
Final Exam Solutions: MATH 410
Saturday, 16 December 2006

1. [30] State whether each of the following statements is true or
false. Give a proof when true and a counterexample when false.

(a) A sequence {ak}k∈N in R is convergent if the sequence
{a 2

k
}k∈N is convergent.

(b) If f : R → R is differentiable and increasing over R then
f ′ > 0 over R.

(c) A function f : [a, b] → R is Riemann integrable over [a, b]
if the function f 2 is is Riemann integrable over [a.b].

Solution (a): This is false. A simple counterexample is given
by ak = (−1)k for every k ∈ N. Then the sequence {a 2

k
}k∈N

converges to 1 (because a 2
k

= (−1)2k = 1), while the sequence
{ak}k∈N does not converge. �

Solution (b): This is also false. A simple counterexample
is f : R → R given by f(x) = x3. This function is clearly
increasing and differentiable over R with f ′(x) = 3x2. Hence,
f ′(0) = 0, which is not positive.

Solution (c): This is also false. A simple counterexample is
f : [a, b] → R given by

f(x) =

{

1 if x ∈ Q ,

−1 otherwise .

The function f 2 is is Riemann integrable over [a.b] because
f 2(x) = (f(x))2 = 1 for every x ∈ [a, b], while f is not Rie-
mann integrable over [a.b] because L(f) = −1 < 1 = U(f).
Indeed, for every partition P of [a, b] one has L(f, P ) = −1 and
U(f, P ) = 1.

2. [20] Let {ak}k∈N and {bk}k∈N be bounded sequences in R.
(a) Prove that

lim sup
k→∞

(ak + bk) ≤ lim sup
k→∞

ak + lim sup
k→∞

bk .

(b) Give an example for which equality does not hold above.
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Solution (a): Let ck = ak + bk for every k ∈ N. For every
k ∈ N we define

ak = sup{al : l ≥ k} ,

bk = sup{bl : l ≥ k} ,

ck = sup{cl : l ≥ k} .

Because {ak}k∈N, {bk}k∈N, and {ck}k∈N are bounded above, for
every k ∈ N we have

ak < ∞ , bk < ∞ , ck < ∞ .

Therefore {ak}k∈N, {bk}k∈N, and {bk}k∈N are nonincreasing se-
quences in R. Moreover, because {ak}k∈N, {bk}k∈N, and {ck}k∈N

are bounded below, the sequences {ak}k∈N, {bk}k∈N, and {bk}k∈N

are also bounbed below. They therefore converge by Montonic
Sequence Convergence Theorem. By the definition of lim sup
we have

lim sup
k→∞

ak = lim
k→∞

ak ,

lim sup
k→∞

bk = lim
k→∞

bk ,

lim sup
k→∞

ck = lim
k→∞

ck .

The key step is to prove that ck ≤ ak + bk for every k ∈ N.
Because for every k ∈ N we have

al ≤ ak , and bl ≤ bk , for every l ≥ k ,

it follows that for every k ∈ N we have

cl = al + bl ≤ ak + bk for every l ≥ k .

Hence,

ck = sup{cl : l ≥ k} ≤ ak + bk .

Then by the properties of limits

lim sup
k→∞

(ak + bk) = lim sup
k→∞

ck

= lim
k→∞

ck

≤ lim
k→∞

(ak + bk)

= lim
k→∞

ak + lim
k→∞

bk

= lim sup
k→∞

ak + lim sup
k→∞

bk . �
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Solution (b): Let ak = (−1)k and bk = (−1)k+1 for every
k ∈ N. Clearly

lim sup
k→∞

ak = lim
k→∞

a2k = 1 ,

lim sup
k→∞

bk = lim
k→∞

b2k+1 = 1 ,

while (because ak + bk = 0 for every k ∈ N)

lim sup
k→∞

(ak + bk) = lim
k→∞

(ak + bk) = 0 .

Therefore

lim sup
k→∞

(ak + bk) = 0 < 2 = lim sup
k→∞

ak + lim sup
k→∞

bk . �

3. [20] Determine all a ∈ R for which the following formal infinite
series converge. Give your reasoning.

(a)

∞
∑

n=2

1

log(n)
an

Solution: The series converges for a ∈ [−1, 1) and di-
verges otherwise.

The cases |a| < 1 and |a| > 1 are best handled by the Ratio
Test. Let bn = an/ log(n). Because

lim
n→∞

|bn+1|

|bn|
= lim

n→∞

log(n + 1)

log(n)
|a| = |a| ,

the Ratio Test then implies that this series converges ab-
solutely for |a| < 1 and diverges for |a| > 1.

