Tutorial: Big Data Algorithms and Applications Under Hadoop

KUNPENG ZHANG
SIDDHARTHA BHATTACHARYYA

August 7, 2014
Schedule

I. Introduction to big data (8:00 – 8:30)
II. Hadoop and MapReduce (8:30 – 9:45)
III. Coffee break (9:45 – 10:00)
IV. Distributed algorithms and applications (10:00 – 11:40)
V. Conclusion (11:40 – 12:00)
III. Distributed algorithms and applications
Distributed algorithms and applications

• Introduction to Apache Mahout
• Distributed clustering algorithm: K-means
• Example: clustering news documents into groups
• Topic modeling algorithm: LDA
• Example: finding topics from job postings
• Social network analysis: centrality
• Example: identifying influential brands from brand-brand network
• Apache mahout(https://mahout.apache.org/) is an open-source scalable machine learning library. Many supervised and unsupervised algorithms are implemented and included.

• List of algorithms
 — Collaborative filtering (mapreduce based)
 • Item-based collaborative filtering
 • Matrix factorization
List of algorithms – mapreduce based

- Classification
 - Naïve bayes
 - Random forest
- Clustering
 - K-means / fuzzy K-means
 - Spectral clustering
- Dimensionality reduction
 - Stochastic singular value decomposition
 - Principle component analysis (PCA)
- Topic modeling
 - Latent dirichlet allocation (LDA)
- And others
 - Frequent itemset mining
Install Mahout

• I suggest to download the stable version 0.7 mahout-distribution-0.7.tar.gz from http://archive.apache.org/dist/mahout/0.7/

• Unpack and put it into a folder of your choice.
Distributed algorithms and applications

- Introduction to Apache Mahout
- **Distributed clustering algorithm: K-means**
- Example: clustering news documents into groups
- Topic modeling algorithm: LDA
- Example: finding topics from job postings
- Social network analysis: centrality
- Example: identifying influential brands from brand-brand network
K-Means

• Unsupervised learning algorithm
• Classify a given data set through a certain number of k clusters (k is fixed)
• Given a set of observations \((x_1, x_2, \ldots, x_n)\), where each observation is a \(d\)-dimensional real vector, k-means clustering aims to partition the \(n\) observations into \(k\) sets \((k \leq n)\): \(S = \{S_1, S_2, \ldots, S_k\}\), so as to minimize the within-cluster sum of squares (WCSS):

\[
\arg\min_S \sum_{i=1}^{k} \sum_{x_j \in S_i} \|x_j - \mu_i\|^2
\]

where \(\mu_i\) is the mean of points in \(S_i\).
Algorithm

1. Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of the objects into groups from which the metric to be minimized can be calculated.
Demonstration

k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

The centroid of each of the k clusters becomes the new mean.

Steps 2 and 3 are repeated until convergence has been reached.
Interpretation in math

• Given an initial set of \(k \) means \(m_1^{(1)}, \ldots, m_k^{(1)} \), the algorithm proceeds by alternating between two steps:

 • **Assignment step:** Assign each observation to the cluster whose mean yields the least within-cluster sum of squares (\(\text{WCSS} \)). Since the sum of squares is the squared Euclidean distance, this is intuitively the "nearest" mean. (Mathematically, this means partitioning the observations according to the Voronoi diagram generated by the means).

 \[
 S^{(t)}_i = \{ x_p : \| x_p - m_i^{(t)} \|^2 \leq \| x_p - m_j^{(t)} \|^2 \ \forall \ 1 \leq j \leq k \},
 \]

 where each \(x_p \) is assigned to exactly one \(S^{(t)} \), even if it could be assigned to two or more of them.

 • **Update step:** Calculate the new means to be the centroids of the observations in the new clusters.

 \[
 m_i^{(t+1)} = \frac{1}{|S^{(t)}_i|} \sum_{x_j \in S^{(t)}_i} x_j
 \]

 Since the arithmetic mean is a least-squares estimator, this also minimizes the within-cluster sum of squares (\(\text{WCSS} \)) objective.

