Fall 2004

Homework #8

- 1) Consider a causal impulse response h[n] defined implicitly by $y[n] + a_1y[n-1] = b_0x[n] + b_1x[n-1]$, where $a_1 = 2, b_0 = 1, b_1 = -5$.
 - a) Evaluate the transfer function H(z) and its ROC.
 - b) Justify the statement that H(z) is not stable and does not have a stable inverse.
 - c) Find a causal transfer function $H_{\min}(z)$ and its ROC such that $|H_{\min}(e^{j\omega})| = |H(e^{j\omega})|$ but with $H_{\min}(z)$ minimum phase (i.e. stable with a stable inverse). Be careful to find the correct overall gain factor.
 - d) Consider the causal impulse response $h_{\min}[n]$ which is the inverse Z transform of $H_{\min}(z)$. Without calculating $h_{\min}[n]$ explicitly, find the constants $\tilde{a}_1, \tilde{b}_0, \tilde{b}_1$ so that $h_{\min}[n]$ is defined implicitly by $y[n] + \tilde{a}_1 y[n-1] = \tilde{b}_0 x[n] + \tilde{b}_1 x[n-1]$
 - e) One reason to compute $H_{\min}(z)$ is to undo the distortion gain of H(z). For this we need $H_{\min}^{I}(z)$, the inverse of $H_{\min}(z)$. Evaluate $H_{\min}^{I}(z)$. For $H_{\min}^{I}(z)$ causal, is it stable?
 - f) What is the magnitude of the transfer function of the **total** system defined by applying $H(e^{j\omega})$ and then following it with $H_{\min}^{I}(e^{j\omega})$? Simplify.
- 2) For each of the following causal, allpass filters, answer the subsequent questions. Feel free to use Matlab.

a)
$$H(z) = \frac{z^{-1} - a^*}{1 - az^{-1}}$$
, where $a = 1/8$

b)
$$H(z) = \frac{z^{-1} - a^*}{1 - az^{-1}}$$
, where $a = -1/8$

c)
$$H(z) = \frac{z^{-1} - a^*}{1 - az^{-1}} \frac{z^{-1} - a}{1 - a^* z^{-1}}$$
, where $a = j/8$

- i) Plot the gain $|H(e^{j\omega})|$ in dB for ω in the range $[0,2\pi]$.
- ii) Plot the phase in degrees for ω in the range $[0,2\pi]$.
- iii) Plot the unwrapped phase in degrees for ω in the range $[0,2\pi]$. Is this consistent with the answers in (ii)? Why?
- iv) Plot the group delay (in samples) for ω in the range $[0,2\pi]$. Is it always positive?

- 3) Consider the FIR system described by $H(z) = (1 az^{-1})(1 a^{*}z^{-1})$ for a = -4j.
 - a) Is it causal? Is it stable? Is its causal inverse stable? Explain.
 - b) Plot the gain $|H(e^{j\omega})|$ in dB for ω in the range $[0, 2\pi]$.
 - c) Find a compensating filter $H_c(z)$ such that $|H(e^{j\omega})H_c(e^{j\omega})|=1$ and $H_c(z)$ is stable. Hint: Decompose H into minimum phase and allpass components, and invert the minimum phase component.