
Numerical Analysis II: AMSC/CMSC 667
Midterm Exam Solutions, Thursday, 14 March 2013

Give reasoning for all your answers!

(1) [35] Consider initial-value problems over RN in the form

x′ = f(t, x) , x(0) = x0 ∈ R
N ,

where f : [0, T ] × RN → RN is smooth. Consider the family of one-step methods

xn+1 = xn + (1 − b)hn+1f(tn, xn) + bhn+1f(tn+1, xn+1) ,

where hn+1 = tn+1 − tn and b ∈ [0, 1] is a constant.

(a) [5] For what values of b is the method explicit?

(b) [10] For what values of b is the method second order?

(c) [10] Compute the function g(ζ) such that such that xn = g(hλ)nx0 when the method
is applied with a uniform step size h to

x′ = λx , x(0) = x0 ∈ R .

(d) [10] For what values of b is this method A-stable?

Solution (a). The method will be explicit if and only if its right-hand side does not
depend on xn+1, which will be the case if and only if b = 0. �

Solution (b). This method will be second order if and only if for every x(t) that solves
x′ = f(t, x) we have

x(t + h) = x(t) + (1 − b)hf(t, x(t)) + bhf(t + h, x(t + h)) + O(h3)

Because x′ = f(t, x), this is equivalent to showing

x(t + h) = x(t) + (1 − b)hx′(t) + bhx′(t + h) + O(h3)

Because the Taylor expansion of x′(t + h) about h = 0 is

x′(t + h) = x′(t) + hx′′(t) + O(h2) ,

this is equivalent to showing

x(t + h) = x(t) + hx′(t) + bh2x′′(t + h) + O(h3)

Because the Taylor expansion of x(t + h) about h = 0 is

x(t + h) = x(t) + hx′(t) + 1
2
h2x′′(t) + O(h3) ,

this is equivalent to b = 1
2
. Therefore this method is second order if and only if b = 1

2
. �

Solution (c). When this method is applied with a uniform step size h and f(t, x) = λx,
it becomes

xn+1 = xn + (1 − b)hλxn + bhλxn+1 .

By solving this equation for xn+1 we see that

xn+1 =
1 + (1 − b)hλ

1 − bhλ
xn .

By induction it follows that

xn =

(

1 + (1 − b)hλ

1 − bhλ

)n

x0 .
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Therefore the function g(ζ) is given by

g(ζ) =
1 + (1 − b)ζ

1 − bζ
.

�

Alternative Solution (c). When this method is applied with a uniform step size h
and f(t, x) = λx, it becomes

xn+1 = xn + (1 − b)hλxn + bhλxn+1 .

By setting xn = γnx0 into this equation we obtain

γn+1x0 = γnx0 + (1 − b)hλγnx0 + bhλγn+1x0 .

When γ 6= 0 and x0 6= 0 the above equation will be satisfied if and only if

γ = 1 + (1 − b)hλ + bhλγ .

By solving this for γ we find that

γ =
1 + (1 − b)hλ

1 − bhλ
.

Therefore the function g(ζ) is given by

g(ζ) =
1 + (1 − b)ζ

1 − bζ
.

Remark. This alternative approach can be applied to multistep methods. �

Solution (d). A method is A-stable if |g(ζ)| < 1 for every ζ in the left half-plane
{ζ ∈ C : ζ + ζ̄ < 0}. By setting |g(ζ)| < 1 we obtain

|1 + (1 − b)ζ |2 < |1 − bζ |2 ,

which is equivalent to

1 + (1 − b)(ζ + ζ̄) + (1 − b)2|ζ |2 < 1 − b(ζ + ζ̄) + b2|ζ |2 ,

which is equivalent to

(ζ + ζ̄) + (1 − 2b)|ζ |2 < 0 .

This inequality will be satisfied for every ζ in the left half-plane if and only if b ≥ 1
2
.

Therefore this method A-stable if and only if b ≥ 1
2
. �

(2) [30] Consider initial-value problems over RN in the form

x′ = f(t, x) , x(0) = x0 ∈ R
N ,

where f : [0, T ]×RN → RN is smooth. Consider the family of explicit two-step methods
with uniform step size h given by

xn+1 = (1 − a)xn + axn−1 + bhf(tn, xn) + chf(tn−1, xn−1) ,

where a, b, and c are constants.

(a) [15] For what values of a, b, and c is this method consistent to at least first-order?

(b) [15] For what values of a, b, and c will this method converge?
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Solution (a). This method will be consistent to at least first order if and only if for
every x(t) that solves x′ = f(t, x) we have

x(t + h) = (1 − a)x(t) + ax(t − h) + bhf(t, x(t)) + chf(t − h, x(t − h)) + O(h2) .

Because x′ = f(t, x), this is equivalent to showing

x(t + h) = (1 − a)x(t) + ax(t − h) + bhx′(t) + chx′(t − h) + O(h2) .

Because the Taylor expansions of x(t − h) and x′(t − h) about h = 0 are

x(t − h) = x(t) − hx′(t) + O(h2) , x′(t − h) = x′(t) + O(h) ,

this is equivalent to showing

x(t + h) = x(t) + (−a + b + c)hx′(t) + O(h2) .

Because the Taylor expansion of x(t + h) about h = 0 is

x(t + h) = x(t) + hx′(t) + O(h2) ,

this is equivalent to (−a + b + c) = 1. Therefore this method is consistent to at least
first order if and only if b + c = 1 + a. �

Solution (b). This method will converge if it is consistent and stable. In part (a)
we found that this method is consistent if and only if b + c = 1 + a. Its stability is
determined from the roots of the polynomial

p(γ) = γ2 − (1 − a)γ − a = (γ − 1)(γ + a) .

Specifically, this method is stable if and only if every root of p(γ) must lie in the closed
unit disk {γ ∈ C : |γ| ≤ 1} and any root that lies on the unit circle {γ ∈ C : |γ| = 1}
must be simple. Because the roots of p(γ) are 1 and −a, this root condition is satisfied
if and only if a ∈ (−1, 1]. Therefore this method will converge if and only if

b + c = 1 + a and a ∈ (−1, 1] .

�

(3) [35] Consider the boundary-value problem over [0, ℓ]

−u′′ = x , u(0) = 0 , u′(ℓ) + u(ℓ) = 0 .

(a) [15] Give a variational formulation of this problem.

(b) [20] Formulate a finite element method for this problem using continuous piecewise
linear elements with uniform mesh spacing h = ℓ/N . Express the result as a linear
algebraic system in the form AU = B where U is the N -vector of unknowns, A
is an N×N -matrix, and B is an N -vector. Be sure to give expressions for all the
entries of A and B.

Solution (a). Solutions of −u′′ = x are cubic polynomials, so they are certainly in
C∞([0, ℓ]). Upon multiplying the equation 0 = −u′′−x by a test function ṽ ∈ C1([0, ℓ]),
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integrating over [0, ℓ], integrating by parts once, and applying the boundary condition
u′(ℓ) + u(ℓ) yields

0 =

∫ ℓ

0

ṽ(−u′′ − x) dx =

∫ ℓ

0

(

ṽ′u′ − ṽx
)

dx − ṽ(ℓ)u′(ℓ) + ṽ(0)u′(0) .

=

∫ ℓ

0

(

ṽ′u′ − ṽx
)

dx + ṽ(ℓ)u(ℓ) + ṽ(0)u′(0) .

Because the boundary condition at x = 0 does not involve u′(0), we must impose the
boundary condition ṽ(0) = 0 on the test function ṽ. Therefore a variational form of the
boundary value problem seeks u ∈ H such that

0 =

∫ ℓ

0

(

ṽ′u′ − ṽx
)

dx + ṽ(ℓ)u(ℓ) for every ṽ ∈ H ,

where H is the Hilbert space

H =
{

v ∈ H1([0, ℓ]) : v(ℓ) = 0
}

,

and H1([0, ℓ]) is the usual Sobolev space over [0, ℓ]. �

Remark. The solution u of this boundary-value problem is the minimizer over the
Hilbert space H of the functional

F [v] =

∫ ℓ

0

(

1
2
(v′)2 − xv

)

dx + 1
2
v(ℓ)2 .

