Final Exam Solutions: MATH 410
Saturday, 16 December 2006

1. [30] State whether each of the following statements is true or
false. Give a proof when true and a counterexample when false.

(a) A sequence {ap}ren in R is convergent if the sequence
{a?}ren is convergent.

(b) If f: R — R is differentiable and increasing over R then
f' >0 over R.

(c¢) A function f : [a,b] — R is Riemann integrable over [a, b]
if the function f? is is Riemann integrable over [a.b].

Solution (a): This is false. A simple counterexample is given
by ar, = (—1)* for every k € N. Then the sequence {a}}ren
converges to 1 (because a? = (—1)?* = 1), while the sequence
{ay }ren does not converge. O

Solution (b): This is also false. A simple counterexample
is f : R — R given by f(z) = 23 This function is clearly
increasing and differentiable over R with f’(z) = 322. Hence,
f(0) = 0, which is not positive.

Solution (c): This is also false. A simple counterexample is
f :la,b] — R given by

fla) = {1 if v €Q,

—1 otherwise.

The function f? is is Riemann integrable over [a.h] because
f2(z) = (f(z))* = 1 for every z € [a,b], while f is not Rie-
mann integrable over [a.b] because L(f) = —1 < 1 = U(f).
Indeed, for every partition P of [a,b] one has L(f, P) = —1 and
U(f,P)=1.

2. [20] Let {ax}ren and {bx}reny be bounded sequences in R.
(a) Prove that

lim sup(ay + bx) < limsup a; + lim sup by, .

k—o0 k—o0 k—o0

(b) Give an example for which equality does not hold above.
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Solution (a): Let ¢; = ai + b for every k € N. For every
k € N we define
ap =sup{a; : | >k},

l_)k:sup{bl . ZZ/{Z},
¢, =sup{¢ : 1> k}.

Because {ag }ren, {0k }ren, and {cx}ren are bounded above, for
every k € N we have

ap < 00, Ek<OO, Cr < 00.

Therefore {@ }ren, {bx}ren, and {b;}ren are nonincreasing se-
quences in R. Moreover, because {ay }ren, {0k }ren, and {cx }ren
are bounded below, the sequences {@ }ren, {0k }ren, and {by ren
are also bounbed below. They therefore converge by Montonic
Sequence Convergence Theorem. By the definition of lim sup
we have

limsup a,, = lim @,
k—00 k—o0

limsup by, = lim by,
k—00 k—o0

limsupc, = lim ¢ .
k—o00 k—o0

The key step is to prove that ¢, < @ + by, for every k € N.
Because for every k € N we have
a<a,, and b <b,, foreveryl>k,
it follows that for every k € N we have
a=a+b <a,+b, foreveryl>k.
Hence,
G =supi{c : [ >k} <@ +by.
Then by the properties of limits

lim sup(ay + bg) = limsup ¢
k—oo k—oo
= lim Cr,

k—oo
< lim (@ + by,
= lim @, + lim by

k—oo k—oo
= limsup ay + limsup b, . U

k—oo k—oo
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Solution (b): Let a, = (—1)F and b, = (—=1)*"! for every
k € N. Clearly

limsupag = lim ag, =1,
k—oo

k—oo
limsup by, = lim bopy1 =1,
k—00 k—o0

while (because ay + by = 0 for every k € N)
limsup(ag + bg) = klim (ar, +br) =0.

k—o0

Therefore
limsup(ay + bx) = 0 < 2 =limsup a; + limsupb,. O

k—oo k—oo k—oo

. [20] Determine all a € R for which the following formal infinite
series converge. Give your reasoning.

() 3 o

— log(n)

Solution: The series converges for a € [—1,1) and di-
verges otherwise.

The cases |a| < 1 and |a| > 1 are best handled by the Ratio
Test. Let b, = a™/log(n). Because

. log(n+1)
= lim ——~

la] = [al,
the Ratio Test then implies that this series converges ab-
solutely for |a| < 1 and diverges for |a| > 1.

The case a = —1 is best handled by the Alternating Series
Test. Indeed, because the sequence

1 > . : e
— is decreasing and positive .
log(n)

and because

n=2

s log(n) ’

the Alternating Series Test shows that

1
Z(— " og(n) converges .



The case a = 1 is best handled by Limit Comparison Test,
say with the harmonic series. Indeed, because

log(n
lim g(n) =0,
n—oo n
and because the harmonic series
o
1 .
Z — diverges,
n
n=2

the Limit Comparison Test shows that

Z ——— diverges.
“— log(n)

Alternatively, one could treat this case with the Direct
Comparison Test, the Integral Test, or the Cauchy 2% Test.

> (ws)

k=1

Solution: The series converges for a € (i, o0) and diverges
otherwise. Because
k 1
Bl kK
one sees that the original series should be compared with
the p-series

as k — oo,

v L
4a ”
k=1 k
This is best handled by Limit Comparison Test. Indeed,
because for every a € R one has

k—o00 1 k—o00

(1)

51 5\

lim u: lim <k5+1) =1,
=

the Limit Comparison Test then implies that

[eS) k a 0 1
Z 15 1 converges < Z @ converges .

k=1 k=1

Because p = 4a for the p-series, that series converges for
a € (i, oo) and diverges otherwise. The same is therefore
true for the original series. O
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4. [20] Let f : (a,b) — R be uniformly continuous over (a,b). Let
{z1}ren be a Cauchy sequence contained in (a,b). Show that
{f(xr)}ken is a Cauchy sequence.

