
Making Live Happen:
Software Engineering at Ticketmaster

Kitty Shi
College Park Scholars - Science and Global Change

Computer Science (Data Science Track) and Biological Science
kyshi874@terpmail.umd.edu

CPSG230
Scholars Academic Showcase: May 9, 2025

The Archtics Integration team's mission is to create and deploy
APIs essential to the data-driven solutions offered to Ticketmaster
clients in the live entertainment industry.

 Contact Information:
 Ticketmaster Reston Office
 11921 Freedom Dr
 Suite 800
 Reston, VA 20190
 Website: https://www.ticketmaster.com
 Supervisors: John Kemprowski and Talha Mahammad

Internship Site

During the summer of 2023, I interned as a software engineer at
Ticketmaster on the Archtics Integration team. Under the guidance
of our mentor, Talha Mahammad, I learned and applied full stack
development knowledge to simulate a ticketing platform. There I
also designed an AWS service system with Nithika Ramanathan, a
fellow intern studying at UMD, to improve the management of
errors in the existing infrastructures.

Issue Confronting Site

I want to thank John Kemprowki and the Archtics Integration Team at Ticketmaster for
supporting and encouraging my growth as a software engineer during this unforgetable

internship. Special thank you to Talha Muhammad for creating and curating lesson plans
detailing the full stack development process and for your patience in answering every

question regarding software engineering.
Additionally, thank you to Dr. Holtz and Dr. Merck for the guidance and lessons on the

intersectionality of science, climate change, and sociopolitical events over the past two years

Acknowledgments

AWS SQS DLQ Metadata Managing System

We created a centralized system with Python using AWS Lambda,
SQS, and Simple Storage Service (S3) to manage important
metadata from messages collected in DLQs for ease of access of
viewing and editing.

◦ Connected AWS resources through triggers
◦ Filtered DLQ message metadata to S3 JSON object in Lambda
◦ Designed APIs that displayed objects from S3 buckets

Activities

Ticketmaster teams utilizes AWS services to manage responses for
ticket purchases, surveys, and other applications. Erroneous
messages temporarily stored in AWS Simple Queue Service (SQS)
that fail to be validated by AWS Lambdas to be stored in databases
end up in AWS Dead-letter Queue (DLQ).

Since engineers must manually check DLQs there is an unknown
amount of buildup of messages that are difficult to view, delete, and
redrive without careful examination. The retention of messages in
DLQ also only has a maximum of 14 days. There needed to be a
more efficient system in place to manage erraneous messages

◦ Created a mock UI
interface that
engineers would use
to interact with the
objects

◦ Researched
implemention of user
authentication to limit
user access to S3
buckets by
authorization

Full Stack Development
I created a ticketing platform, Tessera, with the base functions of
account creation, login security, filtering, and ticket purchase
essential to the service using the React framework with Javascript.

Database:
◦ Relational database with normalized data for data integrity
◦ Iterations of schema to improve efficiency and scalability

Backend:
◦ REST API using JWT, data extraction from cookies, and

password hashing for security
◦ Database APIs to maintain data integrity as tickets are

purchases Third party APIs used for payment and email
confirmation of purchases (Stripe and Gmail Integration)

◦ SQL query efficiency and format of JSON
Frontend:
◦ Component organization to reduced redundant API calls
◦ Passing props, implementing callbacks and React hooks

While the managing system is
incomplete due inefficiency of API
calls, the connectivity design of
the system is base for the
engineers on the team to
continue developing upon.

Through the development of
Tessera I learned to code in JS,
debug React, integrate systems
through APIs. These skills can be
transferred to any future works

Impact
Adjustment to API calls to
retrieve data from S3 can
hopefully improve in time
efficiency to where it won't time
out on a bucket containing over
100,000 objects.

In my own time I would like to
continue implementing features
such as personalizd event
suggestions to users based on
their past purchases.

Future Work

Introduction