Solution (b). For every j ∈ {0, 1, · · · , N} set xj = jh. For every k ∈ {1, 2, · · · , N}
let φk(x) be the unique function that is continuous over [0, ℓ], is linear over [xj−1, xj] for
every j ∈ {1, 2, · · · , N}, and satisfies

φk(xj) = δjk for every j ∈ {0, 1, · · · , N} ,

where δjk is the Kronecker delta. The function φk is given by

φk(x) =























x − xk−1

h
for x ∈ (xk−1, xk] ,

xk+1 − x

h
for x ∈ (xk, xk+1) and k 6= N ,

0 otherwise .

Its derivative is the piecewise constant function given by

φ′

k(x) =























1

h
for x ∈ (xk−1, xk) ,

−
1

h
for x ∈ (xk, xk+1) and k 6= N ,

0 otherwise .

Each φk is in the Hilbert space H .

Let Vh be the N -dimensional subspace of H spanned by {φk}
N
k=1. The associated

finite element method seeks v ∈ Vh that satisfies the variational formulation

0 =

∫ ℓ

0

(

ṽ′v′ − ṽx
)

dx + ṽ(ℓ)v(ℓ) for every ṽ ∈ Vh .
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By replacing ṽ and v in this variational formulation with

ṽ(x) =

N
∑

k=1

ṽkφk(x) , v(x) =

N
∑

j=1

vjφj(x) ,

and invoking the arbitrariness of each ṽk leads to the system of equations

0 =
N

∑

j=1

∫ ℓ

0

φ′

k φ′

j dx vj −

∫ ℓ

0

φk x dx + δkNvN .

This system has the form AU = B where the vector U , matrix A, and vector B are

U =















v1

v2

v3
...

vN















, A =

















a11 a12 0 · · · 0

a21 a22 a23
. . .

...

0 a32 a33
. . . 0

...
. . .

. . .
. . . a(N−1)N

0 · · · 0 aN(N−1) aNN

















, B =















b1

b2

b3
...

bN















,

with

akj =

∫ ℓ

0

φ′

k φ′

j dx + δkNδNj , bk =

∫ ℓ

0

φk x dx .

Finally, these integrals can be evaluated to find

akk =

∫ xk+1

xk−1

(φ′

k)
2 dx =

∫ xk+1

xk−1

1

h2
dx =

2

h
for k ∈ {1, 2, · · · , N − 1} ,

aNN =

∫ xN

xN−1

(φ′

N)2 dx + 1 =

∫ xN

xN−1

1

h2
dx + 1 =

1

h
+ 1 ,

ak(k−1) = a(k−1)k =

∫ xk

xk−1

φ′

k−1φ
′

k dx = −

∫ xk

xk−1

1

h2
dx = −

1

h
for k ∈ {2, 3 · · · , N} ,

bk =

∫ xk+1

xk−1

φk x dx = xk

∫ xk+1

xk−1

φk dx +

∫ xk+1

xk−1

φk (x − xk) dx

= xkh for k ∈ {1, 2, · · · , N − 1} ,

bN =

∫ xN

xN−1

φN x dx = xN

∫ xN

xN−1

φNdx +

∫ xN

xN−1

φk (x − xN ) dx

= xN

∫ xN

xN−1

x − xN−1

h
dx −

∫ xN

xN−1

(x − xN−1)(xN − x)

h
dx

= xN
1
2
h − h2

∫ h

0

s(1 − s) ds = 1
2
xNh − 1

6
h2 ,

where h = ℓ/N . When computing bk for k ∈ {1, 2, · · · , N − 1} above we have used the
fact that the integrand has odd symmetry about x = xk to see that

∫ xk+1

xk−1

φk (x − xk) dx = 0 .

All of the integrals above except the last one in the computation of bN can be evaluated
by the area formulas for triangles or rectangles, or by odd symmetry. �


