

G(x)
= lim

x→c

F ′(x)

G′(x)
= · · · = lim

x→c

F (n−1)(x)

G(n−1)(x)
.

Because
F (n−1)(x) = f (n−1)(x) − f (n−1)(c) , G(n−1)(x) = x − c ,

and because f (n−1) is differentiable at c we know that

lim
x→c

F (n−1)(x)

G(n−1)(x)
= lim

x→c

f (n−1)(x) − f (n−1)(c)

x − c
= f (n)(c) .

It follows that

lim
x→c

F (x)

G(x)
= lim

x→c

F (n−1)(x)

G(n−1)(x)
= f (n)(c) .

But this implies that

lim
x→c

F (x) − f (n)(c)G(x)

G(x)
= 0 .

The result follows because f(x) − T n
c f(x) = F (x) − f (n)(c)G(x) while (x − c)n = n! G(x). �

Remark. The l’Hospital rule given by Proposition 7.13 is not the rule given by l’Hospital
in the first calculus text. His rule was stated for functions f and g that have formal Taylor
expansions centered at some point c ∈ R. If the first nonzero terms in these expansions appear
at orders m and n respectively, then his rule was more like the recipe

lim
x→c

f(x)

g(x)
=



















0 when m > n ,

f (m)(c)

g(m)(c)
when m = n ,

undefined when m < n .
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8. Cauchy and Uniform Continuity

We now introduce two regularity notions that are stronger than continuity but weaker than
differentability: Cauchy and uniform continuity. These notions are useful in analyis.

8.1. Cauchy Continuity. This notion relates to Cauchy sequences.

Definition 8.1. Let D ⊂ R. A function f : D → R is said to be Cauchy continuous over D
when every Cauchy sequence {xn}n∈N that lies in D has an image {f(xn)}n∈N that is also a
Cauchy sequence.

Remark. This says that a Cauchy continuous function maps Cauchy sequences in its domain
to Cauchy sequences. By the Cauchy Criterion Theorem, a sequence in R is Cauchy if and
only if it is convergent. In the setting of R we could have replaced the word “Cauchy” in the
above definition with the word “convergent” without changing the meaning of being Cauchy
convergent. However, in more general settings not every Cauchy sequence is convergent, so
such a replacement would change the meaning. The wording of the definition used above will
carry over into these more general settings.

Remark. There is a very important difference between continuity and Cauchy continuity.
Continuity is defined to be a property of a function at a point. A function is then said to be
continuous over a set if it is continuous at each point in the set. Cauchy continuity is defined
to be a property of a function over a set. It makes no sense to talk about a function being
Cauchy continuous at a single point.

We now give three propositions that relate Cauchy continuity to continuity. The first states
that Cauchy continuity implies continuity — i.e. that it is stronger than continuity.

Proposition 8.1. Let D ⊂ R. Let f : D → R be Cauchy continuous over D. Then f is
continuous over D.

Proof. Let x ∈ D be arbitrary. We will use the sequence characterization of continuity to
show that f is continuous at x. Let {xn} ⊂ D be arbitrary. We must show that

lim
n→∞

xn = x =⇒ lim
n→∞

f(xn) = f(x) .

Let {xn} converge to x. Then {xn} is Cauchy. Because f is Cauchy continuous {f(xn)} is also
Cauchy, and therefore convergent. Let

lim
n→∞

f(xn) = L .

We must show that L = f(x). To do this we construct a new sequence {yn} by setting

yn =

{

xn for n even ,

x for n odd .

It is easy to show that {yn} converges to x, and is thereby Cauchy. Because f is Cauchy
continuous {f(yn)} is also Cauchy, and therefore convergent. Because every subsequence of a
convergent sequence will converge to the same limit, it follows that

L = lim
k→∞

f(x2k) = lim
k→∞

f(y2k) = lim
k→∞

f(y2k+1) = f(x) .

Therefore f is continuous at x. But x ∈ D was arbitrary, so f is continuous. �

Exercise. Show that the sequence {yn} defined in the above proof converges to x.
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Our second proposition states that continuity and Cauchy continuity are equivalent over
closed domains — i.e. over closed domains continuous functions are Cauchy continuous.

Proposition 8.2. Let D ⊂ R be closed. Let f : D → R be continuous over D. Then f is
Cauchy continuous over D.

