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Course Plan. We introduce the Boltzmann equation and other kinetic equations. From these
we give formal derivations of the compressible Euler and compressible Navier-Stokes systems.
These approximations can be justified using Hilbert and Chapman-Enskog expansions. We give
moment-based formal derivations of the acoustic system, an incompressible Stokes system, an
incompressible Navier-Stokes system, and an incompressible Euler system. We develop theories
of global solutions for these systems and show that they govern different fluid dynamical limits
for DiPerna-Lions solutions of the Boltzmann equation.
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I. Maxwell-Boltzmann Theory

Statistical mechanics is the study of how macroscopic phenomena arise from microscopic
dynamics. It may be naturally divided into two branches — one dealing with equilibrium
systems, and the other with non-equilibrium systems. Properties of systems in equilibrium are
defined by averaging over suitable ensembles (micro-canonical, canonical, or grand canonical).
This paradigm provides both a qualitative and quantitative understanding of such systems. For
example, it illuminates the basic structure of the classical theory of thermodynamics and yields
useful expressions for equations of state of real materials. On the other hand, non-equilibrium
phenomena are not understood as well. A notable exception is offered by the kinetic theory
of rarefied gases, the foundation of which was laid by Maxwell [8, 9] and Boltzmann [2] in the
nineteenth century. In fact, their theory spurred the subsequent development of equilibrium
statistical mechanics.

At the time, most scientists viewed gases as continua. In founding modern kinetic theory,
Maxwell ([8] in 1860 and [9] in 1866) and Boltzmann ([2] in 1872) were testing a molecular theory
of gases. They developed a recipe to construct a kinetic equation, now called the Boltzmann
equation, from the Newtonian equations that govern binary collisions of molecules; they then
derived the Navier-Stokes system from the kinetic equation in regimes where collisional effects
are dominant. The resulting formulas for viscosity and thermal conductivity were found to be
independent of density. This result surprised many at first, but it proved to be consistent with
experiments carried out first by Maxwell and subsequently by others.

While this early success encouraged its proponents, kinetic theory was very controversial at
the time for two main reasons. First, the notion of molecule was not generally accepted at the
time. Second, neither the Navier-Stokes system nor the Boltzmann equation is reversible, while
Newtonian mechanics is. It was therefore unclear how such theories of gases could arise from
any microscopic dynamics governed by Newtonian mechanics. Indeed, because continua were
not viewed as arising from an underlying microscopic molecular picture, the fact the Navier-
Stokes system is not reversible did not pose a problem for scientists. Rather, it seemed to
provide evidence against the existence of an underlying microscopic molecular picture.

Of course, the existence of atoms and molecules became generally accepted around 1906.
Newtonian mechanics was superseded by quantum mechanics two decades later. However,
because quantum mechanics is also reversible, kinetic theory still had to face the question of
how an irreversible macroscopic dynamics can arise from a reversible microscopic dynamics.
Roughly speaking, the answer has two parts. First, the underlying microscopic dynamics is
chaotic (i.e. it has sensitive dependence on data). Second, the macroscopic equations are
derived in limits where the number of molecules becomes infinite. Maxwell first suggested
that chaos played a role in the answer while Kelvin first suggested that limits played a role.
These early key insights did not make the problem much easier. A hundred years passed before
Landford [6] first rigorously established the validity of the Boltzmann equation for classical
hard spheres. The problem remains open in general.

While this theoretical gap remains, overwhelming experimental and computational evidence
has led to a general acceptence of the validity of the Boltzmann equation, and of kinetic
theory in general. During the 1900’s kinetic theory was applied to many problems. These
include modeling photon transport in planetary and stellar atmospheres [5, 10, 11], neutron
transport in nuclear reactors and stars [3], air flow in hypersonic flight [1], carrier transport in
semiconductor devices [7], and charged particle transport in plasmas.
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1. Rarefied Gases and the Boltzmann Equation

Roughly speaking, rarefied gases are ones for which fluid descriptions break down. However,
the theory of rarefied gases did not grow out of an attempt to explain observations of these
regimes. Rather, it grew out of efforts to test the theory that heat is atomic motion.

In the mid 1800’s most scientists did not believe in atoms. Solids, liquids, and gases were
viewed as continua rather than as being a made up of atoms. Heat was viewed as another
continuum call caloric that was attracted to matter but repelled from itself. Indeed, Fourier
viewed his heat equation as describing the motion of caloric through matter. By the 1840’s
came the realization that heat is a form of energy, and the articulation of energy consevation
laws that included heat — what subsequently became called the first law of thermodynamics.
By the 1850’s came several formulations of what subsequently became called the second law of
thermodynamics, yet the entropy had not yet been identified as playing a central role. Atoms
were almost nowhere to be seen.

