
Math 246, Sample Problem Solutions for Second In-Class Exam

(1) Let L be a linear ordinary differential operator with constant coefficients.
Suppose that all the roots of its characteristic polynomial (shown with
multiplicities) are −2 + 3i, −2− 3i, 7i, 7i, −7i, −7i, 5, 5, −3, 0, 0, 0.

(a) What is the order of L?

Solution: There are twelve roots listed, so the degree of the charac-
teristic polynomial is twelve, and consequently the order of L must be
twelve.

(b) Give a general real solution of the homogeneous equation Ly = 0?

Solution: The general solution is

y = c1e
−2t cos(3t) + c2e

−2t sin(3t)

+ c3 cos(7t) + c4 sin(7t) + c5t cos(7t) + c6t sin(7t)

+ c7e
5t + c8te

5t + c9e
−3t

+ c10 + c11t + c12t
2 .

The reasoning is as follows.
• The conjugate pair −2 ± 3i yields e−2t cos(3t) and e−2t sin(3t).
• The double conjugate pair ±7i yields

cos(7t) , sin(7t) , t cos(7t) , and t sin(7t) .

• The double real root 5 yields e5t and t e5t.
• The simple real root −3 yields e−3t.
• The triple real root 0 yields 1, t, and t2.

(2) Solve each of the following initial-value problems.
(a) y′′ + 4y′ + 4y = 0 , y(0) = 1 , y′(0) = 0 .

Solution: This is a constant coefficient, homogeneous linear problem.
Its characteristic polynomial is

P (z) = z2 + 4z + 4 = (z + 2)2 .

It has the double real root −2, which yields the general solution

y(t) = c1e
−2t + c2t e−2t .

Because

y′(t) = −2c1e
−2t + c2(e

−2t − 2t e−2t) ,

when the initial conditions are imposed, one finds that

y(0) = c1 = 1 , y′(0) = −2c1 + c2 = 0 .

These are solved to find that c1 = 1 and c2 = 2. The solution of the
initial-value problem is therefore

y(t) = e−2t + 2t e−2t = (1 + 2t) e−2t .
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(b) y′′ + y = 4et , y(0) = 0 , y′(0) = 0 .

Solution: This is a constant coefficient, inhomogeneous linear prob-
lem. The characteristic polynomial of its homogeneous part is

P (z) = z2 + 1 .

It has the conjugate pair of roots ±i, which yields the general homo-
geneous solution

y
H

(t) = c1 cos(t) + c2 sin(t) .

Because the forcing is of the form ezt for z = 1, and because z = 1 is
not a root of the characteristic polynomial, a particular solution can
be found quickly by either the method of undetermined coefficients (as
in the book) or the method of determined coefficients (as in class).

The method of undetermined coefficients seeks a particular solution of
the form y

P
(t) = Aet. Because y′′

P
(t) = Aet, one sees that

Ly
P

= y′′

P
+ y

P
= 2Aet = 4et ,

which implies A = 2. Hence, y
P
(t) = 2et.

The method of determined coefficients evaluates the KEY identity,
Lezt = P (z)ezt, at z = 1 to obtain Let = 2et. Multiplying this by 2
gives L(2et) = 4et, which shows that y

P
(t) = 2et.

By either method you find y
P
(t) = 2et, and the general solution of the

problem is therefore

y(t) = c1 cos(t) + c2 sin(t) + 2et .

Because

y′(t) = −c1 sin(t) + c2 cos(t) + 2et ,

when the initial conditions are imposed, one finds that

y(0) = c1 + 2 = 0 , y′(0) = c2 + 2 = 0 .

These are solved to find that c1 = −2 and c2 = −2. The solution of
the initial-value problem is therefore

y(t) = −2 cos(t) + −2 sin(t) + 2et .

(3) Find a general solution for each of the following equations.
(a) y′′ + 4y′ + 5y = 3 cos(2t) .

Solution: This is a constant coefficient, inhomogeneous linear prob-
lem. The characteristic polynomial of its homogeneous part is

P (z) = z2 + 4z + 5 = (z + 2)2 + 1 .