Proof. Let {xn} ⊂ D be Cauchy. We must show that {f(xn)} is Cauchy. Because {xn} is
Cauchy, it is convegent. Let x be its limit. Because {xn} ⊂ D and D is closed, we see that
x ∈ D. Because {xn} ⊂ D converges to x while f is continuous at x, it follows that {f(xn)}
converges to f(x). Therefore {f(xn)} is Cauchy. �

Our third proposition states that over every domain that is not closed there exists a contin-
uous function that is not Cauchy continuous. In other words, over domains that are not closed
there are more continuous functions than Cauchy continuous functions. In particular, it shows
that the hypothesis that D is closed in Proposition 8.2 was necessary.

Proposition 8.3. Let D ⊂ R. If D is not closed then there exists a function f : D → R that
is continuous over D, but that is not Cauchy continuous over D.

Proof. Because D is not closed there exists a limit point x∗ of D that is not in D. Consider
the function f : D → R defined for every x ∈ D by f(x) = 1/(x−x∗). It should be clear to you
that this function is continuous over D. We will show that it is not Cauchy continuous over D.
Because x∗ ∈ Dc there exists a sequence {xn} ⊂ D such that {xn} converges to x∗. Because
{xn} converges to x∗ while f(xn) = 1/(xn − x∗), it follows that

{xn} is convergent while {f(xn)} is divergent .

Hence,
{xn} is Cauchy while {f(xn)} is not Cauchy .

Therefore f is not Cauchy continuous over D. �

8.2. Uniform Continuity. Here we introduce uniform continuity in the context of real-valued
functions with domains in R.

Definition 8.2. Let D ⊂ R. A function f : D → R is said to be uniformly continuous over D
when for every ǫ > 0 there exists δ > 0 such that for every x, y ∈ D one has

|x − y| < δ =⇒ |f(x) − f(y)| < ǫ .

Remark. This is a stronger concept than that of continuity over D. Indeed, a function
f : D → R is continuous over D when for every y ∈ D and every ǫ > 0 there exists δ > 0 such
that for every x ∈ D one has

|x − y| < δ =⇒ |f(x) − f(y)| < ǫ .

Here δ depends on y and ǫ (δ = δy,ǫ), while in Definition 8.2 of uniform continuity δ depends
only on ǫ (δ = δǫ). In other words, when f is uniformly continuous over D a δǫ can be found
that works uniformly for every y ∈ D — hence, the terminology.

Remark. There is a very important difference between continuity and uniform continuity.
Continuity is defined to be a property of a function at a point. A function is then said to be
continuous over a set if it is continuous at each point in the set. Uniform continuity is defined
to be a property of a function over a set. It makes no sense to talk about a function being
uniformly continuous at a single point.
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By the first remark above we know that if f : D → R is uniformly continuous over D then
it is continuous over D. The following shows that more is true.

Proposition 8.4. Let D ⊂ R. Let f : D → R be uniformly continuous over D. Then f is
Cauchy continuous over D.

Proof. Let {xn} be any Cauchy sequence contained in D. We must show that {f(xn)} is a
Cauchy sequence. Let ǫ > 0. Because f is uniformly continuous over D there exists δ > 0 such
that for every x, y ∈ D

|x − y| < δ =⇒ |f(x) − f(y)| < ǫ .

Because {xn} is a Cauchy sequence there exists N ∈ N such that for every m, n ∈ N

m, n > N =⇒ |xm − xn| < δ .

Hence, because {xn} is contained in D, for every m, n ∈ N

m, n > N =⇒ |f(xm) − f(xn)| < ǫ .

Therefore the sequence {f(xn)} is Cauchy. �

Remark. The converse of Proposition 8.4 is false. For example, let f : R → R be given
by f(x) = x2. Because f is continuous and R is closed, Proposition 8.2 implies f is Cauchy
continuous. However, we will soon see that f is not uniformly continuous.

We now show that there are many uniformly continuous functions. Recall that a function
f : D → R is Lipschitz continuous over D provided there exists an L ≥ 0 such that for every
x, y ∈ D one has

|f(x) − f(y)| ≤ L|x − y| .
The following should be pretty clear.

Proposition 8.5. Let D ⊂ R. Let f : D → R be Lipschitz continuous over D. Then f is
uniformly continuous over D.

Proof. Let ǫ > 0. Pick δ > 0 so that Lδ < ǫ. Then for every x, y ∈ D

|x − y| < δ =⇒ |f(x) − f(y)| ≤ L|x − y| ≤ Lδ < ǫ .

