
Math 246, Second In-Class Exam Solutions (Spring 2003)
Professor Levermore

(1) (12 points) Let L be a linear ordinary differential operator with constant
coefficients. Suppose that all the roots of its characteristic polynomial
(shown with multiplicities) are −3 + i4, −3 + i4, −3− i4, −3− i4, i5, −i5,
−7, −7, 0, 0.

(a) What is the order of L?

Solution: There are ten roots listed, so the degree of the characteristic
polynomial is ten, and consequently the order of L must be ten.

(b) Give a general real solution of the homogeneous equation Ly = 0?

Solution: The general solution is

y = c1e
−3t cos(4t) + c2e

−3t sin(4t) + c3t e−3t cos(4t) + c4t e−3t sin(4t)

+ c5 cos(5t) + c6 sin(5t) + c7e
−7t + c8t e−7t + c9 + c10t .

The reasoning is as follows.
• The double conjugate pair −3± i4 yields

e−3t cos(4t) , e−3t sin(4t) , t e−3t cos(4t) , and t e−3t sin(4t) .

• The conjugate pair ±i5 yields cos(5t) and sin(5t).
• The double real root −7 yields e−7t and t e−7t.
• The double real root 0 yields 1 and t.

(2) (9 points) Solve the initial-value problem

y′′ − 6y′ + 9y = 0 , y(0) = 0 , y′(0) = 1 .

Solution: This is a constant coefficient, homogeneous linear initial-value
problem. It may be either (1) solved by first finding the general solution or
(2) solved directly using the Laplace transform.

The characteristic polynomial is

P (z) = z2 − 6z + 9 = (z − 3)2 .

It has the double real root 3, which yields the general solution

y(t) = c1e
3t + c2t e3t .

Because
y′(t) = 3c1e

3t + c2(e
3t + 3t e3t) ,

when the initial conditions are imposed, one finds that

y(0) = c1 = 0 , y′(0) = 3c1 + c2 = 1 .

These are solved to find that c1 = 0 and c2 = 1. The solution of the
initial-value problem is therefore

y(t) = t e3t .
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We now show how to solve the problem using the Laplace transform.
The Laplace transform of the initial-value problem is

L{y′′} − 6L{y′} + 9L{y} = 0 ,

where

L{y}(s) = Y (s) ,

L{y′}(s) = s Y (s) − y(0) = s Y (s) ,

L{y′′}(s) = s2Y (s) − s y(0) − y′(0) = s2Y (s) − 1 .

The Laplace transform of the initial-value problem then becomes

s2Y (s) − 1 − 6s Y (s) + 9Y (s) = 0 ,

which can be put in the form

(s2 − 6s + 9)Y (s) = 1 .

Upon solving this for Y (s) one finds that

Y (s) =
1

s2 − 6s + 9
=

1

(s − 3)2
.

Referring to the table on the last page, Item 1 with n = 1 gives L{t} = 1/s2.
Item 4 with a = 3 and f(t) = t then gives

L{e3tt} =
1

(s − 3)2
.

One thereby concludes that

y(t) = L−1

{

1

(s − 3)2

}

(t) = t e3t .

(3) (27 points) Find a general solution for each of the following equations.

(a) y′′ + 16y = 5e3t .

Solution: This is a constant coefficient, nonhomogeneous linear prob-
lem. The characteristic polynomial of its homogeneous part is

P (z) = z2 + 16 .

It has the simple complex pair of roots −i4 and i4, which yields the
general homogeneous solution

y
H

(t) = c1 cos(4t) + c2 sin(4t) .

Because the forcing is of the form ezt for z = 3, and because z = 3 is
not a root of the characteristic polynomial, a particular solution can
be found quickly by either the method of undetermined coefficients (as
in the book) or the method of determined coefficients (as in class).

The method of undetermined coefficients seeks a particular solution of
the form y

P
(t) = Ae3t. Because

y
P
(t) = Ae3t , y′

P
(t) = 3Ae3t , y′′

P
(t) = 9Ae3t ,

one sees that

Ly
P

= y′′

P
+ 16y

P
= (9 + 16)Ae3t = 25Ae3t = 5e3t .

which implies A = 1/5. Hence, y
P
(t) = 1

5e3t.
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The method of determined coefficients evaluates the identity

L(ezt) = (z2 + 16) ezt ,

at z = 3 to obtain L(e3t) = 25e3t. Dividing this by 5 gives L( 1
5e3t) =

5e3t, which shows that y
P
(t) = 1

5e3t.

By either method you find the same y
P
, and the general solution of

the problem is therefore

y(t) = c1 cos(4t) + c2 sin(4t) + 1
5e3t .

(b) y′′ + 4y′ + 8y = 6 sin(2t) .

