Numerical Analysis II: AMSC/CMSC 667
Midterm Exam Solutions, Thursday, 14 March 2013

Give reasoning for all your answers!

(1) [35] Consider initial-value problems over RY in the form
¥ = f(t,x), 2(0) =z € RV,
where f:[0,7] x RY — R¥ is smooth. Consider the family of one-step methods
Tpi1 = Tp + (L= 0)hpy1 f(tn, xn) + Ohpyr f(tnr1, Tnt1)

where hy,41 = tp41 — t, and b € [0, 1] is a constant.
(a) [5] For what values of b is the method explicit?
(b) [10] For what values of b is the method second order?
(c) [10] Compute the function ¢(¢) such that such that x,, = g(h\)"x¢ when the method
is applied with a uniform step size h to
¥ = \x, z(0) =29 € R.
(d) [10] For what values of b is this method A-stable?

Solution (a). The method will be explicit if and only if its right-hand side does not
depend on x,,,1, which will be the case if and only if b = 0. 0J

Solution (b). This method will be second order if and only if for every x(¢) that solves
x' = f(t,z) we have
z(t+h) =x(t) + (1= b)hft,z(t)) +bhf(t + h,z(t+ h)) + O(h?)
Because 2/ = f(t, z), this is equivalent to showing
z(t +h) = x(t) + (1 — b)ha'(t) + bha' (t + h) + O(h?)
Because the Taylor expansion of 2'(t + h) about h = 0 is
2/ (t+h) =2'(t) + ha'(t) + O(h?),
this is equivalent to showing
x(t + h) = z(t) + ha'(t) + bh*2" (t + h) + O(h®)
Because the Taylor expansion of z(t + h) about h = 0 is
z(t+ h) = x(t) + ha'(t) + $h*2" (t) + O(h®),

this is equivalent to b = % Therefore this method is second order if and only if b = O
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Solution (c). When this method is applied with a uniform step size h and f(t,x) =
it becomes
Tpa1 = Ty + (1 — 0)hAz, + DRAT 41 .

By solving this equation for z,,; we see that

1+ (1—=0b)hX .

1 —bhA "

Tnt+1 =

By induction it follows that
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Therefore the function g(¢) is given by

14 (1-0b)

9(¢) = -~
0

Alternative Solution (c). When this method is applied with a uniform step size h
and f(t,z) = Az, it becomes

Tpi1 = Ty + (1 = b)hAx, + bhAz, 1.
By setting z,, = v"x into this equation we obtain
V" ag = 4 wo + (1 — b)hAy 2 + bhAy" g .
When v # 0 and xg # 0 the above equation will be satisfied if and only if
v=14(1—0)h\+ bhAy.
By solving this for v we find that
1+ (1—=0)hA
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Therefore the function ¢(¢) is given by
1+ (1-0b)C

9(¢) = —— m
Remark. This alternative approach can be applied to multistep methods. O

Solution (d). A method is A-stable if [g(¢)| < 1 for every ( in the left half-plane
{CeC: (+ (<0} By setting |g(¢)] < 1 we obtain

1+ (1= b)¢* < |1 —0¢P?,
which is equivalent to
L+ (1 =0)(C+ )+ (1 =0 < 1=b(C+C)+ ¢l
which is equivalent to
(C+Q) +(1—2b)¢|* <0.

This inequality will be satisfied for every ¢ in the left half-plane if and only if b > %
Therefore this method A-stable if and only if b > % 0J

(2) [30] Consider initial-value problems over RY in the form
¥ = f(t, x), 2(0) = 2o € RV,
where f : [0, 7] x RY — RY is smooth. Consider the family of explicit two-step methods
with uniform step size h given by
Tpi1 = (1 —a)x, + axp_1 + bhf(t,, x,) + chf(tn-1,Tpn-1),
where a, b, and ¢ are constants.
(a) [15] For what values of a, b, and c is this method consistent to at least first-order?

(b) [15] For what values of a, b, and ¢ will this method converge?



3

Solution (a). This method will be consistent to at least first order if and only if for
every x(t) that solves ' = f(t,x) we have

x(t+h)=(1—a)x(t) +ax(t —h) +bhf(t,x(t)) + chf(t —h,x(t —h)) + O(h?).
Because 2/ = f(t, z), this is equivalent to showing
z(t+h) = (1 —a)x(t) + ax(t — h) + bha' (t) + cha'(t — h) + O(h?).
Because the Taylor expansions of z(t — h) and 2’(t — h) about h = 0 are
x(t — h) = x(t) — ha'(t) + O(h?), Z(t—h)=2'(t) + O(h),
this is equivalent to showing
z(t+h) =z(t) + (—a+ b+ c)ha'(t) + O(h?).
Because the Taylor expansion of z(t + h) about h = 0 is
z(t+ h) = z(t) + ha'(t) + O(h?),

this is equivalent to (—a + b+ ¢) = 1. Therefore this method is consistent to at least
first order if and only if b+ c =1+ a. 0J

Solution (b). This method will converge if it is consistent and stable. In part (a)
we found that this method is consistent if and only if b+ ¢ = 1 + a. Its stability is
determined from the roots of the polynomial

p(7) =7 —(1—a)y—a=(y—1(y+a).