It has the conjugate pair of roots −2 ± i, which yields the general
homogeneous solution

y
H

(t) = c1e
−2t cos(t) + c2e

−2t sin(t) .

Because the forcing is of the form ezt for z = i2, and because z = i2 is
not a root of the characteristic polynomial, a particular solution can
be found quickly by either the method of undetermined coefficients (as
in the book) or the method of determined coefficients (as in class).
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The method of undetermined coefficients seeks a particular solution of
the form y

P
(t) = A cos(2t) + B sin(2t). Because

y′

P
(t) = −2A sin(2t) + 2B cos(2t) ,

y′′

P
(t) = −4A cos(2t) − 4B sin(2t) ,

one sees that

Ly
P

= y′′

P
+ 4y′

P
+ 5y

P

= (A + 8B) cos(2t) + (B − 8A) sin(2t) = 3 cos(2t) .

This leads to the algebraic linear system

A + 8B = 3 , B − 8A = 0 .

This can be solved to find that A = 3/65 and B = 24/65. Hence,

y
P
(t) =

3

65
cos(2t) +

24

65
sin(2t) .

The method of determined coefficients evaluates the KEY identity,
Lezt = P (z)ezt, at z = i2 to obtain Lei2t = (1 + i8)ei2t. Multiplying
this by 3/(1 + i8) shows that

L

(

3

1 + i8
ei2t

)

= 3ei2t .

Because 3ei2t = 3 cos(2t)+i3 sin(2t), the real part of the left-hand side
above will be Ly

P
. Because

3

1 + i8
ei2t =

3(1 − i8)

65

(

cos(2t) + i sin(2t)
)

=

(

3

65
cos(2t) +

24

65
sin(2t)

)

+ i

(

− 24

65
cos(2t) +

3

65
sin(2t)

)

,

this real part shows that

y
P
(t) = Re

(

3

1 + i8
ei2t

)

=
3

65
cos(2t) +

24

65
sin(2t) .

By either method you find the same y
P
, and the general solution of

the problem is therefore

y = c1e
−2t cos(t) + c2e

−2t sin(t) +
3

65
cos(2t) +

24

65
sin(2t) .

(b) y′′ − y = et .

Solution: This is a constant coefficient, inhomogeneous linear prob-
lem. The characteristic polynomial of its homogeneous part is

P (z) = z2 − 1 .

It the simple real roots−1 and 1, which yields the general homogeneous
solution

y
H

(t) = c1e
−t + c2e

t .

Because the forcing is of the form ezt for z = 1, and because z = 1
is a root of the characteristic polynomial, a particular solution can be
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found quickly by either the method of undetermined coefficients (as in
the book) or the method of determined coefficients (as in class).

The method of undetermined coefficients seeks a particular solution of
the form y

P
(t) = Atet. Because

y′

P
(t) = A(et + tet) , y′′

P
(t) = A(2et + tet) ,

one sees that

Ly
P

= y′′

P
− y

P
= A2et = et ,

which implies A = 1/2. Hence, y
P
(t) = 1

2 tet.

The method of determined coefficients evaluates the derivative of the
KEY identity, L(tezt) = P ′(z)ezt + P (z)tezt, at z = 1 to obtain
L(tet) = 2et. Dividing this by 2 gives L( 1

2 tet) = et, which shows

that y
P
(t) = 1

2 tet.

By either method you find the same y
P
, and the general solution of

the problem is therefore

y(t) = c1e
−t + c2e

t +
1

2
tet .

(4) Given that x and x2 are linearly independent solutions of the homogeneous
equation

x2y′′ − 2xy′ + 2y = xex , x > 0 ,

find a general solution of the equation

x2y′′ − 2xy′ + 2y = xex , x > 0 .

You may express the solution in terms of definite integrals.

Solution: The general solution of this inhomogeneous equation will have
the form y = y

H
+y

P
where y

H
is the general solution of the corresponding

homogeneous equation and y
P

is any particular solution of the inhomoge-
neous equation. Because you are given that x and x2 are linearly inde-
pendent solutions of the corresponding homogeneous equation, you know
that

y
H

= c1x + c2x
2 .

The methods of undetermined or determined coefficients cannot be used
to find a particular solution, so we will use the method of variation of
constants. We first put the equation into its normal form

y′′ − 2

x
y′ +

2

x2
y =

1

x
ex ,

and then seek y
P

of the form

y
P

= xu1(x) + x2u2(x) .

One chooses u′

1 and u′

2 so that they satisfy

xu′

1 + x2u′

2 = 0 , u′

1 + 2xu′

2 =
1

x
ex .

This linear system is solved to find that

u′

1 = − 1

x
ex , u′

2 =
1

x2
ex .
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Upon integrating these, your answer can be expressed either in terms of
indefinite integrals as

y = −x

∫

1

x
ex dx + x2

∫

1

x2
ex dx ,

or in terms of definite integrals as

y = c1x + c2x
2 − x

∫

x

1

1

z
ez dz + x2

∫

x

1

1

z2
ez dz .

(5) What answer will be produced by the following MATLAB commands?

>> ode1 = ’D2y + 2*Dy + 5*y = 16*exp(t)’;
>> dsolve(ode1, ’t’)

ans =

Solution: These commands ask MATLAB to give the general solution of
the equation

y′′ + 2y′ + 5y = 16et .

MATLAB produces the answer

2*exp(t)+C1*exp(–t)*sin(2*t)+C2*exp(–t)*cos(2*t)

This can be seen as follows. This is a constant coefficient, inhomogeneous
linear equation. The characteristic polynomial of its homogeneous part is

P (z) = z2 + 2z + 5 = (z + 1)2 + 4 .

Its roots are z = −1± i2, whereby the general solution of the homogeneous
part is

y
H

(t) = c1e
−t cos(2t) + c2e

−t sin(2t) .

Because the forcing is of the form ezt for z = 1, and because z = 1 is not
a root of the characteristic polynomial, a particular solution can be found
quickly by either the method of undetermined coefficients (as in the book)
or the method of determined coefficients (as in class).

The method of undetermined coefficients seeks a particular solution of
the form y

P
(t) = Aet. Because y′

P
(t) = y′′

P
(t) = Aet, one sees that

Ly
P

= y′′

P
+ 2y′

P
+ 5y

P
= 8Aet = 16et ,

which implies A = 2. Hence, y
P
(t) = 2et.

The method of determined coefficients evaluates the KEY identity, Lezt =
P (z)ezt, at z = 1 to obtain Let = 8et. Multiplying this by 2 gives
L(2et) = 16et, which shows that y

P
(t) = 2et.

By either method you find y
P
(t) = 2et, and the general solution of the

problem is therefore

y(t) = c1e
−t cos(2t) + c2e

−t sin(2t) + 2et .

Up to notational differences, this is the answer that MATLAB produces.
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(6) The vertical displacement of a mass on a spring is given by

z(t) =
√

3 cos(2t) + sin(2t) .

Express this in the form z(t) = A cos(ωt−δ), identifying the amplitude and
phase of the oscillation.

Solution: The displacement takes the form

z(t) = 2 cos
(

2t − π

6

)

,

where the amplitude is 2 and the phase is π

6 . There are several approaches
to this problem. Here are two.

One approach that requires no memorization other than the usual addi-
tion formula for cosine is as follows. Because

A cos(ωt − δ) = A cos(δ) cos(ωt) + A sin(δ) sin(ωt) ,

this form will be equal to z(t) provided ω = 2 and

A cos(δ) =
√

3 , A sin(δ) = 1 .

Upon solving these equations one finds that the amplitude A is given by

A =

√

(
√

3
)2

+ 12 =
√

3 + 1 =
√

4 = 2 ,

while the phase δ is given by

δ = sin−1

(

1

A

)

= sin−1

(

1

2

)

=
π

6
.

Another approach requires you to memorize special formulas for both
the amplitude and phase of functions of the form

c1 cos(ωt) + c2 sin(ωt) .

The formula for the amplitude is easier one because c1 and c2 appear in it
symmetrically. It gives

A =
√

c 2
1 + c 2

2 =

√

(
√

3
)2

+ 12 =
√

3 + 1 =
√

4 = 2 .

The formula for the phase is trickier because c1 and c2 do not appear in it
symmetrically. It gives

δ = tan−1

(

c2

c1

)

= tan−1

(

1√
3

)

=
π

6
.

The most common mistake made by those who chose this approach was to
exchange the roles of c1 and c2 in this formula. One way to keep these roles
straight is to remember the formula verbally as

phase = tan−1

(

coefficient of sine

coefficient of cosine

)

.
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(7) When a mass of 4 grams is hung vertically from a spring, at rest it stretches
the spring 9.8 cm. (Gravitational acceleration is g = 980 cm/sec2.) At t = 0
the mass is displaced 3 cm above its equilibrium position and released with
no initial velocity. It moves in a medium that imparts a drag force of 2
dynes (1 dyne = 1 gram cm/sec2) when the speed of the mass is 4 cm/sec.
There are no other forces. (As usual, assume the spring force is proportional
to displacement and the drag force is proportional to velocity.)
(a) Formulate an initial-value problem that governs the motion of the

mass for t > 0. (DO NOT solve the initial-value problem, just write
it down!)

Solution: Let y be the displacement of the mass from the equilib-
rium position in centimeters, with upward displacements being posi-
tive. The governing initial-value problem then has the form

my′′ + γy′ + ky = 0 , y(0) = 3 , y′(0) = 0 ,

where m is the mass, γ is the drag coefficient, and k is the spring
constant. The problem says that m = 4 grams. The spring constant
is obtained by balancing the weight of the mass (mg = 4 · 980 dynes)
with the force applied by the spring when it is stretched 9.8 cm. This
gives k9.8 = 4 · 980, or

k =
4 · 980

9.8
= 400 g/sec2 .

The drag coefficient is obtained by balancing the force of 2 dynes with
the drag force imparted by the medium when the speed of the mass is
4 cm/sec. This gives γ4 = 2, or

γ =
2

4
=

1

2
g/sec .

The governing initial-value problem is therefore

4y′′ +
1

2
y′ + 400y = 0 , y(0) = 3 , y′(0) = 0 .

If you had chosen downward displacements to be positive then the
governing initial-value problem would be identical except for the first
initial condition, which would then be y(0) = −3.

(b) What is the natural frequency of the spring?

Solution: The natural frequency of the spring is given by

ωo =

√

k

m
=

√

4 · 980

9.8 · 4 =
√

100 = 10 1/sec .

(c) Is the system over damped, critically damped, or under damped?
Why?

Solution: The characteristic polynomial is

P (z) = z2 +
1

8
z + 100 =

(

z +
1

16

)2

+ 100− 1

162
,

which has complex roots. The system is therefore under damped.
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(8) Compute the Laplace transform of f(t) = te3t from its definition.

Solution: Let F (s) = L{f}. By the definition of the Laplace transform

F (s) = lim
b→∞

∫ b

0

e−stte3t dt = lim
b→∞

∫ b

0

te(3−s)t dt .

An integration by parts shows that
∫ b

0

t e(3−s)t dt = t
e(3−s)t

3 − s

∣

∣

∣

∣

b

0

−
∫ b

0

e(3−s)t

3 − s
dt

=

(

t
e(3−s)t

3 − s
− e(3−s)t

(3 − s)2

)∣

∣

∣

∣

b

0

=

(

b
e(3−s)b

3 − s
− e(3−s)b

(3 − s)2

)

+
1

(3 − s)2
.

Hence, provided s > 3 one has that

F (s) = lim
b→∞

[(

b
e(3−s)b

3 − s
− e(3−s)b

(3 − s)2

)

+
1

(3 − s)2

]

=
1

(3 − s)2
+ lim

b→∞

(

b
e−(s−3)b

3 − s
− e−(s−3)b

(3 − s)2

)

=
1

(3 − s)2
.
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(9) Find the Laplace transform Y (s) of the solution y(t) of the initial-value
problem

y′′ + 4y′ + 13y = f(t) , y(0) = 4 , y′(0) = 1 ,

where

f(t) =

{

cos(t) for 0 ≤ t < 2π ,

0 for t ≥ 2π .

You may refer to the table on the last page. (DO NOT take the inverse
Laplace transform to find y(t), just solve for Y (s).)

Solution: The Laplace transform of the initial-value problem is

L{y′′} + 4L{y′} + 13L{y} = L{f} ,

where

L{y} = Y (s) ,

L{y′} = sY (s) − y(0) = sY (s) − 4 ,

L{y′′} = s2Y (s) − sy(0) − y′(0) = s2Y (s) − s4 − 1 .

To compute L{f}, first rewrite f as

f(t) =
(

1 − u(t − 2π)
)

cos(t) = cos(t) − u(t − 2π) cos(t − 2π) .

Referring to the table on the last page, Item 2 with b = 1 and Item 5 with
c = 2π then show that

L{f} = L{cos(t)} − L{u(t − 2π) cos(t − 2π)}

=
s

s2 + 1
− e−2πs

s

s2 + 1

=
(

1 − e−2πs
) s

s2 + 1
.

The Laplace transform of the initial-value problem then becomes
(

s2Y (s) − 4s − 1
)

+ 4
(

sY (s) − 4
)

+ 13Y (s) =
(

1 − e−2πs
) s

s2 + 1
,

which becomes

(s2 + 4s + 13)Y (s) − (4s + 1 + 16) =
(

1 − e−2πs
) s

s2 + 1
.

Hence, Y (s) is given by

Y (s) =
1

s2 + 4s + 13

(

4s + 17 +
(

1 − e−2πs
) s

s2 + 1

)

.
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(10) Find the inverse Laplace tramsform of the following functions. You may
refer to the table below (on the last page).

(a) F (s) =
2

(s + 5)3
,

Solution: Referring to the table on the last page, Item 1 with n = 2
gives L{t2} = 2/s3. Item 4 with a = −5 and f(t) = t2 then gives

L
{

e−5tt2
}

=
2

(s + 5)3
.

One therefore finds that

L−1

{

2

(s + 5)3

}

= e−5tt2 .

(b) F (s) =
3s

s2 − s − 6
,

Solution: The denominator factors as (s − 3)(s + 2) so the partial
fraction decomposition is

F (s) =
3s

s2 − s − 6
=

3s

(s − 3)(s + 2)
=

9
5

s − 3
+

6
5

s + 2
.

Referring to the table on the last page, Item 1 with n = 0 gives L{1} =
1/s. Item 4 with a = 3, a = −2 and f(t) = 1 then gives

L{e3t} =
1

s − 3
, L{e−2t} =

1

s + 2
.

One therefore finds that

L−1

{

3s

s2 − s − 6

}

= 9
5e3t + 6

5e−2t .

(c) F (s) =
(s − 2)e−3s

s2 − 4s + 5
.

Solution: Completion of the square in the denominator gives (s −
2)2 + 1. Referring to the table on the last page, Item 2 with b = 1
gives

L{cos(t)} =
s

s2 + 1
.

Item 4 with a = 2 and f(t) = cos(t) then gives

L{e2t cos(t)} =
s − 2

(s − 2)2 + 1
.

Item 5 with c = 3 and f(t) = e2t cos(t) then gives

L{u(t − 3)e2(t−3) cos(t − 3)} = e−3s
s − 2

(s − 2)2 + 1
.

One therefore finds that

L−1

{

(s − 2)e−3s

s2 − 4s + 5

}

= u(t − 3)e2(t−3) cos(t − 3) .
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A Short Table of Laplace Transforms

1. L
{

tn
}

=
n!

sn+1
for s > 0 .

2. L
{

cos(bt)
}

=
s

s2 + b2
for s > 0 .

3. L
{

sin(bt)
}

=
b

s2 + b2
for s > 0 .

4. L
{

eatf(t)
}

= F (s − a) where F (s) = L{f(t)} .

5. L
{

u(t − c)f(t − c)
}

= e−csF (s) where F (s) = L{f(t)}
and u is the step function .


