
Math 246, Sample Problem Solutions for Third In-Class Exam

(1) Consider the matrices

A =

(

3 1 − i
2 + i 4

)

, B =

(

6 7
5 6

)

.

Compute the matrices
(a) AT ,

Solution: The transpose of A is given by

AT =

(

3 2 + i
1 − i 4

)

.

(b) A,

Solution: The conjugate of A is given by

A =

(

3 1 + i
2 − i 4

)

.

(c) A∗,

Solution: The adjoint of A is given by

A∗ =

(

3 2 − i
1 + i 4

)

.

(d) 2A − B,

Solution: The difference of 2A and B is given by

2A − B =

(

6 2 − i2
4 + i2 8

)

−

(

6 7
5 6

)

=

(

0 −5− i2
−1 + i2 2

)

.

(e) AB,

Solution: The product of A and B is given by

AB =

(

3 1 − i
2 + i 4

) (

6 7
5 6

)

=

(

3 · 6 + (1 − i) · 5 3 · 7 + (1 − i) · 6
(2 + i) · 6 + 4 · 5 (2 + i) · 7 + 4 · 6

)

=

(

23− i5 27 − i6
32 + i6 38 + i7

)

.

(f) B−1.

Solution: Observe that it is clear that B has an inverse because

det(B) = det

(

6 7
5 6

)

= 6 · 6 − 5 · 7 = 36− 35 = 1 6= 0 .

The inverse of B is given by

B−1 =

(

6 −7
−5 6

)

.

This may be computed in a number of ways. Here are three.
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First, it can be computed by applying elementary row operations to
transform the augmented matrix (B | I) into (I |B−1) as follows:

(

B
∣

∣ I
)

=

(

6 7
∣

∣ 1 0
5 6

∣

∣ 0 1

)

∼

(

1 7

6

∣

∣

1

6
0

5 6
∣

∣ 0 1

)

∼

(

1 7

6

∣

∣

1

6
0

0 1

6

∣

∣ − 5

6
1

)

∼

(

1 7

6

∣

∣

1

6
0

0 1
∣

∣ −5 6

)

∼

(

1 0
∣

∣ 6 −7
0 1

∣

∣ −5 6

)

=
(

I
∣

∣ B−1
)

.

Second, because B is a two-by-two matrix, its inverse can be computed
directly from the formula

(

a b
c d

)

−1

=
1

ad − bc

(

d −b
−c a

)

whenever ad − bc 6= 0 .

This formula is just formula (24) on page 352 of the book specialized
to the two-by-two case. When applied to B it yields

B−1 =

(

6 7
5 6

)

−1

=
1

36− 35

(

6 −7
−5 6

)

=

(

6 −7
−5 6

)

.

Finally, the inverse of B may be computed directly from its definition
by seeking a, b, c, and d such that

(

1 0
0 1

)

=

(

6 7
5 6

) (

a b
c d

)

=

(

6a + 7c 6b + 7d
5a + 6c 5b + 7d

)

.

Then a and c are found by solving the two-by-two system

6a + 7c = 1 , 5a + 6c = 0 ,

which gives a = 6 and c = −5. Similarly b and d are found by solving
the two-by-two system

6b + 7d = 0 , 5b + 6d = 1 ,

which gives b = −7 and d = 6. You thereby find that

B−1 =

(

a b
c d

)

=

(

6 −7
−5 6

)

.

(2) Consider the matrix

A =

(

5 −3
−3 5

)

.

(a) Find all the eigenvalues of A.

Solution: The eigenvalues are the roots of the equation

0 = det(A − λI) = det

(

5 − λ −3
−3 5− λ

)

= (5 − λ)2 − 32 .

The eigenvalues are therefore λ = 5 ± 3, or simply 2 and 8.
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(b) For each eigenvalue of A find an eigenvector.

Solution: A vector v is an eigenvector of A corresponding to an eigen-
value λ provided it is a nonzero solution of (A − λI)v = 0. The ap-
proach taken in the book is to solve these equations.
An eigenvector of A corresponding to λ = 2 satisfies

(

0
0

)

=

(

5 − 2 −3
−3 5 − 2

) (

v1

v2

)

=

(

3 −3
−3 3

) (

v1

v2

)

.

This leads to the equation v1 = v2. An eigenvector of A corresponding
to the eigenvalue 2 is thereby

v =

(

1
1

)

,

or any nonzero multiple of it.

An eigenvector of A corresponding to λ = 8 satisfies
(

0
0

)

=

(

5 − 8 −3
−3 5 − 8

) (

v1

v2

)

=

(

−3 −3
−3 −3

) (

v1

v2

)

.

