Quiz 10 Solutions, Math 246, Professor David Levermore Wednesday, 30 April 2008

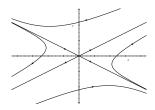
(1) [4] $\mathbf{A} = \begin{pmatrix} 5 & 4 \\ 4 & -1 \end{pmatrix}$ has eigenvalues -3 and 7. Find an eigenvector for each eigenvalue.

Solution: One has $\mathbf{A} + 3\mathbf{I} = \begin{pmatrix} 8 & 4 \\ 4 & 2 \end{pmatrix}$ and $\mathbf{A} - 7\mathbf{I} = \begin{pmatrix} -2 & 4 \\ 4 & -8 \end{pmatrix}$. The eigenvectors \mathbf{v}_1 associated with -3 satisfy $(\mathbf{A} + 3\mathbf{I})\mathbf{v}_1 = 0$. These have the form $\mathbf{v}_1 = \alpha_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ for every $\alpha_1 \neq 0$. The eigenvectors \mathbf{v}_2 associated with 7 satisfy $(\mathbf{A} - 7\mathbf{I})\mathbf{v}_2 = 0$. These have the form $\mathbf{v}_2 = \alpha_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ for every $\alpha_2 \neq 0$.

(2) [3] The 2×2 matrix **A** has the real eigenpairs $\left(-1, \begin{pmatrix} 2 \\ -1 \end{pmatrix}\right)$ and $\left(3, \begin{pmatrix} 2 \\ 1 \end{pmatrix}\right)$.

Sketch a phase portrait for the system $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$. Indicate typical trajectories.

Solution: Because the eigenvalues of \mathbf{A} are real and of opposite sign, the phase portrait is a *saddle*. Trajectories on the line $c_1\begin{pmatrix} 2\\-1\end{pmatrix}$ move towards the origin while those on the line $c_2\begin{pmatrix} 2\\1\end{pmatrix}$ move away from the origin. The phase portrait is therefore



(3) [3] Sketch a phase portrait for the system $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$, where $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \mathbf{x}$.

Solution: The characteristic polynomial of ${\bf A}$ is

$$p(z) = z^2 - \text{tr}(\mathbf{A})z + \det(\mathbf{A}) = z^2 + 2z + 2 = (z+1)^2 + 1$$
.

The eigenvalues of **A** are therefore -1+i and -1-i, whereby the phase portrait is a *spiral* sink. Because

for
$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 one has $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$,

so the spiral will be counterclockwise. One can use any point \mathbf{x} to reach the same conclusion. The phase portrait is therefore