�

There many uniformly continuous functions because there are many Lipschitz continuous
functions. Recall we have shown that if D is either either (a, b), [a, b), (a, b] or [a, b] for some
a < b while f : D → R is continuous over D and differentiable over (a, b) with f ′ bounded then
f is Lipschitz continuous over D with

L = sup{|f ′(x)| : x ∈ (a, b)} .

By Proposition 8.5, every such function is uniformly continuous.

While there are many uniformly continuous functions, there are also many functions that are
not uniformly continuous.

Examples. The functions f : R+ → R given by

f(x) =
1

x
, f(x) = x2 , f(x) = sin

(

1

x

)

,

are not uniformly continuous. We will give one approach to showing this in the next section.
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Notice that the derivatives in the above examples are all unbounded over R+:

f ′(x) = − 1

x2
, f ′(x) = 2x , f ′(x) = − 1

x2
cos

(

1

x

)

.

Propostion 8.5 shows that every differentiable function that is not uniformly continuous over
an open interval must have an unbounded derivative. However, as the following exercise shows,
the converse does not hold.

Exercise. Show the function f : R+ → R given by f(x) = x
1
2 is uniformly continous over R+.

Hint: First establish the inequality
∣

∣y
1
2 − x

1
2

∣

∣ ≤ |y − x| 12 for every x, y ∈ R+ .

Exercise. Let D ⊂ R. A function f : D → R is said to be Hölder continuous of order α ∈ (0, 1]
if there exists a C ∈ R+ such that for every x, y ∈ D one has

|f(x) − f(y)| ≤ C |x − y|α .

Show that if f : D → R is Hölder continuous of order α for some α ∈ (0, 1] then it is uniformly
continuous over D.

8.3. Sequence Characterization of Uniform Continuity. The following theorem gives a
characterization of uniform continuity in terms of sequences that is handy for showing that
certain functions are not uniformly continuous.

Theorem 8.1. Let D ⊂ R. Then f : D → R is uniformly continuous over D if and only if for
every {xn}n∈N, {yn}n∈N ⊂ D one has

lim
n→∞

(xn − yn) = 0 =⇒ lim
n→∞

(

f(xn) − f(yn)
)

= 0 .

Remark. This characterization is taken as the definition of uniform continuity in the text.

Remark. You can use this characterization to show that a given function f : D → R is not
uniformly continuous by starting with a sequence {zn}n∈N such that zn → 0 as n → ∞. Next,
you seek a sequence {xn}n∈N ⊂ D such that {xn + zn}n∈N ⊂ D and

lim
n→∞

(

f(xn) − f(xn + zn)
)

6= 0 .

Upon setting yn = xn + zn, you will have then found sequences {xn}n∈N, {yn}n∈N ⊂ D such
that

lim
n→∞

(xn − yn) = 0 and lim
n→∞

(

f(xn) − f(yn)
)

6= 0 .

Theorem 8.1 then implies the function f is not uniformly continuous over D.

Example. The function f : R+ → R given by f(x) = 1/x is not uniformly continuous.
Let {zn}n∈N ⊂ R+ such that zn → 0 as n → ∞. Then for every {xn}n∈N ⊂ R+ one has
{xn + zn}n∈N ⊂ R+ and

f(xn) − f(xn + zn) =
1

xn
− 1

xn + zn
=

zn

xn(xn + zn)
.

If we choose xn = zn for every n ∈ N then

f(xn) − f(xn + zn) =
1

2zn
6→ 0 as n → ∞ .

Hence, f cannot be uniformly continuous over R+ by Theorem 8.1.
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Example. The function f : R+ → R given by f(x) = x2 is not uniformly continuous. Let
{zn}n∈N ⊂ R+ such that zn → 0 as n → ∞. Then for every {xn}n∈N ⊂ R+ one has {xn +
zn}n∈N ⊂ R+ and

f(xn) − f(xn + zn) = x 2
n − (xn + zn)2 = −2xnzn − z 2

n .

If we choose xn = 1/zn for every n ∈ N then

f(xn) − f(xn + zn) = −2 − z 2
n 6→ 0 as n → ∞ .

Hence, f cannot be uniformly continuous over R+ by Theorem 8.1.

Exercise. Show the function f : R+ → R given by f(x) = sin(1/x) is not uniformly continuous.
Hint: Proceed as in the first example above, but choose a particular {zn}n∈N to simplify things.

Exercise. Show the function f : R+ → R given by f(x) = xp for some p > 1 is not uniformly
continuous.

Exercise. Show the function f : R+ → R given by f(x) = x−p for some p > 0 is not uniformly
continuous.