• The algorithm has converged when the assignments no longer change.
Remarks

• The way to initialize the means was not specified. One popular way to start is to **randomly choose** \(k \) of the samples.

• The results produced depend on the initial values for the means, and it frequently happens that **suboptimal partitions** are found. The standard solution is to **try a number of different starting points**.

• It can happen that the set of samples closest to \(m_i \) is empty, so that \(m_i \) cannot be updated. This is an annoyance that must be handled in an implementation, but that we shall ignore.

• The results depend on the metric used to measure \(|| x - m_i || \). A popular solution is to normalize each variable by its standard deviation, though this is not always desirable.

• The results depend on the value of \(k \).
K-Means under MapReduce

• Iterative MapReduce framework
• The implementation accepts two input directories
 – Data points
 • The data directory contains multiple input files of SequenceFile(key, VectorWritable),
 – The initial clusters
 • The clusters directory contains one or more SequenceFiles(Text, Cluster | Canopy) containing k initial clusters or canopies.
• None of the input directories are modified by the implementation, allowing experimentation with initial clustering and convergence values.
Mapper class

- Reads the input clusters during its setup() method, then assigns and outputs each input point to its nearest cluster as defined by the user-supplied distance measure.
 - Output key: Cluster Identifier.
 - Output value: Cluster Observation.
After mapper

• Data
 \{1.0, 1.0\} \rightarrow C1, \{1.0, 1.0\}
 \{1.0, 3.0\} \rightarrow C1, \{1.0, 3.0\}
 \{3.0, 1.0\} \rightarrow C2, \{3.0, 1.0\}
 \{3.0, 3.0\} \rightarrow C2, \{3.0, 3.0\}
 \{8.0, 8.0\} \rightarrow C2, \{8.0, 8.0\}

• Cluster centroids (K=2)
 C1: \{1.0, 1.0\}
 C2: \{3.0, 3.0\}
Combiner class

• Receives all (key : value) pairs from the mapper and produces **partial sums** of the input vectors for each cluster.
 — Output key is: Cluster Identifier.
 — Output value is: Cluster Observation.
After combiner

- **Data**
 - \(\{1.0, 1.0\} \rightarrow C_1, \{1.0, 1.0\} \)
 - \(\{1.0, 3.0\} \rightarrow C_1, \{1.0, 3.0\} \)
 - \(\{3.0, 1.0\} \rightarrow C_2, \{3.0, 1.0\} \)
 - \(\{3.0, 3.0\} \rightarrow C_2, \{3.0, 3.0\} \)
 - \(\{8.0, 8.0\} \rightarrow C_2, \{8.0, 8.0\} \)

- **Cluster centroids (K=2)**
 - \(C_1: \{1.0, 1.0\} \)
 - \(C_2: \{3.0, 3.0\} \)
Reducer class

• A single reducer receives all (key : value) pairs from all combiners and sums them to produce a **new centroid** for the cluster which is output.
 – Output key is: encoded cluster identifier.
 – Output value is: Cluster.

• The reducer encodes un-converged clusters with a 'Cn' cluster Id and converged clusters with 'Vn' cluster Id.
After reducer

- **Data**

 \[
 \begin{align*}
 \{1.0, 1.0\} & \rightarrow C_1, \{1.0, 1.0\} \\
 \{1.0, 3.0\} & \rightarrow C_1, \{1.0, 3.0\} \\
 \{3.0, 1.0\} & \rightarrow C_2, \{3.0, 1.0\} \\
 \{3.0, 3.0\} & \rightarrow C_2, \{3.0, 3.0\} \\
 \{8.0, 8.0\} & \rightarrow C_2, \{8.0, 8.0\}
 \end{align*}
 \]

- **Cluster centroids (K=2)**

 \[
 \begin{align*}
 C_1: \{1.0, 1.0\} & \rightarrow C_{n1}: \{1.0, 2.0\} \\
 C_2: \{3.0, 3.0\} & \rightarrow C_{n2}: \{5.5, 5.0\}
 \end{align*}
 \]
Driver class

• Iterates over the points and clusters until
 — all output clusters have converged (Vn clusterIds)
 — or a maximum number of iterations has been reached.