Of course, there were atomic theories of heat before the 1850’s. In 1738 Daniel Bernoulli used
a simple one-speed atomic model to derive Boyle’s law — namely, that preasure is proportional
to density when the temperature is held fixed. Moreover, he showed that the constant of
proportionality was proportional the square of the speed, which he identified with temperature.
This work was largely ignored. John Herepath in 1821 and John James Waterston in 1846
advanced similar theories. Their work could not get published in the leading journals of the
day. James Joule read one of Herepath’s articles and in 1848 wrote an article defending it. This
influenced August Krönig to put forth a very similar theory in 1856. These later theories did
not advanced things much further than Bernoulli’s largely forgotten early work. While these
works did explain the ideal gas law, other theories did so too. They did not make any testable
predictions of unknown phenomena. Moreover, the specific heats that they yielded were lower
than those observed in gases. In short, there was little reason for the atomic theory of heat to
be embraced.

Things began to change in the late 1850’s when Rudolf Clausius became a champion of atomic
theory. Clausius was a leading theorist of his day. He was inspired to begin publishing his ideas
after reading Krönig’s work. In 1857 Clausius explained how the rotational and vibrational
degrees of freedom in molecules might account for the higher specific heats observed in gases.
He was the first to realize the importance of intermolecular collisions, and in 1858 introduced
the concept of mean free path. This work caught the attention of James Clerk Maxwell in 1859.

Maxwell understood that the mean free path was connected to diffusivity, viscosity, and
thermal conductivity — all of which could be measured. In order to make this connection, in
1860 he developed a theory for the distribution of velocities of monatomic gas molecules in local
equilibrium [8] — the famous Maxwellian distribution. He used this distribution to developed a
theory for diffusivity, viscosity, and thermal conductivity in a gas of hard spheres. He obtained
expressions for the viscosity and thermal conductivity coefficients that were independent of the
density. This result was counterintuitive because it was known to be false in liquids. However,
by 1866 this prediction was shown to be consistent with experiments carried out first by Maxwell
and subsequently by others. The atomic view of matter had its first big success.

In 1866 Maxwell published a vast improvement on his 1860 theory [9]. His new theory is
based on the first kinetic equation — what subsequently has been called the Maxwell equation
of change. We will derive this equation in this chapter. Along the way we will see how Clausius’s
concept of the mean free path led to it and how it led to the Boltzmann equation.
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1.1. Gaseous Regimes. In order to indicate how kinetic equations arise from microscopic
Newtonian physics, we will examine the following idealized setting. We consider a gas of N
identical molecules of mass m in a D-dimensional macroscopic domain Ω ⊂ R

D of volume V .
We will consider any D ≥ 2. Of course, the two cases we have in mind are D = 3 for real gases
and D = 2 for certain computational models.

We will assume that the molecules interact through a binary intermolecular force determined
by a potential that depends only on the intermolecular distance. We will assume that this force
becomes infinitely repulsive as two molecules approach each other. We will also assume that
this force is characterized by a range of interaction R. Roughly speaking, two molecules will
have a “significant” interaction if and only if their centers of mass pass within a distance R of
each other. For example, if the molecules are hard spheres of radius Ro then R = 2Ro. Because
there is some arbitrariness in indentifying what constitutes a “significant” interaction, for the
moment we will not give a precise definition of R for a general intermolecular potential.

1.1.1. Ideal Gas Regimes. There are three natural characteristic length scales in this situation.

• First, there is the macroscopic length scale Λ
MACRO

, which will be defined as V
1

D . All
geometric features of the domain Ω are assumed to be characterized by this length scale.

• Second, there is the typical intermolecular spacing Λ
MOL

, which will be on the order of

(V/N)
1

D when the density of molecules is fairly uniform throughout the domain Ω.
• Third, there is the characteristic range of interaction R.

Ideal or perfect gas regimes are ones in which these length scales are ordered as

(1.1) R ≪ Λ
MOL

≪ Λ
MACRO

.

In other words, ideal gas regimes are ones in which

(1.2) NRD ≪ V , and 1 ≪ N .

With each molecule we associate a sphere of interaction that has radius R and is centered at
its center of mass. Because the volume of each sphere of interaction is |SD−1|RD, the first
condition in (1.2) states that the volume occupied by the union of these N spheres is a small
fraction of the entire volume V of Ω.

A molecule is said to be moving freely if it lies outside all the spheres of interaction of the
other molecules. If we assume that the centers of mass are located randomly in Ω then it is clear
that in ideal gas regimes most molecules will not be interacting, but rather will be traveling
freely between collisions. The volume Vex = |SD−1|NRD is called the excluded volume because
it is the volume of the fraction of Ω that is not available for free molecular motion. The ratio
Vex/V is called the excluded volume fraction.

Two molecules will be interacting directly if their centers of mass lie within each other’s
sphere of interaction. If neither of the two molecules is interacting with any other molecule
then the interaction is said to be binary. If we again assume that the centers of mass are
located randomly in Ω then it can be shown that in ideal gas regimes most interactions will be
binary. Our analysis will therefore neglect the effects of interactions involving more than two
molecules.

We will see that in ideal gas regimes the pressure p and temperatue T of a gass are related
by the ideal gas law:

pV = kBNT ,

where kB is the Boltzmann constant. Corrections to this law, such as that given by the Van
der Waals equation of state, explicitly involve the notion of excluded volume fraction.
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Remark. Ideal gas regimes are common. For example, a monatomic gas at room temperature
and atmospheric pressure has about 1019 molecules per cubic centimeter, while the range of
intermolecular forces is on the order of 10−8 centimeters. We then find that

Λ
MOL

≈ (1/1019)
1

3 = 10−
19

3 centemeters ,

while R = 10−8 centimeters, whereby R/Λ
MOL

≈ 10−
5

3 and the excluded volume fraction is
about 4·10−5.

1.1.2. Mean Free Path. In 1858 Clausius introduced a fourth important length scale that can
be derived from N , V and R. The mean free path is a length typical of the distance a molecule
travels freely between collisions. He obtained a rough estimate of this distance as follows. As a
molecule travels a distance λ, its sphere of interaction sweeps out a cylinder of radius R with a
hemisherical “caps” on each end. If we assume that R ≪ λ then we can neglect the contribution
of the caps and approximate the volume of the cylinder by |SD−2|RD−1λ. The molecule will
interact with another molecule if and only if that other molecule enters this cylinder. This
event becomes likely when the volume of the cylinder becomes equal to the volume in which
one typically expects to find a molecule, which is V/N . In other words, an interaction becomes
likely when λ satisfies

|SD−2|RD−1λ =
V

N
= ΛD

MOL
.

We define this value of λ to be the mean free path Λ
MF P

, which is therefore given by

(1.3) Λ
MF P

=
V

|SD−2|NRD−1
.

With this definition our assumption that R ≪ Λ
MF P

in the above argument is equivalant to
assuming we are in an ideal gas regime. Indeed, one sees from definition (1.3) that

R

Λ
MF P

=
|SD−2|NRD

V
= |SD−2|

(

R

Λ
MOL

)D

.

It then immediately follows that

Λ
MOL

Λ
MF P

=
R

Λ
MF P

Λ
MOL

R
= |SD−2|

(

R

Λ
MOL

)D−1

.

Hence, in ideal gas regimes one has the ordering of length scales

(1.4) R ≪ Λ
MOL

≪ Λ
MF P

Notice that these three length scales become comparable as one leaves the ideal gas regimes.
In fact, a more careful analysis would have shown that Λ

MF P
vanishes as R and Λ

MOL
become

comparable. However, because we are restrict our considerations to ideal gas regimes, the above
analysis suffices.

The Knudsen number Kn is defined to be the ratio of the mean free path over the character-
istic macroscopic length scale:

(1.5) Kn =
Λ

MF P

Λ
MACRO

.

Upon comparing (1.1) with (1.4), we see that the Knudsen number is the key dimensionless
parameter for characterizing different regimes of an ideal gas.



7

Definition 1.1. An ideal gas is said to be in a fluid regime when Kn ≪ 1, and in a kinetic
or rarefied regime otherwise. An ideal gas is said to be in a collisionless regime when Kn ≫ 1,
and in a collisional regime otherwise.

We therefore have identified three regimes to consider:

(1.6)

Kn ≪ 1 =⇒ (collisional) fluid regime ,

Kn ∼ 1 =⇒ collisional kinetic regime ,

Kn ≫ 1 =⇒ collisionless (kinetic) regime .

Because all fluid regimes are collisional, and all collisionless regimes are kinetic, the words in
parentheses are usually dropped.

Remark. Fluid regimes are common in our every day experience. For the example of air at
room temperature and atmospheric pressure one finds that

Λ
MF P

≈ V/(NRD−1) ≈ 1/(102010−16) = 10−4 centimeters .

While this is much larger than either Λ
MOL

(= 10−
20

3 ) or R (= 10−8), for most situations we
encounter, it is far smaller than a macroscopic length scale. However, at altitudes where there
are 1016 molecules per cubic centimeter one finds that Λ

MF P
≈ 1 centimeter, which is certainly

macrocopic.

