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HIV replication requires the export of full length RNA genome transcripts from the
nucleus to the cytoplasm, where the genome is packaged. Host surveillance mechanisms
prevent such RNA export, so HIV uses Rev, a viral protein translated from fully spliced
transcripts to enter the nucleus and bind to a highly conserved RNA element of the HIV
genome, the Rev Response Element (RRE), which is retained on un/incompletely spliced
RNA. The Rev-RRE complex binds to host export machinery, and exits the nucleus to the
cytoplasm, where unspliced RNA is available for translation or packaging. Rev binds to the
RRE on two stem Il binding sites and on one purine-rich bulge in stem 1. The RRE has been
shown to also be bound by Gag -a viral protein involved in genome packaging- at the
same RRE stem | binding region as Rev. To understand the interaction and biological
relevance between Rev and Gag on RRE stem 1, we use a peptide containing the RNA-
binding, arginine-rich motif (ARM) of Rev, a protein containing the nucleocapsid (NC)
domain of Gag, and truncated RRE stem | fragments in EMSA and ITC studies. Some RNA
fragments include mutations that allow us to probe for specific protein binding sites. We
find that NC displays tighter binding affinity to our stem 1 constructs than the Rev ARM
peptide, which may suggest that Gag binds to the RRE in the cytoplasm and displaces Rev
from the stem 1 binding site. This interaction may be biologically relevant and may
represent a link between nuclear export of the genome and subsequent genome
packaging. Future studies are needed to more accurately explore this competitive
interaction, such as the usage of full-length RNA constructs, which would contain more
Rev binding sites, and full-length protein constructs that would more accurately

represent physiological interactions.
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Methods

RNA Constructs

Electrophoretic Mobility Shift

1A.

RRE-S1BC: 47 nucleotides long; longer stem 1
construct containing RRE stem 1A
RRE-S1BCnb: Similar to S1BC, but lacking two
smaller bulges above and below the larger

purine-rich bulge.

RRE-S1A: 33 nucleotides long; contains RRE stem Assay (EMSA)

* An electric current moves charged items
through a gel matrix according to charge
and size, with larger items moving
slower

* Gels are usually made of agarose or

Protein Constructs

polyacrylamide
 Qur EMSA studies consist of RNA-

NC: Nucleocapsid domain of the viral structural
protein Gag, which has been shown to bind to
the RRE (Kutluay et al., Cell, 2014)

Rev Peptide: 27 amino acids long;

contains the Rev Arginine Rich Motif (ARM)

protein titrations

Isothermal Titration Calorimetry
(ITC) (Fig. 5)
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» binding affinity (K,), Protein
» The number of binding sites (N), [

» Gibb’s free energy (AG)
when the titrant (in the syringe) is

Base and Tris Boric Acid Polyacrylamide Gels for injected into the titrand (in the
cell).

(Adapted from Srivastava & W Sarsple cell
Yadav, Data Processing

Handbook for Complex
Biological Data Sources, 2019)
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ITC Results:

[NC]/ [S1A] (Fig. 7A)
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ITC Results:
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ITC Quantltatlve Results Table 1

Protein | RNA Binding Affinityl Numberof | Enthalpy Change Free Energy Change
(Syringe) |[(Cell) (Kp, nM) Binding Sites (N)  (AH, kcal/mol) (AG, kcal/mol)
NC S1A 150+ 234 143 £ 0.012 -4.37 £ 0.074 -9.31
Rev Peptide | S1A 718 £+ 359 1.35 + 0.0069 -104 + 0.10 -8.38
NC S1BC 117 £ 30.8 1.83 £ 0.031 -4.98 + 0.122 -9.46
Rev Peptide | S1BC| 3160 = 255 3.14 + 0.04 -16.4 £ 0.374 -7.50

Preliminary S1BC nb EMSA Results

[NC]/ [S1BC nb] (Fig. 9A)

[S1BC nb]= 2uM

e NC/RNA Saturation occurs at molar ratios of: 2 (S1A), 1.5 (S1BC), and 2 (S1BC nb), while Rev
Peptide/ Saturation occurs at molar ratios of ~2.5 (S1A), ~3 (S1BC) and ~2 (S1BC nb).
e |TC studies show higher NC binding affinity to both S1A and S1BC RNAs (150 nM and 117 nM,

respectively), compared to Rev Peptide across both RNAs (718 nM for S1A and 3160 nM for

S1BC).

[Rev Peptide ]/ [S1BC nb] (Fig. 9B)
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e NC may displace Rev after the genome is exported from the nucleus, but more data is
required to test and fully support this hypothesis.
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Future Directions

e |TC studies using S1BC nb can characterize whether the two smaller bulges serve as NC or

Rev binding sites.
e NMR studies accurately characterize structures and interactions at an atomic level.
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