Solution: This is a constant coefficient, nonhomogeneous linear prob-
lem. The characteristic polynomial of its homogeneous part is

P (z) = z2 + 4z + 8 = (z + 2)2 + 4 .

It has the conjugate pair of roots −2 ± i2, which yields the general
homogeneous solution

y
H

(t) = c1e
−2t cos(2t) + c2e

−2t sin(2t) .

Because the forcing is of the form ezt for z = i2, and because z = i2 is
not a root of the characteristic polynomial, a particular solution can
be found quickly by either the method of undetermined coefficients (as
in the book) or the method of determined coefficients (as in class).

The method of undetermined coefficients seeks a particular solution of
the form y

P
(t) = A cos(2t) + B sin(2t). Because

y
P
(t) = A cos(2t) + B sin(2t) ,

y′

P
(t) = −2A sin(2t) + 2B cos(2t) ,

y′′

P
(t) = −4A cos(2t) − 4B sin(2t) ,

one sees that

Ly
P

= y′′

P
+ 4y′

P
+ 8y

P

= (4A + 8B) cos(2t) + (4B − 8A) sin(2t) = 6 sin(2t) .

This leads to the algebraic linear system

4A + 8B = 0 , 4B − 8A = 6 .

This can be solved to find that A = −3/5 and B = 3/10. Hence,

y
P
(t) = −3

5
cos(2t) +

3

10
sin(2t) .

The method of determined coefficients evaluates the KEY identity
Lezt = (z2 + 4z + 8)ezt at z = i2 to obtain Lei2t = (4 + i8)ei2t.
Multiplying this by 6/(4 + i8) shows that

L

(

6

4 + i8
ei2t

)

= 6ei2t .
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Because 6ei2t = 6 cos(2t) + i6 sin(2t), the imaginary part of the left-
hand side above will be Ly

P
. Because

6

4 + i8
ei2t =

6

4 + i8

4 − i8

4 − i8
ei2t =

6(4− i8)

42 + 82
ei2t

=
6(4 − i8)

80

(

cos(2t) + i sin(2t)
)

=

(

24

80
cos(2t) +

48

80
sin(2t)

)

+ i

(

− 48

80
cos(2t) +

24

80
sin(2t)

)

,

this imaginary part shows that

y
P
(t) = −48

80
cos(2t) +

24

80
sin(2t) = −3

5
cos(2t) +

3

10
sin(2t) .

By either method you find the same y
P
, and the general solution of

the problem is therefore

y = c1e
−2t cos(2t) + c2e

−2t sin(2t) − 3

5
cos(2t) +

3

10
sin(2t) .

(c) y′′ + 2y′ − 3y = et .

Solution: This is a constant coefficient, nonhomogeneous linear prob-
lem. The characteristic polynomial of its homogeneous part is

P (z) = z2 + 2z − 3 = (z − 1)(z + 3) .

It the simple real roots−3 and 1, which yields the general homogeneous
solution

y
H

(t) = c1e
−3t + c2e

t .

Because the forcing is of the form ezt for z = 1, and because z = 1
is a root of the characteristic polynomial, a particular solution can be
found quickly by either the method of undetermined coefficients (as in
the book) or the method of determined coefficients (as in class).

The method of undetermined coefficients seeks a particular solution of
the form y

P
(t) = Atet. Because

y′

P
(t) = A(et + t et) , y′′

P
(t) = A(2et + t et) ,

one sees that

Ly
P

= y′′

P
+ 2y′

P
− 3y

P

= A(2et + t et) + 2A(et + t et) − 3t et

= A4et = et ,

which implies A = 1/4. Hence, y
P
(t) = 1

4 tet.

The method of determined coefficients evaluates the identity

L(t ezt) = (z2 + 2z − 3) t ezt + (2z + 2) ezt ,

at z = 1 to obtain L(tet) = 4et. Dividing this by 4 gives L( 1
4 t et) = et,

which shows that y
P
(t) = 1

4 t et.
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By either method you find the same y
P
, and the general solution of

the problem is therefore

y(t) = c1e
−t + c2e

t + 1
4 t et .

(4) (9 points) The functions 1 + x and ex are solutions of the equation

xy′′ − (1 + x)y′ + y = 0 , x > 0 .

(You do not have to check that this is true.)

(a) Compute their Wronskian.

Solution: The Wronskian W (x) of 1 + x and ex is given by

W (x) = det

(

1 + x ex

1 ex

)

= (1 + x) ex − ex = x ex .

Note W (x) > 0 when x > 0, so 1 + x and ex are linearly independent.

(b) Find a general solution of the equation

xy′′ − (1 + x)y′ + y = x2ex , x > 0 .

Solution: The general solution of this nonhomogeneous equation will
have the form y = y

H
+ y

P
where y

H
is the general solution of the

corresponding homogeneous equation and y
P

is any particular solution
of the nonhomogeneous equation. Because you are given that 1 + x
and ex are solutions of the corresponding homogeneous equation, and
you know by part (a) that they are linearly independent, you know
that

y
H

= c1(1 + x) + c2e
x .