Now let us turn to the proof of Theorem 8.1. The proof is similar to the proof of the
characterization of continuity at a point in terms of convergent sequences.

Proof. ( =⇒ ) Let {xn}n∈N, {yn}n∈N ⊂ D such that

lim
n→∞

(xn − yn) = 0 .

We need to show that

lim
n→∞

(

f(xn) − f(yn)
)

= 0 .

Let ǫ > 0. Because f is uniformly continuous over D there exists δ > 0 such that for every
x, y ∈ D one has

|x − y| < δ =⇒ |f(x) − f(y)| < ǫ .

Because (xn − yn) → 0 as n → ∞, we know |xn − yn| < δ eventually as n → ∞. Because
|xn − yn| < δ implies |f(xn) − f(yn)| < ǫ, it follows that |f(xn) − f(yn)| < ǫ eventually as
n → ∞. Because ǫ > 0 was arbitrary, we have shown that

(

f(xn) − f(yn)
)

→ 0 as n → ∞.

(⇐=) Suppose f is not uniformly continuous over D. Then there exist ǫo > 0 such that for
every δ > 0 there exists x, y ∈ D such that

|x − y| < δ and |f(x) − f(y)| ≥ ǫo .

Hence, for every n ∈ N there exists xn, yn ∈ D such that

|xn − yn| <
1

2n
and |f(xn) − f(yn)| ≥ ǫo .

Clearly, {xn}n∈N, {yn}n∈N ⊂ D such that

lim
n→∞

(xn − yn) = 0 and lim
n→∞

(

f(xn) − f(yn)
)

6= 0 .

But this contradicts the part of our hypothesis that requires that
(

f(xn) − f(yn)
)

→ 0 as
n → ∞. Therefore f must be uniformly continuous over D. �
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8.4. Sequential Compactness and Uniform Continuity. The following theorem shows
that if D is closed and bounded then continuity implies uniform continuity. What lies behind
this result is the fact that D is sequentially compact when it is closed and bounded.

Theorem 8.2. Let D ⊂ R be closed and bounded. Let f : D → R be continuous. Then f is
uniformly continuous over D.

Proof. We will establish the uniform continuity of f by using the characterization of Theorem
8.1. Let {xn}n∈N, {yn}n∈N ⊂ D such that

lim
n→∞

(xn − yn) = 0 .

We need to show that

lim
n→∞

(

f(xn) − f(yn)
)

= 0 .

Suppose not. Then there exists ǫo > 0 such that

|f(xn) − f(yn)| ≥ ǫo frequently .

Hence, there exists subsequences {xnk
}k∈N, {ynk

}k∈N ⊂ D such that

lim
k→∞

(xnk
− ynk

) = 0 ,

and

(8.1)
∣

∣f(xnk
) − f(ynk

)
∣

∣ ≥ ǫo for every k ∈ N .

Because D is sequentially compact, the subsequence {xnk
}k∈N has a further subsequence

{xnkl

}l∈N that converges to some x∗ ∈ D. Because

lim
l→∞

(

ynkl

− xnkl

)

= 0 ,

we see that {ynkl

}l∈N also converges with

lim
l→∞

ynkl

= lim
l→∞

xnkl

+ lim
l→∞

(

ynkl

− xnkl

)

= x∗ + 0 = x∗ .

Because f is continuous at x∗ ∈ D, we know that

lim
l→∞

(

f(xnkl

) − f(ynkl

)
)

= f(x∗) − f(x∗) = 0 .

But this contradicts our supposition, which by (8.1) implies that
∣

∣f(xnkl

) − f(ynkl

)
∣

∣ ≥ ǫo for every l ∈ N .

Therefore

lim
n→∞

(

f(xn) − f(yn)
)

= 0 ,

whereby f is uniformly continuous by Theorem 8.1. �

Remark. The conclusion of the above theorem can still hold for some cases where D is closed
but unbounded. For example, if D = Z then every function is uniformly continuous. This is
easily seen from the definition of uniform continuity by taking δ < 1. However, the Propositions
8.3 and 8.4 combine to show that the hypothesis D is closed cannot be dropped.
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8.5. Continuous Extensions. Cauchy continuity plays a central role in characterizing when
a function can be extended to a larger set as a continuous function. We begin by defining the
notions of restriction and extension for functions.

Definition 8.3. Let f : D → R and g : E → R with D, E ⊂ R. If

D ⊂ E and f(x) = g(x) for every x ∈ D ,

then we say that f is an restriction of g to D and that g is an extension of f to E.

It should be clear that restrictions of a given function are uniquely determined by their
domains. Moreover, restrictions will inherit certain regularity properties.

Proposition 8.6. Let E ⊂ R and g : E → R. For every D ⊂ E there is a unique restriction
of g to D, which we will denote g|D.

If g is continuous over E then g|D is continuous over D.

If g is Cauchy continuous over E then g|D is Cauchy continuous over D.

If g is uniformly continuous over E then g|D is uniformly continuous over D.

Proof. Exercise.

It should be equally clear that extensions of a given function are not unique. However they
will be unique if E is not much bigger than D and sufficent regularity is imposed.

Proposition 8.7. (Continuous Extension Theorem) Let D ⊂ R. Let f : D → R. Then
there exists an extension of f to Dc that is continuous if and only if f is Cauchy continuous
over D. Moreover, in that case there is a unique extension of f to Dc that is continuous.

Proof. (=⇒) Let g : Dc → R be an extension of f that is continuous. Because Dc is closed,
Proposition 8.2 implies that g is Cauchy continuous over Dc. Proposition 8.6 then implies that
f = g|D is Cauchy continuous over D.

(⇐=) The proof of this direction is more difficult because the desired extension g must be
constructed from f . Let x ∈ Dc. If x ∈ D then set g(x) = f(x). If x /∈ D then there exists a
sequence {xn} ⊂ D such that {xn} converges to x. The idea will be to set

(8.2) g(x) = lim
n→∞

f(xn) .

However, for the value of g(x) to be well-defined we must show that it does not depend on the
choice of the sequence {xn}.

Let {xn} and {yn} be any sequences contained in D that converge to x. Because the sequences
{xn} and {yn} are Cauchy while f is Cauchy continuous, the sequences {f(xn)} and {f(yn)}
are also Cauchy, and therefore convegent. We must show that they have the same limit. To do
this we construct a new sequence {zn} by setting

zn =

{

xn for n even ,

yn for n odd .

It is easy to show that {zn} converges to x, and is thereby Cauchy. Because f is Cauchy
continuous {f(zn)} is also Cauchy, and thereby convergent. Because every subsequence of a
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convergent sequence will converge to the same limit, it follows that

lim
n→∞

f(xn) = lim
k→∞

f(x2k) = lim
k→∞

f(z2k) = lim
n→∞

f(zn)

= lim
k→∞

f(z2k+1) = lim
k→∞

f(y2k+1) = lim
n→∞

f(yn) .

Therefore all sequences in D that converge to x will produce the same value in formula (8.2).
The function g : Dc → R is thereby well-defined.

Next, it is clear that if g : Dc → R is to be a continuous extension of f then its value at any
x ∈ Dc must be given by formula (8.2). This extension is therefore unique.

Finally, we have to prove that g : Dc → R is continuous. We leave this last step as an exercise
for the interested student; it is not easy. �

8.6. Characterization of Cauchy Continuity. Proposition 8.4 stated that every uniformly
continuous function is also Cauchy continuous. A converse to this proposition should not be
expected because uniform continuity is a concept related to the entire domain of a function
while Cauchy continuity is a local concept. A local concept that is weaker than uniform
continuity over the entire domain is that of being uniformly continuous over bounded subsets
of the domain. Because every Cauchy sequence is bounded, this weaker concept still enough to
imply that Cauchy sequences map into convergent sequences. Remarkably, the converse is also
true, which gives the following characterization of Cauchy continuity.

Theorem 8.3. Let D ⊂ R. Let f : D → R. Then f is Cauchy continuous if and only if its
restriction to every bounded subset of D is uniformly continuous.

Proof. (⇐=) Let {xn} ⊂ D be Cauchy. Because Cauchy sequences are bounded, there exists
B ⊂ D such that {xn} ⊂ B and B is bounded. Because f is uniformly continuous over B while
{xn} ⊂ B is Cauchy, Proposition 8.4 implies that {f(xn)} is a Cauchy sequence.

(=⇒) Because f is Cauchy continuous, Proposition 8.7 implies that there exists a unique
g : Dc → R that is continuous and is an extension of f . Let B ⊂ D be bounded. Then
Bc ⊂ Dc is closed and bounded. Theorem 8.2 then implies that g is uniformly continuous over
Bc. Proposition 8.6 then implies that g|B is uniformly continuous over B. But g|B = f |B, so
that f |B is uniformly continuous over B. �


