Quiz 1 Solutions, Math 246, Professor David Levermore Tuesday, 1 February 2011

- (1) [4] For each of the following ordinary differential equations, give its order and state whether it is linear or nonlinear.
 - (a) $\frac{d^3w}{dx^3} + w^2 \frac{dw}{dx} + e^x w = x^2$; (b) $\frac{d^5y}{ds^5} = 2s \frac{d^2y}{ds^2} + \sin(s)$. Solution. third order, nonlinear. Solution. fifth order, linear.
- (2) [4] Solve the initial-value problem

$$t\frac{\mathrm{d}z}{\mathrm{d}t} = 3z + 2t\,,\qquad z(1) = 0\,.$$

Solution. This equation is linear. Its normal form is

$$\frac{\mathrm{d}z}{\mathrm{d}t} - \frac{3}{t}z = 2$$

An integrating factor is $e^{A(t)}$ where A'(t) = -3/t. Setting $A(t) = -3\log(t)$, we find that $e^{A(t)} = e^{-3\log(t)} = t^{-3}$. Hence, the problem has the integrating factor form

$$\frac{\mathrm{d}}{\mathrm{d}t}(t^{-3}z) = t^{-3} \cdot 2 = 2t^{-3}.$$

Integrating both sides yields

$$t^{-3}z = -t^{-2} + c \,.$$

Imposing the initial condition gives

$$1^{-3} \cdot 0 = -1^{-2} + c \,,$$

whereby $c = 1^{-2} = 1$. The solution is therefore

$$z = -t + t^3$$
, for every $t > 0$.

Remark. The interval of definition for this solution is $(0, \infty)$. Can you see why?

(3) [2] Give the interval of definition for the solution of the initial-value problem

$$\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{1}{t^2 - 1} x = \frac{1}{\sin(t)}, \qquad x(2) = -3.$$

(You do not have to solve this equation to answer this question!)

Solution. This equation is linear and is already in normal form. The coefficient $1/(t^2 - 1)$ is continuous everywhere except at $t = \pm 1$, while the forcing $1/\sin(t)$ is continuous everywhere except where $t = n\pi$ for some integer n. You can therefore read off that the interval of definition for its solution is $(1, \pi)$ because:

- the initial time t = 2 is in $(1, \pi)$,
- the coefficient and forcing are both continuous over $(1, \pi)$,
- the coefficient is not defined at t = 1,
- the forcing is not defined at $t = \pi$.