The methods of undetermined or determined coefficients cannot be
used to find a particular solution, so we will use the method of variation
of parameters. We first put the equation into its normal form

y′′ − 1 + x

x
y′ +

1

x
y = x ex ,

and then seek y
P

of the form

y
P

= (1 + x)u1(x) + exu2(x) .

One chooses u′

1 and u′

2 so that they satisfy

(1 + x)u′

1 + exu′

2 = 0 , u′

1 + exu′

2 = x ex .

This linear system is solved to find that

u′

1 = −ex , u′

2 = 1 + x .

Upon integrating these, you find that

u1(x) = c1 − ex , u2(x) = c2 + x + 1
2x2 .

Your answer can be expressed as

y = c1(1 + x) + c2e
x − (1 + x)ex + ex(x + 1

2x2) .

This can be simplified to

y = c1(1 + x) + c3e
x + 1

2x2ex ,

where c3 = c2 − 1.



6

(5) (6 points) The vertical displacement of a mass on a spring is given by

z(t) = 4 cos(7t) + 3 sin(7t) .

Express this in the form z(t) = A cos(ωt−δ), identifying the amplitude and
phase of the oscillation.

Solution: The displacement takes the form

z(t) = 5 cos
(

7t − tan−1( 3
4 )

)

,

where the amplitude is 5, the frequency is 7, and the phase is tan−1( 3
4 ).

There are several approaches to this problem. Here are two.

One approach that requires no memorization other than the usual addi-
tion formula for cosine is as follows. Because

A cos(ωt − δ) = A cos(δ) cos(ωt) + A sin(δ) sin(ωt) ,

this form will be equal to y(t) provided ω = 7 and

A cos(δ) = 4 , A sin(δ) = 3 .

Upon solving these equations one finds that the amplitude A is given by

A =
√

(

42 + 32 =
√

16 + 9 =
√

25 = 5 ,

while the phase δ is given either by

δ = sin−1

(

3

A

)

= sin−1

(

3

5

)

,

or by

δ = cos−1

(

4

A

)

= cos−1

(

4

5

)

,

or by

δ = tan−1

(

3

4

)

.

Another approach requires you to memorize special formulas for both
the amplitude and phase of functions of the form

c1 cos(ωt) + c2 sin(ωt) .

The formula for the amplitude is easier one because c1 and c2 appear in it
symmetrically. It gives

A =
√

c 2
1 + c 2

2 =
√

42 + 32 =
√

16 + 9 =
√

25 = 5 .

The formula for the phase is trickier because c1 and c2 do not appear in it
symmetrically. It gives

δ = tan−1

(

c2

c1

)

= tan−1

(

3

4

)

.

The most common mistake made by those who chose this approach was to
exchange the roles of c1 and c2 in this formula. One way to keep these roles
straight is to remember the formula verbally as

phase = tan−1

(

coefficient of sine

coefficient of cosine

)

.
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(6) (10 points) When a 2 kilogram (kg) mass is hung vertically from a spring,
at rest it stretches the spring .2 meters (m). (Gravitational acceleration is
g = 9.8 m/sec2.) At t = 0 the mass is displaced .1 m above its equilib-
rium position and released with no initial velocity. It moves in a medium
that imparts a drag force of 4 Newtons (1 Newton = 1 kg m/sec2) when
the speed of the mass is 5 m/sec. There are no other forces. (As usual,
assume the spring force is proportional to displacement and the drag force
is proportional to velocity.)
(a) Formulate an initial-value problem that governs the motion of the

mass for t > 0. (DO NOT solve the initial-value problem, just write
it down!)

Solution: Let y be the displacement of the mass from the equilibrium
position in meters, with upward displacements being positive. The
governing initial-value problem then has the form

my′′ + γy′ + ky = 0 , y(0) = .1 , y′(0) = 0 ,

where m is the mass, γ is the drag coefficient, and k is the spring con-
stant. The problem says that m = 2 kilograms. The spring constant is
obtained by balancing the weight of the mass (mg = 2 · 9.8 Newtons)
with the force applied by the spring when it is stretched .2 meters.
This gives .2k = 2 · 9.8, or

k =
2 · 9.8

.2
= 10 · 9.8 = 98 kg/sec2 .

The drag coefficient is obtained by balancing the force of 4 Newtons
with the drag force imparted by the medium when the speed of the
mass is 5 m/sec. This gives γ5 = 4, or

γ =
4

5
kg/sec .

The governing initial-value problem is therefore

2y′′ +
4

5
y′ + 98y = 0 , y(0) = .1 , y′(0) = 0 .

If you had chosen downward displacements to be positive then the
governing initial-value problem would be identical except for the first
initial condition, which would then be y(0) = −.1.

(b) Give the natural frequency of the spring.

Solution: The natural frequency of the spring is given by

ωo =

√

k

m
=

√

98

2
=

√
49 = 7 1/sec .

(c) Show that the system is under-damped and give its quasifrequency.

Solution: The characteristic polynomial is

P (z) = z2 +
2

5
z + 49 =

(

z +
1

5

)2

+ 49 − 1

52
,

which has the complex roots

z = − 1
5 ± i

√

49 − 1
25 .
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The system is therefore under-damped with a quasifrequency µ given
by

µ =
√

49 − 1
25 .

(7) (6 points) Compute the Laplace transform of f(t) = e−4t from its definition.

Solution: Let F (s) = L{f}(s). By the definition of the Laplace transform

F (s) ≡
∫

∞

0

e−ste−4t dt = lim
M→∞

∫

M

0

e−(s+4)t dt .

For s + 4 6= 0 one has
∫ M

0

e−(s+4)t dt =

(

− e−(s+4)t

s + 4

)
∣

∣

∣

∣

M

0

=

[

− e−(s+4)M

s + 4
+

1

s + 4

]

,

while for s + 4 = 0 one has
∫ M

0

e−(s+4)t dt =

∫ M

0

1 dt = M .

one thereby sees that

F (s) = lim
M→∞







[

− e−(s+4)M

s + 4
+

1

s + 4

]

for s + 4 6= 0

M for s + 4 = 0

=







1

s + 4
for s + 4 > 0

diverges for s + 4 ≤ 0 .

Hence, one finds that

L{e−4t}(s) =
1

s + 4
for s > −4 .

(8) (9 points) Find the Laplace transform Y (s) of the solution y(t) of the
initial-value problem

y′′ + 9y = f(t) , y(0) = 4 , y′(0) = 1 ,

where

f(t) =

{

0 for 0 ≤ t < 2π ,

t − 2π for t ≥ 2π .

You may refer to the table below. (DO NOT take the inverse Laplace
transform to find y(t), just solve for Y (s).)

Solution: The Laplace transform of the initial-value problem is

L{y′′} + 9L{y} = L{f} ,

where

L{y} = Y (s) ,

L{y′} = sY (s) − y(0) = sY (s) − 4 ,

L{y′′} = s2Y (s) − sy(0) − y′(0) = s2Y (s) − s4 − 1 .

To compute L{f}, first rewrite f as

f(t) = u(t − 2π) (t − 2π) .



9

Referring to the table on the last page, Item 5 with c = 2π and f(t) = t
followed Item 1 with n = 1 then shows that

L{f} = L{u(t − 2π) (t − 2π)}
= e−2πsL{t}(s)

= e−2πs
1

s2
.

The Laplace transform of the initial-value problem then becomes

(

s2Y (s) − 4s − 1
)

+ 9Y (s) = e−2πs
1

s2
,

which becomes

(s2 + 9)Y (s) − (4s + 1) = e−2πs
1

s2
.

Hence, Y (s) is given by

Y (s) =
1

s2 + 9

(

4s + 1 + e−2πs
1

s2

)

.

(9) (12 points) Find the inverse Laplace transform of the following functions:

(a) F (s) =
4s

s2 − 4
,

Solution: The denominator factors as (s − 2)(s + 2) so the partial
fraction decomposition is

F (s) =
4s

s2 − 4
=

4s

(s − 2)(s + 2)
=

2

s − 2
+

2

s + 2
.

Referring to the table on the last page, Item 1 with n = 0 gives L{1} =
1/s. Item 4 with a = 2, a = −2 and f(t) = 1 then gives

L{e2t} =
1

s − 2
, L{e−2t} =

1

s + 2
.

One therefore finds that

L−1

{

4s

s2 − 4

}

= 2e2t + 2e−2t .

(b) F (s) =
6se−5s

s2 + 9
.

Solution: Referring to the table on the last page, Item 2 with b = 3
gives

L{cos(3t)} =
s

s2 + 9
.

Item 5 with c = 5 and f(t) = 6 cos(3t) then gives

L{u(t − 5) 6 cos(3(t − 5))} = e−5s
6s

s2 + 9
.

One therefore finds that

L−1

{

6se−5s

s2 + 9

}

= u(t − 5) 6 cos(3(t − 5)) .
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A Short Table of Laplace Transforms

L
{

tn
}

=
n!

sn+1
for s > 0 .

L
{

cos(bt)
}

=
s

s2 + b2
for s > 0 .

L
{

sin(bt)
}

=
b

s2 + b2
for s > 0 .

L
{

eatf(t)
}

= F (s − a) where F (s) = L{f(t)} .

L
{

u(t − c)f(t − c)
}

= e−csF (s) where F (s) = L{f(t)}
and u is the step function .