Specifically, this method is stable if and only if every root of p(y) must lie in the closed
unit disk {y € C : |y| < 1} and any root that lies on the unit circle {y € C : |y| =1}
must be simple. Because the roots of p(v) are 1 and —a, this root condition is satisfied
if and only if @ € (—1, 1]. Therefore this method will converge if and only if

b+c=14+a and ae(-1,1].

(3) [35] Consider the boundary-value problem over [0, /]
—u'" =, w(0)=0, «'(¢)+u(l)=0.

(a) [15] Give a variational formulation of this problem.

(b) [20] Formulate a finite element method for this problem using continuous piecewise
linear elements with uniform mesh spacing h = ¢/N. Express the result as a linear
algebraic system in the form AU = B where U is the N-vector of unknowns, A
is an N x N-matrix, and B is an N-vector. Be sure to give expressions for all the
entries of A and B.

Solution (a). Solutions of —u” = z are cubic polynomials, so they are certainly in
C*>([0,¢]). Upon multiplying the equation 0 = —u" —x by a test function v € C([0, £]),



integrating over [0, £], integrating by parts once, and applying the boundary condition
u' (0) + u(f) yields

¢ ¢
0= /0 o(—u" —z)de = /0 (0'u' — 0z) dz — o(£)u/(€) + ©(0)u'(0) .

_ /0 (' — ) dz + 5(L)u(t) + 5(0)(0)

Because the boundary condition at x = 0 does not involve u'(0), we must impose the
boundary condition ©(0) = 0 on the test function ©. Therefore a variational form of the
boundary value problem seeks u € H such that

¢
0= / (0'u — o) da + o()u () for every v € H ,
0

where H is the Hilbert space
H={veH[0,4) : v()=0},
and H'([0, ¢]) is the usual Sobolev space over [0, ¢]. O

Remark. The solution u of this boundary-value problem is the minimizer over the
Hilbert space H of the functional

Fl] = /0 (3(v)? = zv) dz + Lv(0)*.

Solution (b). For every j € {0,1,---, N} set x; = jh. For every k € {1,2,--- N}
let ¢ (z) be the unique function that is continuous over [0, ¢, is linear over [x;_1, z;] for
every j € {1,2,---, N}, and satisfies

(bk(xj) = Ojk for everyj € {07 17' o 7N}7

where 1, is the Kronecker delta. The function ¢y, is given by

% for x € (w)—1, 2],
Pu(x) = % for # € (xp, Tp41) and k # N |
0 otherwise .

Its derivative is the piecewise constant function given by

— for v € (z_1, 1),

h
/ — 1
¢k(x> - —% for x € (l‘k,l’k_,_l) and k 7é N,
0 otherwise .

Each ¢ is in the Hilbert space H.

Let Vj, be the N-dimensional subspace of H spanned by {¢;}Y ;. The associated
finite element method seeks v € V}, that satisfies the variational formulation

¢
0= / (0" — o) dz + o(L)v (L) for every v € V},.
0



By replacing v and v in this variational formulation with
N N

b(z) =Y wkpe(z),  v(z)=> vz,

k=1 j=1

and invoking the arbitrariness of each 7 leads to the system of equations

N Y ?
O:Z/O (;b%(b;d:cvj—/oqﬁkxdx—i—ék]vv]v.
j=1

This system has the form AU = B where the vector U, matrix A, and vector B are

U1 a1 a0 s 0 by
V2 Q21 Q22 G23 5 by
U=1lwvs |, A=10 ap as 0 , B=1bs31,
. D ’ ' A(N-1)N .
UN 0 - 0 anw-p aNy by

with , ,
akj = / ¢;€¢;dx+5kN5Nj7 bk :/ (bkl‘dl’
0 0

Finally, these integrals can be evaluated to find

Tp41 Tr41 1 2
aka/ (¢;€)2dx:/ ﬁdx_ﬁ for k € {1,2,---,N — 1},

Tk—1 Tk—1

B TN ; \2 B TN 1
any = (py)"dz+1= ﬁdx—i-l—ﬁ 1,

ITN-1 ITN-—-1

Tk o] 1
ak(k_l) = a(k_l)k = ¢;€_1¢;€ dzx = —/ ﬁ dx = —% for k € {2, 3. ,N},

Tr—1

Thi1 Tr41 Th+1
bk:/ gbkxdx:xk/ ¢kdz+/ Or (x — ) dz

k—1 k—1

=axyh  for ke {1,2 , N —

bN—/ quxdx—xN/ qudx—l—/ o (x —xy)de

TN _ N _ —
_xN/ TN ;N 1dx—/ (v —on- ;L)(xN ?) dz

N-1 N-1

h
=anih — h2/ s(1—s)ds = sxyh — th?,
0

where h = ¢/N. When computing by, for k € {1,2,--- N — 1} above we have used the
fact that the integrand has odd symmetry about x = x; to see that

Te+1
/ o (x —xp)de = 0.

All of the integrals above except the last one in the computation of by can be evaluated
by the area formulas for triangles or rectangles, or by odd symmetry. 0



