Salvation by Deletion in Nupe

Gesoel Mendes
(with Jason Kandybowicz, CUNY)

(1) a. Nupe’s clausal ellipsis violates Merchant’s (2001) Sluicing-COMP Generalization (in sluicing, no non-operator material may appear in COMP). We adopt Baltin’s (2010) proposal according to which sluicing is FinP ellipsis rather than TP ellipsis.

b. Deletion can repair perfect island violations, arguing against Kandybowicz 2009’s narrow syntactic analysis. We show that an analysis of perfect islands in of cyclic linearization (Fox and Pesetsky 2005a,b), can straightforwardly predict the repair effects.

c. Deletion can repair Nupe’s COMP-trace violation, as predicted by Kandybowicz 2009’s interface analysis.

1 Nupe Sluicing and the Sluicing-COMP Generalization

- Sluicing-COMP Generalization: “In sluicing, no nonoperator material may appear in COMP”. (Merchant 2001; section 2.2.2)

(2) Quem (que) saiu?
who COMP left
‘Who left?’

(Brazilian Portuguese)

(3) A: Alguém saiu.
someone left
‘Someone left.’

B: Quem (*que)?
who COMP
‘Who?’

(Brazilian Portuguese)

(4) Who will Mary kiss?

(5) A: Mary will kiss someone.
B: Who (*will)\

- In Nupe, \textit{wh}-questions involve the obligatory presence of a sentence-final focus particle ((6) and (8))

\begin{enumerate}
\item[(6)] \texttt{Ké Musa pa *(o)?} \\
\text{what Musa pound.pst foc} \\
`What did Musa pound?'
\end{enumerate}

\begin{enumerate}
\item[(7)] A: Musa pa ejan ndoci. \\
\text{Musa pound.pst thing certain} \\
`Musa pounded something.'
B: Ké *(o)? \\
\text{what foc} \\
`What did Musa pound?'
\end{enumerate}

\begin{enumerate}
\item[(8)] \texttt{Kánci Musa pa eci *(o)?} \\
\text{when Musa pound.pst yam foc} \\
`When did Musa pound the yam?'
\end{enumerate}

\begin{enumerate}
\item[(9)] A: Musa pa eci kámi ndoci. \\
\text{Musa pound.pst yam time certain} \\
`Musa pounded the yam sometime.'
B: Kánci *(o)? \\
\text{when foc} \\
`When did Musa pound the yam?'
\end{enumerate}

- Baltin 2010, using a slightly different data set, argues that the cross-linguistic facts can be accommodated if we assume Rizzi’s (1997) split CP hypothesis and analyze sluicing as FinP deletion instead of TP deletion (e.g. \texttt{[\text{forceP [\text{topP [\text{focP [\text{finP [\text{TP [\text{S}]]}]}}]]]]}}).

\footnote{Other potential counter-examples to the Sluicing-\textsc{Comp} Generalization are found in Japanese and Hungarian, already discussed by Merchant (2001), Slovenian (Marušič, Mišmaš, Plesničar, and Šuligoj 2018), and Korean (Yim 2012).}
The particle *be*, which we identify with the English word *else*, does not form a constituent with the *wh*-element (11). *Be* *‘else’* is a right edge particle and, like the focus marker *o*, also survives sluicing (12B).

(11)
Ké Musa pa t be o?

what Musa pound.PST else FOC

‘What else did Musa pound?’

(12)
A: Musa pa eci.

Musa pound.PST yam

‘Musa pounded the yam.’

B: Ké be o?

what else FOC

‘What else did Musa pound?’

We tentatively assume that *be* *‘else’* is located in a projection between FocP and FinP, generically labeled as XP, and thus also survives FinP deletion.
2 Leaving the Perfect Island

2.1 Analysis and Repair

• **Nupe’s perfect island**: While Ā-extraction of subjects (14a) and TP-level adverbs (14b) is possible, extraction of vP-internal material (e.g. complements (14c)-(14d), low adjuncts, and material inside clausal complements (14e)) is not.