Solution: Let ¢ > 0. Because f : (a,b) — R is uniformly
continuous over (a,b), there exists a § > 0 such that for all
points x,y € (a,b) one has

z—yl<d = |[f(z)—fly)| <e.

Because {zy}ren is a Cauchy sequence, there exists an N € N
such that for every k,l € N one has

k>N = |rzpg—x|<9.
Hence, for every k,l € N one has
k>N = |zxz—x| <9
= |fzr) = fw)] <e.

Therefore {f(zx)}ren is a Cauchy sequence. O
5. [10] Let {z,}5°, be a sequence in (a,b). Give negations of each

of the following assertions.

(a) For every € > 0 there exists an n. € N such that

m,n>n. = |x, —x,| <e.

Solution: There exists € > 0 such that for every [ € N
there exists m,n € N such that

m,n > 1 and | T — xp] > €.

(b) There exists a ¢ € R such that no subsequence of {z,}>
converges to c.

Solution: For every ¢ € R there exists a subsequence of
{x,}22, that converges to c.

6. [20] Let f : (a,b) — R be differentiable at a point ¢ € (a,b)
with f’(¢) < 0. Show that there exists a § > 0 such that
z€(c—bc)C(ab) = f(x)>flc),
z € (c,c+0) C(ab) = [flc)> f(z),

Remark: It is very incorrect to assert that f is decreasing in
an interval containing c.



Solution: Because f is differentiable at ¢, we have
z—c T —C

Because f'(c) < 0 there exists 0 > 0 such that (¢ —d,¢+J) C
(a,b) and

O<lz—c <5 —> w—f(@ < —F(e)
— 7f($;:£(c)<0.
Hence,

z€(c—6c) = f(:v)—f(c)—f($£z:f(c)(a:—c)>0
= f(z) > f(c),

T € (e, ct6) —> f(x)—f(c)—f($x):£(c>(x—c)<0
— f(z) < f(c)

]

. [20] Let f(x) = sinh(x) = 3(e” — e™") for every x € R. Then

for every k£ € N and every x € R one has
) (z) = sinh(x), FEHD (1) = cosh(x) .
Show that

= 1
sinh(z) = kZ:O @ 2+ for every r € R.
Solution: Because f(z) = sinh(z) = 1(e® — ™), we have

cosh(z) = f'(z) = 3(e” + e~*). It follows that
feM(0) = sinh(0) =0,  f®*(0) = cosh(0) = 1.

The series is therefore just the formal Taylor series for f cen-
tered at 0. Moreover, we see that the n'" partial sum can be
expressed as a Taylor polynomial approximation in two ways:

Z EE] R TO(2 ) sinh(z) = TO(2 +2) sinh(z) .
k=0 '
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If we use the last expression, the Lagrange Remainder Theorem
then states that for every nonzero x € R

2n+3

sinh(z) = T°"*? sinh(z) + cosh(p)z™"*

1
(2n + 3)!
for some p between 0 and x. Because cosh is an even function
that is increasing over [0, 00), for every p between 0 and x one
has cosh(p) < cosh(x). Hence, for every x € R

. 1 1
sinh(z) ; N x S @t cosh(z)|x|
Because for every z € R
1
lim ————— cosh(x)|z[*"*® =0,

n—oo (2n + 3)!

the sequence of partial sums therefore converges to sinh(z). O

Remark: An alternative approach is to first show that

o
1
x n
e ——E —n!l’ for every x € R.

n=0

and then use the fact f(z) = sinh(z) = L(e” — e™™) to derive

the series for sinh. The first step uses the Lagrange Remaninder
Theorem and is given in the notes while second goes like

sinh(z) = (e* —e™)

2

U
. [20] Let f : [a,b] — R be Riemann integrable. Show that for
every € > 0 there exists a partition P of [a, b] such that

0< U(f,P)—L(f,P) <€,

where L(f, P) and U(f, P) are the lower and upper Darboux
sums associated with f and P.



Solution: Let ¢ > (0. Because
L(f) = sup{L(f, P) : P is a partition of [a, ]},
U(f) =inf{U(f, P) : P is a partition of [a,b]},
there exists partitions P and PV of [a, b] such that
_ € _
L)~ & < L(.PH < T().
U(f) UL PY) <U(f) + 5.
Let P¢ = PE Vv PY. Then by the Refinement Lemma
_ € _
I(f) - § < L(f.PY < (. P) <T()

U() <UL PYSULPY) <UD + 5
). Hence,

Because f is Riemann integrable, L(f) = U(f

OSUMPﬂ—MﬁPﬂ<(mﬂ+§) (aﬁ-g):e
O

. [20] Let f : [a,b] — R be continuous. Prove that there exists
€ (a,b) such that

1 b
:eb—e“/ f(x)e® dz.

Solution: Let g : [a,b] — R be given by g(z) = e for every
x € [a,b]. Clearly g is Riemann integrable over [a, b]. Because
f :[a,b] — R is continuous while ¢ : [a,b] — R is positive and
Riemann integrable the Integral Mean-Value Theorem implies
there exists p € (a,b) such that

/f f(p)/abg(x)dx-
/abg(x)dx:/abexdx:eb—e“>0,

) = —— [ fle)eraz.

But

so that




10. [20] Prove that every countable set has measure zero.

Solution: Let A C R be countable. Let ¢ > 0. Because A
is countable there exists a sequence {zy}ren C R such that
A CH{zp}ren. Let r < % Then

A C{ap}ren C U(!Ek — "2y 4+ 1)
keN
while (because r < 3 implies 2r?/(1 —r) < 1)
Z27’k+2e - e <e€.
1—r
k=0

But € > 0 was arbitrary, so A has measure zero. U