The case a = −1 is best handled by the Alternating Series
Test. Indeed, because the sequence

{

1

log(n)

}

∞

n=2

is decreasing and positive .

and because

lim
n→∞

1

log(n)
= 0 ,

the Alternating Series Test shows that

∞
∑

n=2

(−1)n
1

log(n)
converges .
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The case a = 1 is best handled by Limit Comparison Test,
say with the harmonic series. Indeed, because

lim
n→∞

log(n)

n
= 0 ,

and because the harmonic series
∞

∑

n=2

1

n
diverges ,

the Limit Comparison Test shows that
∞

∑

n=2

1

log(n)
diverges .

Alternatively, one could treat this case with the Direct
Comparison Test, the Integral Test, or the Cauchy 2k Test.

�

(b)

∞
∑

k=1

(

k

k5 + 1

)a

Solution: The series converges for a ∈ ( 1
4
,∞) and diverges

otherwise. Because
k

k5 + 1
∼

1

k4
as k → ∞ ,

one sees that the original series should be compared with
the p-series

∞
∑

k=1

1

k4a
.

This is best handled by Limit Comparison Test. Indeed,
because for every a ∈ R one has

lim
k→∞

(

k

k5 + 1

)a

1

k4a

= lim
k→∞

(

k5

k5 + 1

)a

= 1 ,

the Limit Comparison Test then implies that
∞

∑

k=1

(

k

k5 + 1

)a

converges ⇐⇒
∞

∑

k=1

1

k4a
converges .

Because p = 4a for the p-series, that series converges for
a ∈ (1

4
,∞) and diverges otherwise. The same is therefore

true for the original series. �
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4. [20] Let f : (a, b) → R be uniformly continuous over (a, b). Let
{xk}k∈N be a Cauchy sequence contained in (a, b). Show that
{f(xk)}k∈N is a Cauchy sequence.

Solution: Let ε > 0. Because f : (a, b) → R is uniformly
continuous over (a, b), there exists a δ > 0 such that for all
points x, y ∈ (a, b) one has

|x − y| < δ =⇒
∣

∣f(x) − f(y)
∣

∣ < ε .

Because {xk}k∈N is a Cauchy sequence, there exists an N ∈ N

such that for every k, l ∈ N one has

k, l > N =⇒ |xk − xl| < δ .

Hence, for every k, l ∈ N one has

k, l > N =⇒ |xk − xl| < δ

=⇒
∣

∣f(xk) − f(xl)
∣

∣ < ε .

Therefore {f(xk)}k∈N is a Cauchy sequence. �

5. [10] Let {xn}
∞

n=1 be a sequence in (a, b). Give negations of each
of the following assertions.

(a) For every ε > 0 there exists an nε ∈ N such that

m, n > nε =⇒ |xm − xn| < ε .

Solution: There exists ε > 0 such that for every l ∈ N

there exists m, n ∈ N such that

m, n > l and |xm − xn| ≥ ε .

(b) There exists a c ∈ R such that no subsequence of {xn}
∞

n=1

converges to c.

Solution: For every c ∈ R there exists a subsequence of
{xn}

∞

n=1 that converges to c.

6. [20] Let f : (a, b) → R be differentiable at a point c ∈ (a, b)
with f ′(c) < 0. Show that there exists a δ > 0 such that

x ∈ (c − δ, c) ⊂ (a, b) =⇒ f(x) > f(c) ,

x ∈ (c, c + δ) ⊂ (a, b) =⇒ f(c) > f(x) ,

Remark: It is very incorrect to assert that f is decreasing in
an interval containing c.
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Solution: Because f is differentiable at c, we have

lim
x→c

f(x) − f(c)

x − c
= f ′(c) .

Because f ′(c) < 0 there exists δ > 0 such that (c − δ, c + δ) ⊂
(a, b) and

0 < |x − c| < δ =⇒

∣

∣

∣

∣

f(x) − f(c)

x − c
− f ′(c)

∣

∣

∣

∣

< −f ′(c)

=⇒
f(x) − f(c)

x − c
< 0 .

Hence,

x ∈ (c − δ, c) =⇒ f(x) − f(c) =
f(x) − f(c)

x − c
(x − c) > 0

=⇒ f(x) > f(c) ,

x ∈ (c, c + δ) =⇒ f(x) − f(c) =
f(x) − f(c)

x − c
(x − c) < 0

=⇒ f(x) < f(c) .

�

7. [20] Let f(x) = sinh(x) ≡ 1
2
(ex − e−x) for every x ∈ R. Then

for every k ∈ N and every x ∈ R one has

f (2k)(x) = sinh(x) , f (2k+1)(x) = cosh(x) .

Show that

sinh(x) =
∞

∑

k=0

1

(2k + 1)!
x2k+1 for every x ∈ R .