(Kandybowicz 2009)

(14) a. Zé tá eci pa o?
 who PRF yam pound.PST FOC
 ‘Who has pounded the yam?’

b. Pányí lè t Musá á našàn ba karayín o.
 long ago formerly Musa PRF meat cut.PST carefully FOC
 ‘LONG AGO, Musa had cut the meat carefully.’

c. *Ké Musá á t pa o?
 what Musa PRF pound.PST FOC
 Intended: ‘What has Musa pounded?’

d. *Zé Musá á t yà èwò o?
 who Musa PRF give.PST garment FOC
 Intended: ‘Who has Musa given the garment to?’

2The same restriction holds for relativization and non-wh focus movement. See Kandybowicz 2009 for a more complete data set with different types of Ā-extraction. Kandybowicz also shows that extraction out of unnacusative vPs is unrestricted in the perfect.
e. *Bà-bo Musa á le t o?
 where-LOC Musa PRF sleep.PST FOC
 Intended: ‘Where has Musa slept?’

- The contrast between extraction from perfect and nonperfect clauses is exemplified in (15) with object extraction. In past (15a), present (15b), and future (15c) tensed clauses, object extraction is possible. The same extraction is unavailable in perfect clauses (15d).

(15) a. Ké Musa pa t o?
 what Musa pound.PST FOC
 ‘What did Musa pound?’

b. Ké Musa è pa t o?
 what Musa PRES pound FOC
 ‘What is Musa pounding?’

c. Ké Musa à pa t o?
 what Musa FUT pound FOC
 ‘What will Musa pound?’

d. *Ké Musa á t pa o?
 what Musa PRF pound.PST FOC
 Intended: ‘What has Musa pounded?’

- Kandybowicz (2009) and Kandybowicz and Baker 2003:

(16) a. Musa si dükün.
 Musa buy.PST pot
 ‘Musa bought the pot.’

b. [VP Musa si [AGOP dükün [VP t t]]].
 Musa buy.PST pot
 ‘Musa bought the pot.’

(17) a. Musa á dükün si.
 Musa PRF pot buy.PST
 ‘Musa has bought the pot.’
b. \([vP \text{Musa á} [\text{Agr}P \text{dòkùn si} [vP \text{it}]]]\).

\text{Musa PRF pot buy.PST}

‘Musa has bought the pot.’

(18) Perfect islands according to Kandybowicz (2009)

a. \textit{Phase Impenetrability Condition (PIC)} (Chomsky 2000:108): In phase \(\alpha\) with head \(H\), the domain of \(H\) is not accessible to operations outside \(\alpha\), only \(H\) and its edge are accessible to such operations.

b. Stipulation: \(v\)’s EPP feature is not activated when the verb doesn’t move to \(v\).

c. Thus, elements inside the complement of \(v\) cannot evacuate the \(vP\) without incurring in a PIC violation.

• Novel observation: perfect islands are circumvented under ellipsis

(19) *\text{Ké Musa á t pa o?}

\text{what Musa PRF pound.PST FOC}

Intended: ‘What has Musa pounded?’ (repeated from (14c))

(20) A: \text{Musa á ejan ndoci pa.}

\text{Musa PRF thing certain pound.PST}

‘Musa has pounded something.’

B: \text{Ké Musa á t pa o?}

\text{what Musa PRF pound.PST FOC}

‘What has Musa pounded?’ (compare with (19))

(21) *\text{Zé Musa á t yà èwò o?}

\text{who Musa PRF give.PST garment FOC}

Intended: ‘Who has Musa given the garment to?’ (repeated from (14d))

(22) A: \text{Musa á eza ndoci yà èwò.}

\text{Musa PRF person certain give.PST garment}

‘Musa has given the garment to someone.’

B: \text{Zé Musa á t yà èwò o?}

\text{who Musa PRF give.PST garment FOC}

‘Who has Musa given the garment to?’ (compare with (21))
(23) *Bà-bo Musà le t o?
 where-LOC Musa PRF sleep.PST FOC
 Intended: ‘Where has Musa slept?’

(24) A: Musà le ebà ndoci o.
 Musa PRF sleep.PST place certain LOC
 ‘Musa has slept somewhere.’

 B: Bà-bo Musà le t o?
 where-LOC Musa PRF sleep.PST FOC
 ‘Where has Musa slept?’

• Same effect obtains with contrastive stripping:

 Musa PRF meat pound.PST
 ‘Musa has pounded the meat.’

 B: Hahà! Eci Musà pa o.
 No yam Musa PRF pound.PST FOC
 ‘No! THE YAM Musa has pounded.’

(26) A: Musà le cigban o.
 Musa PERF sleep.PST tree LOC
 ‘Musa has slept in the tree.’

 B: Hahà! Kata bo Musà le t o.
 No room LOC Musa PERF sleep.PST FOC
 ‘No! THE ROOM Musa has slept in.’

(27) A: Musà Gana yà ëwò.
 Musa PRF Gana give.PST garment
 ‘Musa has given the garment to Gana.’

 B: Hahà! Etsu Musà yà ëwò o.
 No chief Musa PRF give.PST garment FOC
 ‘No! THE CHIEF Musa has given the garment to.’

• A new take on perfect islands: cyclic Linearization framework (Fox and Pesetsky 2005a,b; Ko 2005, 2007,
Ordering is established at each phasal domain and stored.

Derivations are order preserving, meaning that linearization statements established in a given phase are passed on to the following cycles (Holmberg’s Generalization and quantifier movement in Scandinavian languages, restrictions on scrambling in Japanese and Korean, and intermediate stranding under successive cyclic movement, among others).

(28) **Noncyclic movement**

a. \([\text{PhaseP}_1 \beta [\text{XP} \alpha]] \leadsto \beta \prec \alpha\)

b. \([\text{PhaseP}_2 \alpha \gamma [\text{PhaseP}_1 \beta [\text{XP} t \alpha]]] \leadsto \alpha \prec \gamma \prec \beta \prec \alpha\)

(29) **Cyclic movement**

a. \([\text{PhaseP}_1 \alpha \beta [\text{XP} t \alpha]] \leadsto \alpha \prec \beta\)

b. \([\text{PhaseP}_2 \alpha \gamma [\text{PhaseP}_1 t \alpha \beta [\text{XP} t \alpha]]] \leadsto \alpha \prec \gamma \prec \beta\)

(30) I wonder \([\text{CP} \text{which book} \text{he}\ [\text{vP} \text{t thinks} [\text{CP} \text{t Mary} [\text{vP} \text{t read} \text{t}]]]]\)

- Consider now the example in (20), repeated below:

(20) A: Musa á ejan ndoci pa.

Musa PRF thing certain pound.PST

‘Musa has pounded something.’

B: Ké Musa á t pa o?

what Musa PRF pound.PST FOC

‘What has Musa pounded?’ (compare with (19))

- Following Ko 2005, 2007, 2014, we assume that vP is a spell-out domain rather than VP. Once the vP is completed, the ordering \([\text{S} \prec \text{PRF} \prec \text{O} \prec \text{V}]\) is established.

(31) \([\text{vP Musa á ké pa }] \leadsto \text{Musa} \prec \dot{\text{a}} \prec \dot{\text{ke}} \prec \text{pa}\)