• During iterations, a new cluster directory "clusters-N" is produced with the output clusters from the previous iteration used for input to the next.

• A final optional pass over the data using the KMeansClusterMapper clusters all points to an output directory "clusteredPoints" and has no combiner or reducer steps.
After multiple iterations

• Data
 - \{1.0, 1.0\} \rightarrow C1, \{1.0, 1.0\} \rightarrow \rightarrow C1, \{2.0, 2.0\}
 - \{1.0, 3.0\} \rightarrow C1, \{1.0, 3.0\} \rightarrow \rightarrow C1, \{2.0, 2.0\}
 - \{3.0, 1.0\} \rightarrow C2, \{3.0, 1.0\} \rightarrow \rightarrow C1, \{2.0, 2.0\}
 - \{3.0, 3.0\} \rightarrow C2, \{3.0, 3.0\} \rightarrow \rightarrow C1, \{2.0, 2.0\}
 - \{8.0, 8.0\} \rightarrow C2, \{8.0, 8.0\} \rightarrow \rightarrow C2, \{8.0, 8.0\}

• Cluster centroids (K=2)
 - C1: \{1.0, 1.0\} \rightarrow Vn1: \{2.0, 2.0\}
 - C2: \{3.0, 3.0\} \rightarrow Vn2: \{8.0, 8.0\}
Running K-Means under mahout

```
$./bin/mahout kmeans
   -i <input vectors directory>
   -c <input clusters directory>
   -o <output working directory>
   -k <optional number of initial clusters to sample from input vectors>
   -dm <DistanceMeasure>
   -x <maximum number of iterations>
   -cd <optional convergence delta. Default is 0.5>
   -ow <overwrite output directory if present>
   -cl <run input vector clustering after computing Canopies>
   -xm <execution method: sequential or mapreduce>
```
Distributed algorithms and applications

• Introduction to Apache Mahout
• Distributed clustering algorithm: K-means
• Example: clustering news documents into groups
• Topic modeling algorithm: LDA
• Example: finding topics from job postings
• Social network analysis: centrality
• Example: identifying influential brands from brand-brand network
Example: clustering news documents into groups

Check the Mahout_Kmeans document
Distributed algorithms and applications

- Introduction to Apache Mahout
- Distributed clustering algorithm: K-means
- Example: clustering news documents into groups
- Topic modeling algorithm: LDA
- Example: finding topics from scientific publications
- Social network analysis: centrality
- Example: identifying influential brands from brand-brand network
Topic modeling algorithm: LDA

• Data as arising from a (imaginary) generative process
 — probabilistic process that includes hidden variables (latent topic structure)

• Infer this hidden topic structure
 — learn the conditional distribution of hidden variables, given the observed data (documents)

Generative process for each document
 — choose a distribution over topics
 — for each word
 draw a topic from the chosen topic distribution
 draw a word from distribution of words in the topic
Topic modeling algorithm: LDA

Joint distribution:

\[
p(\beta_{1:K}, \theta_{1:D}, z_{1:D}, w_{1:D}) = \prod_{k=1}^{K} p(\beta_k | \eta) \prod_{d=1}^{D} p(\theta_d | \alpha) \left(\prod_{n=1}^{N} p(z_{d,n} | \theta_d) p(w_{d,n} | z_{d,n}, \beta_{1:K}) \right) \]

- \(\alpha \): V-dimensional Dirichlet
- \(\theta_d \): topic proportions for document \(d \)
- \(Z_{d,n} \): topic assignment for word \((d,n) \)
- \(W_{d,n} \): observed word
- \(\beta_k \): K-dimensional Dirichlet
- \(\eta \): K-dimensional Dirichlet
Topography modeling algorithm: LDA

Need to compute the posterior distribution

$$p(\beta_{1:K}, \theta_{1:D}, z_{1:D} | w_{1:D}) = \frac{p(\beta_{1:K}, \theta_{1:D}, z_{1:D}, w_{1:D})}{p(w_{1:D})}$$

Intractable to compute exactly, approximation methods used
- Variational inference (VEM)
- Sampling (Gibbs)

Example: finding topics job postings

- Introduction to Apache Mahout
- Distributed clustering algorithm: K-means
- Example: clustering news documents into groups
- Topic modeling algorithm: LDA
- Example: finding topics from job postings
- Social network analysis: centrality
- Example: identifying influential brands from brand-brand network
“Aggregates job listings from thousands of websites, including job boards, newspapers, associations, and company career pages….Indeed is currently available in 53 countries. In 2010, Indeed surpassed monster.com to become the most visited job site in the US. Currently Indeed has 60 million unique visitors every month.” (Wikipedia)
Social media jobs
Topic models in job ads
Topic models in job ads

• Vocabulary
 – filter out commonly used terms, and very rare terms stemming

• How many topics?
 – ‘Perplexity’ measure on test data with varying #-topics Cross-validation on 3000 job-ads

• Interpretability
 – Fewer topics: broader themes
 – Too many topics: overly specific, non-distinguished topics spurious term associations
Topics in job ads

(topic model with 50 topics)

• Topics pertaining to
 – marketing, advertising, campaigns, brand management
 – content management, graphic design
 – community engagement, communication, coordinate/relationship, customer service
 – software development, enterprise technology, coding
 – data /analytics, search optimization
 – administrative assistance, consulting, innovation & leadership, strategy
 – education, healthcare, entertainment, global
 – benefits, abilities & qualification
 –
Topic examples

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Campaign, twitter, blog, social media, marketing campaign, linkedin, campaign management, email campaign, flickr, youtube, pineterest, advertising campaign,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical, software</td>
<td>software, engineer, cloud, service, software development, server, data, infrastructure, technical, device, hardware, cloud computing, computer science, engineering team</td>
</tr>
<tr>
<td>Strategy leadership</td>
<td>Strategy, leadership, manage, leader, collaborate, engage, strategic plan, partnership, stakeholder, budget, achieve, vision, coach, complex, thought-leadership</td>
</tr>
<tr>
<td>Data, Analytics</td>
<td>Data, analytics, analyze, research, intelligence, recommend, insight, quantitative, statistical, business intelligence, analytical skill, evaluate, database, analytical tool</td>
</tr>
<tr>
<td>Education</td>
<td>Student, education, college, campus, academic, faculty, service, undergraduate, collaborate, culture, dean, ambassador, administrative, assess, supervise</td>
</tr>
<tr>
<td>Product management</td>
<td>Product, define, product mgt, experience, translate, stakeholder, definition, vision, cross functional, development process, communicate, user experience, agile</td>
</tr>
<tr>
<td>Marketing</td>
<td>Marketing, promotion, product, strategy, advertising, social, marketing communication, marketing strategy, social media, communicate, research, market relation</td>
</tr>
<tr>
<td>Social media focused</td>
<td>Social media, twitter, blog, platform, engage, linkedin, social network, communicate, manage social, strategy, facebook, creative, channel, social marketing, develop social</td>
</tr>
</tbody>
</table>
Distributed algorithms and applications

• Introduction to Apache Mahout
• Distributed clustering algorithm: K-means
• Example: clustering news documents into groups
• Topic modeling algorithm: LDA
• Example: finding topics from job postings
• Social network analysis: centrality
• Example: identifying influential brands from brand-brand network
Social network analysis: centrality

• Introduction to network
• Network attributes
 – Degree
 – Density
 – Clustering coefficient
 – Other properties
• Centrality
 – Degree centrality
 – Closeness centrality
 – Betweenness centrality
 – Eigenvector centrality
Interesting networks

Patent citation network
Interesting networks

Human Gene Coexpression Network

1. nuclear related metabolism
2. immune response
3. mitochondrial metabolism and redox homeostasis
4. metal ion homeostasis
5. histocompatibility complex

CD antigens and plasma membrane signals
ribosome and translation
extracellular matrix and adhesion
cytoskeleton
Interesting networks

Political blog network
Interesting networks

Airport network
Network representation (I)

• The adjacency matrix
 - $A_{ij} = 1$ if node i and j are connected, 0 otherwise for undirected network
 - $A_{ij} = 1$ if node j connects to i, 0 otherwise for directed network
 - $A_{ij} = W_{ij}$ for weighted network
Network representation (II)