1.2. Ideal Gas Limits. Equations governing ideal gas regimes arise formally in limits where

(1.7)

N → ∞ ,

m → 0 , such that Nm → finite ,

R → 0 , such that NRD → 0 .

You should understand that Ω is being held fixed when taking this limit, whereby V is also
fixed. The first constraint above states that the total mass Nm in the system remains finite.
The second constraint above states that the excluded volume fraction, |SD−1|NRD/V , vanishes,
which is consistent with the characterization of ideal gas regimes given in (1.1). We will call
any limit satifying (1.7) an ideal gas limit.

One obtains the equations that govern fluid, collisional kinetic, and collisionless regimes
respectively if in addition to satisfying (1.7) the limit also satisfies

(1.8) NRD−1 →











0 , for the collisionless regime ,

finite , for the collisional kinetic regime ,

∞ , for the fluid regime .

This is consistent with the characterization of these regimes given in (1.6). In particular, limits
for collisional kinetic regimes are characterized by a Knudsen number Kn ∈ (0,∞) such that

Λ
MF P

Λ
MACRO

=
V 1−

1

D

|SD−2|NRD−1
→ Kn .

The Knuden number Kn provides a measure of how close a collisional kinetic regime is to a
fluid regime.
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1.2.1. Kinetic Density. It is reasonable to expect that in such limits the molecules will fill out
the continuum Ω. Indeed, with sufficient additional technical assumptions one can prove that
the state of the gas is described by a mass density F over the single-molecule phase space
R

D × Ω. A point (v, x) in R
D × Ω designates a possible velocity v and position x for a single

fluid molecule. At any instant of time t, one understands F (v, x, t) dv dx to give the mass of
molecules that occupy the infinitesimal volume dv dx about the point (v, x). More precisely, if
A is any measurable subset of R

D × Ω then the definite integral of F over A, denoted
∫∫

A

F (v, x, t) dv dx ,

gives the mass of fluid molecules with states in A at time t. Similarly, the momentum and
kinetic energy of fluid molecules with states in A at time t are respectively given by

∫∫

A

v F (v, x, t) dv dx ,

∫∫

A

1

2
|v|2F (v, x, t) dv dx .

Because F is a mass density, it is nonnegative. At this point our discussion is formal, so we will
forgo mathematical details like stating explicitly that the function F and set A are measurable
with respect to dv dx.

One can construct various spatial densities from the phase-space density F . For example,
the mass, momentum, and energy densities of the gas over Ω are respectively given by

(1.9) ρ =

∫

RD

F dv , ρu =

∫

RD

v F dv , 1

2
ρ|u|2 + ρε =

∫

RD

1

2
|v|2F dv .

Here ρ(x, t) is the mass density, u(x, t) is the bulk velocity, and ε(x, t) is the specific internal
energy. There is no contribution from the intermolecular potential to the energy density because
the interaction range R vanishes faster than the intermolecular spacing Λ

MOL
in an ideal gas

limit, whereby fraction of molecules interacting vanishes in the limit.

1.2.2. Collisionless Limit. When a gas is so dilute that molecular collisions can be neglected,
its dynamics is governed by the collisionless limit. When no forces of any kind act on the
molecules, each molecule will move with a constant velocity until it hits the boundary of Ω.
Therefore, within the interior of Ω we expect that the kinetic density F will satisfy

(1.10) ∂tF + v · ∇xF = 0 .

When Ω has no boundaries (like, for example, R
D or T

D), then the solution of this equation
with initial data F in is simply given by F (v, x, t) = F in(v, x − vt).

1.2.3. Fluid Limit. In fluid regimes we expect the gas to be described by the fluid variables,
ρ(x, t), u(x, t), and ε(x, t), governed by a gas dynamics system (say Euler or Navier-Stokes)
with the pressure given by an ideal gas equation of state.

Maxwell argued [8] that in fluid regimes F would have the form

(1.11) F (v, x, t) =
ρ(x, t)

(2πθ)
D

2

exp

(

−
|v − u(x, t)|2

2θ(x, t)

)

,

where ρ(x, t) ∈ R+, u(x, t) ∈ R
D, and θ(x, t) ∈ R+. In words, the velocity distribution at (x, t)

is given by an isotropic Gaussian density with weight ρ(x, t), mean u(x, t), and variance θ(x, t),
which is related to the temperature by θ = kBT/m. The specific energy ε and the pressure p
are given by ε = D

2
θ and p = ρθ. The last relation is a restatement of the ideal gas law.
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Maxwell’s argument that F (v, x, t) is given by (1.7) was based only on notions of symmetry
and randomness. It goes as follows. Fix (x, t). Suppose we are in the Galilean frame in which
u(x, t) = 0. In this frame the action of the (many) collisions will make the distribution isotropic.
The density F must therefore have the form F (v) = Φ(|v|2) for some function Φ. He then
argues that the distributions of the velocity in orthogonal directions should be independent.
This means that if v = (v

1
, v

2
, · · · v

D
) then F must have the form F (v) = Ψ(v 2

1
)Ψ(v 2

2
) · · ·Ψ(v 2

D
)

for some function Ψ. If we combine these assertions, we see that the functions Φ and Ψ must
satisfy the functional relation

Φ(|v|2) = Ψ(v 2

1
) Ψ(v 2

2
) · · · Ψ(v 2

D
) .

If one assumes that Φ and Ψ are smooth, it is easy to argue that they must be exponentials.
The form (1.11) then follows from the normalization (1.9).

Remark. This argument did not convince everyone. Indeed, it did not even convince Maxwell
because he published an alternative argument six years later [9]. However, he was ready to test
the conclusions drawn from it against laboratory experiments.

1.2.4. Boltzmann-Grad Limit. The limit leading to collisional kinetic regimes in (1.8) was
dubbed the Boltzmann-Grad limit by Lanford, who established it for hard spheres in 1974
[6]. More specifically, he showed that in this limit the kinetic density F (v, x, t) is governed by
the Boltzmann equation, which has the form

(1.12) ∂tF + v ·∇xF =
1

Kn
B(F, F ) , F (v, x, 0) = F in(v, x) ,

where B is the so-called Boltzmann collision operator, which we give below. When Ω has
boundaries, boundary conditions must be specified. While the subject of boundary conditions
is critical to most applications of kinetic theory, they will be ignored here so that we can get
directly to other critical topics.

Remark. Additional, more technical, requirements on the limit are needed to ensure, for
example, that the total energy in the system remains finite. These will not be presented here,
but can be found in [4]. We remark however that in order for NRD−1 to remain finite while
both N → ∞ and R → 0, one must require that D ≥ 2. We henceforth restrict ourselves to
that case.

The collision operator B in (1.12) models the rate of change of F due to the binary collisions
of molecules. It has features that are not common in either the physical or mathematical
literature, and so requires some explanation. We will present it formally first, postponing the
explanations and interpretations until later.

The collision operator B in (1.12) acts only on the v dependence of F . This means collisions
are local and instantaneous, which reflects the fact that the range of interaction R vanishes
in the Boltzmann-Grad limit (1.8). It formally acts on any “sufficiently nice” function f of v
according to the formula

(1.13) B(f, f)(v) =

∫∫

(

f(v′

∗
)f(v′) − f(v∗)f(v)

)

b(ω, v∗ − v) dω dv∗ .

It is quadratic in F , which reflects the fact that it models only binary collisions. The contribu-
tions from collisions that are other than binary vanish in the Boltzmann-Grad limit, and so are
neglected. The collision kernel b(ω, v∗ − v) is an almost everywhere positive, locally integrable
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function. Its precise form depends on details of the microscopic physics in a way that will be
described in more detail below. The variable ω lies on the unit sphere

S
D−1 = {ω ∈ R

D : |ω| = 1} ,

which is endowed with its rotationally invariant measure dω. The domain of integration in
(1.13) is understood to be S

D−1×R
D. This is a particular instance of the convention that every

definite integral with an unspecified domain of integration is understood to be evaluated over
the whole domain associated with its measure. Finally, the velocities v′

∗
and v′ are defined for

every (ω, v∗, v) ∈ S
D−1× R

D× R
D by

(1.14) v′

∗
= v∗ − ω ω · (v∗ − v) , v′ = v + ω ω · (v∗ − v) .

Notice that when D = 1 these reduce to v′

∗
= v and v′ = v∗, whereby B(f, f) would vanish

identically. This degeneration reflects the need for the restriction to D ≥ 2.
The unprimed and primed velocities need a bit more explanation. They denote possible

velocities for a pair of molecules either before and after, or after and before the molecules
interact through an elastic binary collision. Elastic collisions are ones that conserve both
momentum and energy. The conservation of momentum and energy for molecule pairs during
such collisions is expressed as

(1.15)
v + v∗ = v′ + v′

∗
,

|v|2 + |v∗|
2 = |v′|2 + |v′

∗
|2 .

It is clear that these equations have the trivial solution v′

∗
= v∗ and v′ = v, which corresponds

to there being no collision. Equation (1.14) represents the general nontrivial solution of the
D + 1 equations (1.15).
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