Musa PRF what pound.PST

(32) \([\text{FocP ké } [\text{FinP} [\text{TP Musa \text{vP} t á t pa }]] \text{ o }] \leadsto \dot{\text{ke}} \prec \text{Musa} \prec \dot{\text{a}} \prec \dot{\text{ke}} \prec \text{pa} \prec \text{o}\)

what Musa PRF pound.PST FOC
2.2 Ruling Out Alternative Analyses

Alternative analyses

a. pseudosluicing
b. nondeletion
c. nonmovement
d. *-marking
e. resumption

Pseudosluicing, conceived either as deletion of a nonisomorphic truncated cleft (e.g. who was it?; see Erteschik-Shir 1973, Merchant 2001, Barros 2014, Barros, Elliott, and Thoms 2014 among others), or a combination of a null copula and a null subject forming a truncated cleft without deletion (e.g. who θwar θd it?; see Merchant 1998, Fukaya 2007, Potsdam 2007, and Gribanova and Manetta 2016 for discussion).

First, we note that we have not identified in the language a cleft structure that could serve as a source structure for this evasion strategy.\(^3\)

Second, against the second type of pseudosluicing, subject/topic drop and null expletives are unattested in Nupe, as are null copulae, and null subjects in the language only appear in imperatives (Kandybowicz 2008).

Truncated clefts typically require exhaustivity and thus are incompatible with else-modification on the wh-phrase (Merchant 2001, Barros, Elliott, and Thoms 2014; see also Mikkelsen 2007 on truncated clefts):

Harry was there, but I don’t know who else (*it was). (Merchant 2001:122)

A: Musa á eci pa.
 Musa PRF yam pound.PST
 ‘Musa has pounded the yam.’

\(^3\)Languages that have been claimed to lack cleft structures include Hungarian and Romanian, which, like Nupe, form wh-questions through focus movement (Dobrovie-Sorin 1993, Grosu 1994, Merchant 2001, Bošković 2002, Craenenbroek and Lipták 2013, and references therein). Future work will confirm whether Nupe truly lacks cleft structures that could in principle be used in the ellipsis site.
B: Ké Musá → pa be o?
 whatMusá PRF pound.PST else FOC
 ‘What else has Musa pounded?’
 #‘What else was it?’

(37) A: Musá → le kata o.
 Musá PRF sleep.PST room LOC
 ‘Musa has slept in the room.’

B: B̀-bo Musá → le be o?
 where-LOC Musá PRF sleep.PST else FOC
 ‘Where else has Musa slept?’
 #‘Where else was it?’

- **Nondeletion** is a family of analyses of ellipsis that would allow the wh-phrase to be placed in the left periphery without being moved from inside the perfect vP in the context of ellipsis. The missing FinP would either receive interpretation, for instance, by LF-copying, reusing the antecedent’s FinP, or by an anaphoric device that does not resort to unpronounced syntactic structure.

 – By base-generating the wh-phrase in [Spec,FocP] in sluicing environments, the putative derivational problem that would otherwise be created by the PIC can be evaded. This line has been pursued in several places in quite different ways (see Lobeck 1995, Chung, Ladusaw, and McCloskey 1995, Ginzburg and Sag 2000, Culicover and Jackendoff 2005, among others, for different implementations).

(38) A: Musá → ejan ndoci pa.
 Musá PRF thing certain pound.PST
 ‘Musa has pounded something.’

B: Ké eFinP o?
 what FOC
 ‘What?’

- **In-situ approach**, sometimes called ‘nonconstituent deletion’, remnants of clausal deletion do not evacuate the constituent that is apparently targeted for deletion (see Morgan 1973, Hankamer 1979, Kimura 2010, Abe 2015, Ott and Struckmeier 2016, and Stigliano 2020, among others).
– Since there is no movement, no PIC violation is implicated.⁴

(39) A: Musa á ejan ndoci pa.
 Musa PRF thing certain pound.PST
 ‘Musa has pounded something.’

B: Musa á ké pa o?
 Musa PRF what pound.PST FOC
 ‘Musa pounded what?’

– In the ‘*-marking’ approach illicit movement results in the assignment of a *-feature to some sub-portion of the structure, which, if not deleted, precludes convergence at PF (see Chomsky 1972, Lasnik 2001, Merchant 2008, Bošković 2011, among others for different implementations).