- The link table
 - Adjacency matrix needs more computer memories
 - Each line would be (node i, node j, weight) for weighted network and (node i, node j) for unweighted network
Social network analysis: centrality

• Introduction to network
• Network attributes
 – Degree
 – Density
 – Clustering coefficient
 – Other properties
• Centrality
 – Degree centrality
 – Closeness centrality
 – Betweenness centrality
 – Eigenvector centrality
Degree

- The degree of a node i represents how many connections to its neighbors for unweighted network and reflects how strong connects to its neighbors for weighted network.
- It can be computed from the adjacency matrix A.
 $$k_i = \sum_j A_{ji}$$
- Average node degree of the entire network
 $$<k> = \frac{1}{N} \sum_i k_i = \frac{\sum_{ij} A_{ij}}{N}$$
Density

• The ratio of links L and the maximum number of links which is $N(N-1)/2$ for an undirected network

\[\rho = \frac{2L}{N(N-1)} = \frac{<k>}{N-1} \equiv \frac{<k>}{N} \]

• It is the mean degree per node or the fraction of links a node has on average normalized by the potential number of neighbors
Clustering coefficient

- A measure of “all-my-friends-know-each-other”
- More precisely, the clustering coefficient of a node is the ratio of existing links connecting a node's neighbors to each other to the maximum possible number of such links.
- The clustering coefficient for the entire network is the average of the clustering coefficients of all the nodes.
- A high clustering coefficient for a network is another indication of a small world.
Clustering coefficient

\[C_i = \frac{2e_i}{k_i(k_i - 1)} \]

- Where \(k_i \) is the neighbors of the \(i^{th} \) node, \(e_i \) is the number of connections between these neighbors
Other properties

• Network diameter: the longest of all shortest paths in a network

• Path: a finite or infinite sequence of edges which connect a sequence of vertices which, by most definitions, are all distinct from one another

• Shortest path: a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized
Social network analysis: centrality

• Introduction to network
• Network attributes
 – Degree
 – Density
 – Clustering coefficient
 – Other properties
• Centrality
 – Degree centrality
 – Closeness centrality
 – Betweenness centrality
 – Eigenvector centrality
Centrality in a network

• Information about the relative importance of nodes and edges in a graph can be obtained through centrality measures.

• Centrality measures are essential when a network analysis has to answer the following questions:
 – Which nodes in the network should be targeted to ensure that a message or information spreads to all or most nodes in the network?
 – Which nodes should be targeted to curtail the spread of a disease?
 – Which node is the most influential node?
Degree centrality

- The number of links incident upon a node
- The degree can be interpreted in terms of the immediate risk of a node for catching whatever is flowing through the network (such as a virus, or some information)
- In the case of a directed network, indegree is a count of the number of ties directed to the node and outdegree is the number of ties that the node directs to others
- When ties are associated to some positive aspects such as friendship or collaboration, indegree is often interpreted as a form of popularity, and outdegree as gregariousness
Closeness centrality

- The **farness** of a node s is defined as the sum of its distances to all other nodes, and its **closeness** is defined as the inverse of the farness.
- By definition, the closeness centrality of all nodes in an unconnected graph would be 0.
- Thus, the more central a node is the lower its total distance to all other nodes.
- Closeness can be regarded as a measure of how long it will take to spread information from node s to all other nodes sequentially.
Application

• High closeness centrality individuals tend to be important influencers within their local network community. They may often not be public figures to the entire network of a corporation or profession, but they are often respected locally and they occupy short paths for information spread within their network community.
Betweenness centrality

- It quantifies the number of times a node acts as a bridge along the shortest path between two other nodes.
- The betweenness of a vertex v in a graph G:=(V, E) with V vertices is computed as follows:
 1. For each pair of vertices (s, t), compute the shortest paths between them.
 2. For each pair of vertices (s, t), determine the fraction of shortest paths that pass through the vertex in question (here, vertex v).
 3. Sum this fraction over all pairs of vertices (s, t).
Betweenness centrality

\[C_B(v) = \sum_{s \neq v \neq t \notin V} \frac{\sigma_{st}(v)}{\sigma_{st}} \]

- Where \(\sigma_{st} \) is the total number of shortest paths from node \(s \) to node \(t \) and \(\sigma_{st}(v) \) is the number of those paths that pass through \(v \).
• High betweenness individuals are often critical to collaboration across departments and to maintaining the spread of a new product through an entire network. Because of their locations between network communities, they are natural brokers of information and collaboration.
Eigenvector centrality

• A measure of the influence of a node in a network
• It assigns relative scores to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes
• Google's PageRank is a variant of the eigenvector centrality measure
Eigenvector centrality

• For a given network \(G := (V, E) \) with \(|V| \) number of vertices let \(A = (a_{v,t}) \) be the adjacency matrix, i.e. \(a_{v,t} = 1 \) if vertex \(v \) is linked to vertex \(t \), and \(a_{v,t} = 0 \) otherwise

• The centrality score of vertex \(v \) can be defined as:

\[
x_v = \frac{1}{\lambda} \sum_{t \in M(v)} x_t = \frac{1}{\lambda} \sum_{t \in G} a_{v,t} x_t
\]

where \(M(v) \) is a set of the neighbors of \(v \) and \(\lambda \) is a constant. With a small rearrangement this can be rewritten in vector notation as the eigenvector equation \(Ax = \lambda x \)
High eigenvector centrality individuals are leaders of the network. They are often public figures with many connections to other high-profile individuals. Thus, they often play roles of key opinion leaders and shape public perception. High eigenvector centrality individuals, however, cannot necessarily perform the roles of high closeness and betweenness. They do not always have the greatest local influence and may have limited brokering potential.
Real data example

• Undirected and weighted brand-brand network from Facebook
 — Nodes: social brands (e.g., institutions, organizations, universities, celebrities, etc.)
 — Links: if two brands have common users who had activities (liked, made comments) on both brands
 — Weights: the number of common users (normalized)

• 2000 brands are selected based on their sizes
Distribution of eigenvector centrality
10 most and least influential brands

<table>
<thead>
<tr>
<th>Rank</th>
<th>Brands</th>
<th>Category</th>
<th>Rank</th>
<th>Brands</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Barack Obama</td>
<td>Politician</td>
<td>-1</td>
<td>Molex</td>
<td>Computer technology</td>
</tr>
<tr>
<td>2</td>
<td>NPR</td>
<td>Media news publishing</td>
<td>-2</td>
<td>Google</td>
<td>Website</td>
</tr>
<tr>
<td>3</td>
<td>CNN</td>
<td>Media news publishing</td>
<td>-3</td>
<td>Dentyne</td>
<td>Product service</td>
</tr>
<tr>
<td>4</td>
<td>Starbucks</td>
<td>Food beverages</td>
<td>-4</td>
<td>NAVIGON</td>
<td>Product service</td>
</tr>
<tr>
<td>5</td>
<td>Justin Bieber</td>
<td>Musician band</td>
<td>-5</td>
<td>Vodafone Zoozoos</td>
<td>Telecommunication</td>
</tr>
<tr>
<td>6</td>
<td>Lady Gaga</td>
<td>Musician band</td>
<td>-6</td>
<td>Syracuse Orange</td>
<td>School sports team</td>
</tr>
<tr>
<td>7</td>
<td>Fox News</td>
<td>Media news publishing</td>
<td>-7</td>
<td>St John’s Red Storm</td>
<td>School sports team</td>
</tr>
<tr>
<td>8</td>
<td>Coca-Cola</td>
<td>Food beverages</td>
<td>-8</td>
<td>50 Cent</td>
<td>Musician band</td>
</tr>
<tr>
<td>9</td>
<td>ESPN</td>
<td>TV network</td>
<td>-9</td>
<td>Max Bupa</td>
<td>Product service</td>
</tr>
<tr>
<td>10</td>
<td>LA Lakers</td>
<td>Professional sports team</td>
<td>-10</td>
<td>Microsoft Developer</td>
<td>Computer technology</td>
</tr>
</tbody>
</table>