This leads to the equation v1 = −v2. An eigenvector of A correspond-
ing to the eigenvalue 8 is thereby

v =

(

1
−1

)

,

or any nonzero multiple of it.

The approach taken in class was based on the Cayley-Hamilton theo-
rem, which states that

0 = p(A) = (A − 2I)(A − 8I) = (A − 8I)(A − 2I) .

Hence, any nonzero column of (A−8I) is an eigenvector of λ = 2 while
any nonzero column of (A − 2I) is an eigenvector of λ = 8. Because

A − 8I =

(

−3 −3
−3 −3

)

, A − 2I =

(

3 −3
−3 3

)

,

you can read off that an eigenvector of A corresponding to the eigen-
value 2 is

v =

(

1
1

)

,

or any nonzero multiple of it, while an eigenvector of A corresponding
to the eigenvalue 8 is

v =

(

1
−1

)

,

or any nonzero multiple of it.

(3) Consider the linear algebraic system

x1 + 2x2 − x3 = 1 ,

2x1 + x2 + x3 = 1 ,

x1 − x2 + 2x3 = 1 .

Either find its general solution or else show that it has no solution.
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Solution: First, a remark. By any method you can compute

det





1 2 −1
2 1 1
1 −1 2



 = 0 .

This does not mean however that there is no solution. All it means is that
there might be no solution. Whether there is a solution or not depends
on the right-hand side of the system. For example, if the numbers on the
right-hand side are 1, 2, and 1 rather than 1, 1, and 1, then the system
would have the solution x1 = 1, x2 = 0 and x3 = 0.

In fact, the given system has no solution. There are many ways to see
this. One of the simplest is to add the first and third equations to obtain

2x1 + x2 + x3 = 2 ,

which clearly contradicts the second equation. Done.
You can find similar contradictions by taking other combinations of the

equations. For example, subtracting the first from the second contradicts
the third. Done.

Alternatively, you can try to solve the system by applying elementary
row operations to the augmented matrix. This gives





1 2 −1
∣

∣ 1
2 1 1

∣

∣ 1
1 −1 2

∣

∣ 1



 ∼





1 2 −1
∣

∣ 1
0 −3 3

∣

∣ −1
0 −3 3

∣

∣ 0



 .

The last two rows on the right-hand side are clearly contradictory, whereby
the system has no solution. Done.

If you did not see the contradiction above and continued to apply ele-
mentary row operations, you would get

∼





1 2 −1
∣

∣ 1
0 1 −1

∣

∣

1

3

0 −3 3
∣

∣ 0



 ∼





1 0 1
∣

∣

1

3

0 1 −1
∣

∣

1

3

0 0 0
∣

∣ 1



 .

At this point the last row clearly shows that the system has no solution.
You have arrived at the right answer, but it took you too long to get there!

(4) Solve each of the following initial-value problems.
(a)

d

dt

(

x1

x2

)

=

(

1 1
4 −2

)(

x1

x2

)

,

(

x1(0)
x2(0)

)

=

(

2
−1

)

.

Solution: First, you must compute the characteristic polynomial p(z)
of the coefficient matrix

A =

(

1 1
4 −2

)

.

Because A is 2×2 this can either be done as

p(z) = z2 − tr(A) z + det(A)

= z2 − (1 − 2)z + (−2 − 4) = z2 + z − 6 ,
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or as

p(z) = det(A − zI)

= det

(

1 − z 1
4 −2 − z

)

= (1 − z)(−2 − z) − 4

= z2 − (1 − 2)z − 2 − 4 = z2 + z − 6 .

By either method, after factoring you obtain

p(z) = (z + 3)(z − 2) ,

whereby the eigenvalues of A are −3 and 2.

Now there are several approaches you can take. The approach used in
class goes as follows. First, compute the exponential matrix exp(At).
Because A has two simple real roots one has that

exp(At) =
1

2 − (−3)

[

(2I − A) e−3t + (A + 3I)e2t
]

=
1

5

[(

1 −1
−4 4

)

e−3t +

(

4 1
4 1

)

e2t

]

.

The solution of the initial-value problem is then given by

x(t) = exp(At)

(

2
−1

)

=
1

5

[(

1 −1
−4 4

) (

2
−1

)

e−3t +

(

4 1
4 1

) (

2
−1

)

e2t

]

=
1

5

[(

3
−12

)

e−3t +

(

7
7

)

e2t

]

.

The approach used in the book goes as follows. First compute eigen-
vectors associated with the eigenvalues −3 and 2 respectively:

(

1
−4

)

, and

(

1
1

)

.

The general solution is thereby found to be

x(t) = c1

(

1
−4

)

e−3t + c2

(

1
1

)

e2t .

The initial condition then leads to the equations

c1 + c2 = 2 , −4c1 + c2 = −1 .

These are then solved to find c1 = 3/5 and c2 = 7/5. Hence,

x(t) =
3

5

(

1
−4

)

e−3t +
7

5

(

1
1

)

e2t .

Notice that the details of finding the eigenvectors and of solving for c1

and c2 are omitted above. When these details are added it should be
clear to you that this approach takes much longer than the approach
used in class.
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(b)

d

dt

(

x1

x2

)

=

(

−1 4
1 −1

) (

x1

x2

)

,

(

x1(0)
x2(0)

)

=

(

1
1

)

.

Solution: First, you must compute the characteristic polynomial p(z)
of the coefficient matrix

A =

(

−1 4
1 −1

)

.

Because A is 2×2 this can either be done as

p(z) = z2 − tr(A) z + det(A)

= z2 − (−1 − 1)z + (1 − 4) = z2 + 2z − 3 ,

or as

p(z) = det(A − zI)

= det

(

−1 − z 4
1 −1− z

)

= (z − 1)2 − 4 .

By either method, after factoring you obtain

p(z) = (z + 3)(z − 1) ,

whereby the eigenvalues of A are −3 and 1.

Now there are several approaches you can take. The approach used in
class goes as follows. First, compute the exponential matrix exp(At).
Because A has two simple real roots one has that

exp(At) =
1

1 − (−3)

[

(I − A) e−3t + (A + 3I)et
]

=
1

4

[(

2 −4
−1 2

)

e−3t +

(

2 4
1 2

)

et

]

.

The solution of the initial-value problem is then given by

x(t) = exp(At)

(

1
1

)

=
1

4

[(

2 −4
−1 2

) (

1
1

)

e−3t +

(

2 4
1 2

) (

1
1

)

et

]

=
1

4

[(

−2
1

)

e−3t +

(

6
3

)

et

]

.

The approach used in the book goes as follows. First compute eigen-
vectors associated with the eigenvalues −3 and 2 respectively:

(

2
−1

)

, and

(

2
1

)

.

The general solution is thereby found to be

x(t) = c1

(

2
−1

)

e−3t + c2

(

2
1

)

et .

The initial condition then leads to the equations

2c1 + 2c2 = 1 , −c1 + c2 = 1 .
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These are then solved to find c1 = −1/4 and c2 = 3/4. Hence,

x(t) =
1

4

(

−2
1

)

e−3t +
3

4

(

2
1

)

e2t .

Notice that the details of finding the eigenvectors and of solving for c1

and c2 are omitted above. When these details are added it should be
clear to you that this approach takes much longer than the approach
used in class.

(5) Find a greneral solution for each of the following systems.
(a)

d

dt

(

x1

x2

)

=

(

0 −4
2 4

) (

x1

x2

)

.

Solution: The characteristic polynomial of the coefficient matrix A is

p(z) = z2 − 4z + 8 = (z − 2)2 + 4 .

This has the roots z = 2 ± i2.

Now there are several approaches you can take. The approach used in
class goes as follows. First, compute the exponential matrix exp(At).
Because A has the simple conjugate pair of roots 2 ± i2 one has that

exp(At) = Ie2t cos(2t) + (A − 2I)e2t sin(2t)

2

=

(

1 0
0 1

)

e2t cos(2t) +

(

−2 −4
2 2

)

e2t sin(2t)

2

= e2t

(

cos(2t) − sin(2t) −2 sin(2t)
sin(2t) cos(2t) + sin(2t)

)

.

A general solution is therefore

x(t) =

(

x1(t)
x2(t)

)

= exp(At)

(

c1

c2

)

= e2t

(

c1[cos(2t) − sin(2t)] − 2c2 sin(2t)
c1 sin(2t) + c2[cos(2t) + sin(2t)]

)

.

(b)

d

dt

(

x
y

)

=

(

5 3
−2 −2

) (

x
y

)

.

Solution: The characteristic polynomial of the coefficient matrix A is

p(z) = z2 − 3z − 4 = (z + 1)(z − 4) .

This has the roots z = −1 and z = 4.

Now there are several approaches you can take. The approach used in
class goes as follows. First, compute the exponential matrix exp(At).
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Because A has the two simple real roots −1 and 4 one has that

exp(At) =
1

4 − (−1)

[

(4I − A) e−t + (A + I)e4t
]

=
1

5

[(

−1 −3
2 6

)

e−t +

(

6 3
−2 −1

)

e4t

]

=
1

5

(

6e4t − e−t 3e4t − 3e−t

2e−t − 2e4t 6e−t − e4t

)

.

A general solution is therefore given by

x(t) =

(

x1(t)
x2(t)

)

= exp(At)

(

c1

c2

)

=
1

5

(

6e4t − e−t 3e4t − 3e−t

2e−t − 2e4t 6e−t − e4t

)(

c1

c2

)

=
1

5

(

c1[6e4t − e−t] + c2[3e4t − 3e−t]
c1[2e−t − 2e4t] + c2[6e−t − e4t]

)

.

(6) Sketch phase-plane portraits for each of the following systems. State the
type and stability of the origin.
(a)

d

dt

(

x1

x2

)

=

(

1 1
4 −2

) (

x1

x2

)

.

Solution: The characteristic polynomial of the coefficient matrix is

p(z) = z2 + z + (−2 − 4) = z2 + z − 6 = (z + 3)(z − 2) .

This has the roots z = −3 and z = 2 with corresponding eigenvectors
given by

(

1
−4

)

and

(

1
1

)

.

The origin thereby is a saddle and is unstable. The portrait is attract-
ing along the line y = −4x and repelling along the line y = x.

(b)
d

dt

(

x1

x2

)

=

(

−1 4
1 −1

) (

x1

x2

)

.

Solution: The characteristic polynomial of the coefficient matrix is

p(z) = z2 + 2z + (1 − 4) = (z + 1)2 + 4 .

This has the roots z = −1± i2. The origin thereby is a spiral sink and
is asymptotically stable. The orbits go clockwise around the origin.

(c)
d

dt

(

x1

x2

)

=

(

1 −5
2 −1

) (

x1

x2

)

.

Solution: The characteristic polynomial of the coefficient matrix is

p(z) = z2 + (−1 + 10) = z2 + 9 .

This has the roots z = ±i3. The origin thereby is a center and is sta-
ble. (It is not asymptotically stable!) The orbits go counterclockwise
around the origin.
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(7) Consider the system

d

dt

(

x
y

)

=

(

2x + y2

x + y + xy

)

.

(a) Find all of its critical points.

Solution: Critical points satisfy

2x + y2 = 0 , x + y + xy = 0 .

The first equation above shows that x = − 1

2
y2. When x is then

eliminated from the second equation one finds that

− 1

2
y2 + y − 1

2
y3 = 0 .

This is solved as

0 = y3 + y2 − 2y = y(y2 + y − 2) = y(y − 1)(y + 2) ,

which has roots y = −2, y = 0, and y = 1. The system thereby has
three critical points:

(−2,−2) , (0, 0) , (− 1

2
, 1) .

(b) At each critical point, compute the coefficient matrix of the lineariza-
tion.

Solution: Because
(

f(x, y)
g(x, y)

)

=

(

2x + y2

x + y + xy

)

,

the matrix of partial derivatives is
(

∂xf ∂yf
∂xg ∂yg

)

=

(

2 2y
1 + y 1 + x

)

.

Evaluating this matrix at each critical point yields the coefficient ma-
trices

(

2 −4
−1 −1

)

at (−2,−2) ,

(

2 0
1 1

)

at (0, 0) ,

(

2 2
0 1

2

)

at (− 1

2
, 1) .

This is all that is asked of you. However, if you had been asked to
classify the type and stability of each critical point then you can easily
see that (−2,−2) is a saddle (the eigenvalues are −2 and 3), (0, 0) is
a nodal source (the eigenvalues are 1 and 2), and (0, 0) is also a nodal
source (the eigenvalues are 1

2
and 2). All are therefore unstable.
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(8) Suppose you know that for some nonlinear system of differential equations
• the equilibrium solutions are (1,1), (-2,0), and (-2,3);
• for (1,1) the linearization has eigenvalues 3 and 2 with respective eigen-

vectors
(

1
1

)

and

(

1
0

)

;

• for (-2,0) the linearization has eigenvalues -1 and -3 with respective
eigenvectors

(

1
0

)

and

(

0
1

)

;

• for (-2,3) the linearization has eigenvalues -2 and 1 with respective
eigenvectors

(

1
0

)

and

(

0
1

)

;

Sketch a plausible phase portrait for the system. Identify the type and
stability of each equilibrium solution.

Solution: The type and stability of each equilibrium solution is determined
as follows.

• The equilibrium solution (1,1) has two positive simple real eigenvalues.
It is thereby a nodal source and is unstable.

• The equilibrium solution (-2,0) has two negative simple real eigenval-
ues. It is thereby a nodal sink and is asymptotically stable.

• The equilibrium solution (-2,3) has one negative and one positive sim-
ple real eigenvalue. It is thereby a saddle and is unstable.

The phase portrait will be sketched during the review.