– Ellipsis would thus have the surgical effect of removing damaged chunks, salvaging the final representation (the exact placement of the *-feature is orthogonal to our point).

(40) A: Musa á ejan ndoci pa.
 Musa PRF thing certain pound.PST
 ‘Musa has pounded something.’

B: Ké [Musa á t pa] o?
 what Musa PRF pound.PST FOC
 ‘What has Musa pounded?’

– Against nondeletion, in-situ, and *-marking approaches, we Nupe sluicing is island-sensitive when it comes to adjunct and complex-NP islands, which implies that there is structure in the ellipsis site and that movement is implicated in Nupe clausal ellipsis:

(41) *Ké [Adjunct Gana gá pa t], Musa gá zè ewùn o?
 what Gana COND pound.PST Musa FUT turn anger FOC
 Intended: ‘What is the thing x such that, if Gana pounded x, then Musa will be angry?’

⁴Notice that Nupe is a wh-movement language (Kandybowicz 2020). Several technical solutions have been proposed in the literature to maintain an in situ approach to sluicing even in languages with obligatory wh-movement. For instance, Kimura 2010 adopts the view that movement is decomposed into Move-F, enforced by feature checking, and generalized pied-piping, enforced by the necessity of reuniting the moved feature with the now defective phrase from which the feature was taken (Chomsky 1995:chapter 4, Agbayani and Ochi 2006). In Kimura’s analysis, nonconstituent deletion removes the intervening material between the moved feature and the phrase from which it was taken, thus removing the need for pied-piping. Another intriguing possibility, suggested by an anonymous reviewer, would be to interpret obligatory wh-movement in terms of Richards’ (2016) Contiguity theory, according to which obligatory wh-movement is a response to a PF-demand requiring wh-phrases and their scope marking complementizers to belong to the same prosodic phrase. Nonconstituent deletion would remove the prosodic boundaries between the in situ wh-phrase and C, dispensing with the need for movement for contiguity compliance. For yet another take on this issue, see Abe 2015.
A: [Adjunct Gana gá pa ejan ndoci], Musa gá zè ewùn.

Gana COND pound.PST thing certain Musa FUT turn anger

‘If Gana pounded a certain thing, Musa will be angry.’

B: *Ké [Adjunct Gana gá pa t], Musa gá zè ewùn o?

what Gana COND pound.PST Musa FUT turn anger FOC

Intended: ‘What is the x such that, if Gana pounded x, then Musa will be angry?’

(43) A: [Adjunct Gana gá pa eci], Musa gá zè ewùn.

Gana COND pound.PST yam Musa FUT turn anger

‘If Gana pounded the yam, Musa will be angry.’

B: *Ké [Adjunct Gana gá pa t], Musa gá zè ewùn be o?

what Gana COND pound.PST Musa FUT turn anger else FOC

Intended: ‘What else is the x such that, if Gana pounded x, then Musa will be angry?’

(44) A: [Adjunct Gana gá pa eci], Musa gá zè ewùn.

Gana COND pound.PST yam Musa FUT turn anger

‘If Gana pounded the yam, Musa will be angry.’

B: *Hahà! Eyi [Adjunct Gana gá pa t], Musa gá zè ewùn o.

no corn Gana COND pound.PST Musa FUT turn anger FOC

Intended: ‘No! CORN is the x such that, if Gana pounded x, then Musa will be angry.’

• The following examples show lack of repair effects with complex-NP islands in the same contexts:

(45) *Zë Musa wo [Complex-NP ení na t ká na] o?

who Musa listen.PST song REL write.PST REL FOC

Intended: ‘Who is the x such that Musa listened to a song that x wrote?’

(46) A: Musa wo [Complex-NP ení na egi Nigeria ndoci ká na].

Musa listen.PST song REL child Nigeria certain write.PST REL

‘Musa listened to a song that a certain Nigerian wrote.’

B: *Zë Musa wo [Complex-NP ení na t ká na] o?

who Musa listen.PST song REL write.PST REL FOC

Intended: ‘Who is the x such that Musa listened to a song that x wrote?’
(47) A: Musa wo [Complex-NP ení na Gana ká na].
Musa listen.PST song REL Gana write.PST REL
‘Musa listened to a song that Gana wrote.’

B: *Zé Musa wo [Complex-NP ení na t ká na] be o?
who Musa listen.PST song REL write.PST REL else FOC
Intended: ‘Who else is the x such that Musa listened to a song that x wrote?’

(48) A: Musa wo [Complex-NP ení na Gana ká na].
Musa listen.PST song REL Gana write.PST REL
‘Musa listened to a song that Gana wrote.’

B: *Hah! Nana Musa wo [Complex-NP ení na t ká na] o?
no Nana Musa listen.PST song REL write.PST REL FOC
‘No! NANA is the x such that Musa listened to a song that x wrote.’

• The sensitivity to adjunct and complex-NP islands suggests that sluicing and stripping constructions involve unpronounced structure in the ellipsis site, arguing against the nondeletion approach, and that they indeed result from a move-and-delete derivation, arguing against the in-situ approach.

• *-marking would predict unrestricted repair effects with island violations. This, however, is inconsistent with the fact that while perfect islands are repaired under ellipsis, adjunct and complex-NP islands are not.

• Furthermore, the lack of repair effects with adjunct and complex-NP islands strengthens the claim made before that an evasion strategy based on the use of a cleft source in the ellipsis site is not available in the language. If any type of hidden cleft was the source of the repair effects we have found with perfect islands, we would expect this effect to generalize to adjunct and complex-NP islands, contrary to fact.

• The last alternative we consider is hidden resumption (Sauerland 1997, Wang 2006, Boeckx 2008, and Barros, Elliott, and Thoms 2014). If resumption can independently remedy perfect island violations in non elliptical environments, we might be able to blame the repair effects we see in our examples not on ellipsis, but instead on resumption.

(49) A: Musa ā ejan ndoci pa.
Musa PRF thing certain pound.PST
‘Musa has pounded something.’
The following examples show that resumption cannot repair perfect island violations in the language, and therefore this is not a tenable alternative:

(50) *Ké Musa á u: pa o?
 what Musa PRF 3SG pound.PST FOC
 Intended: ‘What has Musa pounded?’
 (compare with example B in (20))

(51) *Zé Musa á u: yà èwò o?
 who Musa PRF 3SG give.PST garment FOC
 Intended: ‘Who has Musa given the garment to?’
 (compare with example B in (22))

(52) *Bà-bo Musa á le u: o?
 where-LOC Musa PRF sleep.PST 3SG FOC
 Intended: ‘Where has Musa slept?’
 (compare with example B in (24))

3 COMP-trace Effects

• Baseline data:

(53) a. Ké Gana gàn [gànán Musa du t] o?
 what Gana say.PST COMP Musa cook.PST FOC
 ‘What did Gana say that Musa cooked?’

b. *Zé Gana gàn [gànán t du nakàn] o?
 who Gana say.PST COMP cook.PST meat FOC
 Intended: ‘Who did Gana say (*that) cooked the meat?’

(See Perlmutter 1971, Pesetsky 1982, Engdahl 1985, Kenstowicz 1989, among many others for reports of COMP-trace effects in different languages and different takes on the matter).
Overt repair strategies

a. Zé Gana gàn [gànán pànyí lé t du nakàn] o?
 who Gana say.PST COMP long ago formerly cook.PST meat FOC
 ‘Who did Gana say that long ago cooked the meat?’ (TP-adjuncts)

b. Zé Gana gàn [gànán u: du nakàn] o?
 who Gana say.PST COMP 3SG cook.PST meat FOC
 ‘Who did Gana say cooked the meat?’ (resumption)

c. Zé Gana gàn [gànán t {*_0 /e /à } du nakàn] o?
 who Gana say.PST COMP PST PRS FUT cook meat FOC
 ‘Who did Gana say is cooking/will cook the meat?’ (Overt tense markers)

- What all these repair strategies have in common is that they prevent the TP edge, including its head, from being phonetically null as in (53b).⁵

- Kandybowicz (2009) argues that complementizers like gànán, when introducing complement clauses, delimit the right boundary of a Phonological Phrase. This receives support, for example, from pitch reset and phrase-internal regressive assimilation in subject clauses (55), which does not obtain across the C-TP boundary in object TPs (56).

(55) a. Phrase-internal regressive assimilation:
 /gànán + u:/ → [gùnúu u:]

b. Gùnúu u: si doko mafi Musa.
 COMP 3SG buy.PST horse please.PST Musa
 ‘That s/he bought a horse pleased Musa.’

(56) [PhonP Etsu Musa gàn {gànán /*gùnúu}] [PhonP u: nì enyà o].
 chief Musa say.PST COMP 3SG beat.PST drum FOC
 ‘Musa said that THE CHIEF beat a drum.’

(57) Intonational Phrase Edge Generalization (IPEG): the edge of an obligatorily parsed prosodic phrase cannot be phonetically empty (An 2007:61).

(58) *Ndá kíci Musa gàn gànán t si këkë o?
 man which Musa say.PST COMP buy.PST bike FOC
 Intended: ‘Which man did Musa say bought the bike?’

⁵Nupe verbs do not raise to T (Kandybowicz and Baker 2003). Therefore, T is phonetically empty in (53b).
4 Conclusion

• We observed that Nupe sluicing counter-exemplifies Merchant’s (2001) Sluicing-COMP Generalization. The cross-linguistic variation regarding the Sluicing-COMP Generalization can be accounted for by assuming Rizzi’s (1997) split CP hypothesis and an analysis in which sluicing is FinP-ellipsis (Baltin 2010) rather than TP-ellipsis, as often assumed.

• We saw two cases where independently motivated PF devices can deduce amelioration effects under ellipsis.

• The extraction asymmetry in Nupe perfect clauses is neutralized under sluicing, which suggests that we are not dealing with a derivational limitation (contra Kandybowicz 2009), but instead with a PF constraint that can be voided under ellipsis. Following Kandybowicz 2009, we assumed that edge-features in Nupe perfect vPs are not activated, and proposed an analysis in terms of Cyclic Linearization, where \bar{A}-extraction of vP-internal
material in perfect clauses unavoidably leads to a linearization conflict when ellipsis is not applied.

- Finally, ellipsis can mitigate COMP-trace effects in Nupe. We noted that this finding is predicted by Kandybowicz’s (2009) analysis of Nupe’s COMP-trace effect, according to which the effect is the result of a phonological pressure to fill TP’s edge with a specifier, an adjunct, or an overt T head;

- The literature on salvation and nonsalvation by deletion has mainly focused on textbook locality constraints (e.g. Ross’s Islands, COMP-trace effects in English, Superiority, Subjacency, ECP, Head Movement Constraint violations; see Ross 1969, Perlmutter 1971, Chung, Ladusaw, and McCloskey 1995, Merchant 2001, Lasnik 2001, Bošković 2011, Merchant 2008, Barros, Elliott, and Thoms 2014, Abels 2018 and Mendes 2020, among others, for relevant discussion and different stands on the availability of salvation by deletion).⁶, I think it is time to move on!

References

Barros, Matthew, Patrick Elliott, and Gary Thoms. 2014. There is no island repair. Ms., Rutgers University, University College London and University of Edinburgh.

⁶Lasnik 2001, Bošković 2011, and Mendes and Nevins to appear also apply salvation by deletion diagnostics to new domains.

Mendes, Gesoel, and Andrew Nevins. to appear. When ellipsis can save defectiveness and when it can’t. *Linguistic Inquiry*.