Solution: Because f(x) = sinh(x) ≡ 1
2
(ex − e−x), we have

cosh(x) = f ′(x) = 1
2
(ex + e−x). It follows that

f (2k)(0) = sinh(0) = 0 , f (2k+1)(0) = cosh(0) = 1 .

The series is therefore just the formal Taylor series for f cen-
tered at 0. Moreover, we see that the nth partial sum can be
expressed as a Taylor polynomial approximation in two ways:

n
∑

k=0

1

(2k + 1)!
x2k+1 = T

(2n+1)
0 sinh(x) = T

(2n+2)
0 sinh(x) .
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If we use the last expression, the Lagrange Remainder Theorem
then states that for every nonzero x ∈ R

sinh(x) = T
(2n+2)
0 sinh(x) +

1

(2n + 3)!
cosh(p)x2n+3 ,

for some p between 0 and x. Because cosh is an even function
that is increasing over [0,∞), for every p between 0 and x one
has cosh(p) < cosh(x). Hence, for every x ∈ R

∣

∣

∣

∣

sinh(x) −
n

∑

k=0

1

(2k + 1)!
x2k+1

∣

∣

∣

∣

≤
1

(2n + 3)!
cosh(x)|x|2n+3 .

Because for every x ∈ R

lim
n→∞

1

(2n + 3)!
cosh(x)|x|2n+3 = 0 ,

the sequence of partial sums therefore converges to sinh(x). �

Remark: An alternative approach is to first show that

ex =

∞
∑

n=0

1

n!
xn for every x ∈ R .

and then use the fact f(x) = sinh(x) = 1
2
(ex − e−x) to derive

the series for sinh. The first step uses the Lagrange Remaninder
Theorem and is given in the notes while second goes like

sinh(x) = 1
2
(ex − e−x)

= 1
2

( ∞
∑

n=0

1

n!
xn −

∞
∑

n=0

1

n!
(−x)n

)

=

∞
∑

n=0

1

n!

1 − (−1)n

2
xn

=

∞
∑

k=0

1

(2k + 1)!
x2k+1 .

�

8. [20] Let f : [a, b] → R be Riemann integrable. Show that for
every ε > 0 there exists a partition P of [a, b] such that

0 ≤ U(f, P ) − L(f, P ) < ε ,

where L(f, P ) and U(f, P ) are the lower and upper Darboux
sums associated with f and P .
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Solution: Let ε > 0. Because

L(f) = sup{L(f, P ) : P is a partition of [a, b]} ,

U(f) = inf{U(f, P ) : P is a partition of [a, b]} ,

there exists partitions P L and P U of [a, b] such that

L(f) −
ε

2
< L(f, P L) ≤ L(f) ,

U(f) ≤ U(f, P U) < U(f) +
ε

2
.

Let P ε = P L ∨ P U . Then by the Refinement Lemma

L(f) −
ε

2
< L(f, P L) ≤ L(f, P ε) ≤ L(f) ,

U(f) ≤ U(f, P ε) ≤ U(f, P U) < U(f) +
ε

2
.

Because f is Riemann integrable, L(f) = U(f). Hence,

0 ≤ U(f, P ε) − L(f, P ε) <

(

U(f) +
ε

2

)

−

(

L(f) −
ε

2

)

= ε .

�

9. [20] Let f : [a, b] → R be continuous. Prove that there exists
p ∈ (a, b) such that

f(p) =
1

eb − ea

∫

b

a

f(x)ex dx .

Solution: Let g : [a, b] → R be given by g(x) = ex for every
x ∈ [a, b]. Clearly g is Riemann integrable over [a, b]. Because
f : [a, b] → R is continuous while g : [a, b] → R is positive and
Riemann integrable, the Integral Mean-Value Theorem implies
there exists p ∈ (a, b) such that

∫

b

a

f(x)g(x) dx = f(p)

∫

b

a

g(x) dx .

But
∫

b

a

g(x) dx =

∫

b

a

ex dx = eb − ea > 0 ,

so that

f(p) =
1

eb − ea

∫

b

a

f(x)ex dx .

�
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10. [20] Prove that every countable set has measure zero.

Solution: Let A ⊂ R be countable. Let ε > 0. Because A
is countable there exists a sequence {xk}k∈N ⊂ R such that
A ⊂ {xk}k∈N. Let r < 1

2
. Then

A ⊂ {xk}k∈N ⊂
⋃

k∈N

(xk − rk+2ε, xk + rk+2ε) ,

while (because r < 1
2

implies 2r2/(1 − r) < 1)
∞

∑

k=0

2rk+2ε =
2r2ε

1 − r
< ε .

But ε > 0 was arbitrary, so A has measure zero. �


