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ENEE 425
Section 0101 Fall 2004

Homework #3

You must attach a printed version of Matlab code (a Matlab file is preferable to copying and pasting a session,
if possible). You may put several problems into a single printout, if the start of each problem is made obvious.

Don’t forget to answer the verbal questions too, e.g. (4d).

This problem demonstrates how to emulate sampling from within Matlab, which is a bit tricky, because
sampling is continuous-to-discrete conversion, but Matlab itself is all discrete. We’ll therefore need to use
discrete emulations of: the continuous signal, the continuous-to-discrete conversion, and the discrete-to-
continuous reconstruction. Those three steps must be emulated in Matlab code that may not be self-evident, but
I give you the exact code you need : the Matlab code immediately below emulates the continuous signal; the
Matlab code immediately before (4c) samples that continuous signal; the Matlab code immediately before (4j)
reconstructs a continuous signal from the discrete signal.

Please do not get confused between the emulation, which is not crucial to understanding sampling, and the
analysis of the sampled signal, which is crucial to understanding sampling. The goal of this homework is to see
what sampled signals look like in both the time and Fourier domains, and how they are related.

In this homework we will sample the continuous (analog) function xc (t) = cos(2π f0 t)where f0 = 0.1875 Hz .

First emulate continuous t and x(t). On a computer we cannot let t be continuous and infinite in extent, but
we can give it a fine (but not continuous) granularity and a longish (but not infinite) extent of 64 seconds.
% emulate continuous time

tmax = 64; % seconds

granularity = 2^(-11);

t = granularity*[0:tmax/granularity-1];% emulated continuous t in seconds
(Don’t forget the last semicolon “;”. or you will print all 211 values of t.) This gives us 64 seconds of finely
granulated time, starting at 0. (You can see the first and last few points of t by examining, e.g., t(1:4) and
t(end-3:end).)

Then we emulate the continuous (analog) function xc (t) :
xc = cos(2*pi*0.1875*t); % emulate the continuous signal xc(t)

1) What is the highest frequency (in Hz) in this signal?

2) What is the maximum sample time T allowed without distortion from aliasing?
3) Plot xc (t)  using plot() (since it is a “continuous” function). Make sure you get the correct values of t

along the t axis. Fix the axis limits (for comparison with later results) using axis([0 tmax min(xc)
max(xc)]). Give it a title using title().
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4) Repeat  everything below (a – j) for these 3 values of T: 1 2 4 (in seconds).

a) What is the sampling frequency in Hz?
b) What is half the sampling frequency in Hz?

Use the following Matlab code to emulate sampling. [It only works for granularities that are powers of 2

and sample times that are reciprocals of powers of 2 (in seconds).] It makes n from t, by first picking

only the values of t which equal nT, and then making the array n that has the same length:
% the following 4 lines emulate sampling xc(t) to get x[n]

nFromt = find( abs(t/T-round(t/T)) < eps); % map n onto t

n = 0:length(nFromt)-1; % define n

N = length(n); % the number of discrete points we emulate

x = xc(nFromt); % discretize xc(t) and call it x[n]

c) What are the upper and lower values of n? what is the length of n?

Open up a new figure (for each value of T). You will draw 6 subplots in the figure.

d) In the first subplot, plot x[n]. Use stem() or bar() since this is a discrete sequence. Make sure
you get the correct values of n along the n axis. Fix the axis limits (for comparison with other

results) using axis([0 n(end) min(xc) max(xc)]). Give it a title using title(). Does it
“look like” the plot of xc (t)  in (c) above (this is a subjective judgment)? Do you think that the

original signal can be re-constructed by this sampling?
Define two Fourier space variables, ω  and f where 

� 

ω = 2πTf : ω , as commonly used in class and in the

textbook, has units of radians and repeats with period 2π . f, as commonly used in the real world, has
units of Hz, but also repeats (as it must since it is defined in terms of ω ).

omega = 2*pi*n/N; % radian

freq = omega/T/(2*pi); % Hz

e) What is the period of f? If values of ω  between π  and 2π  correspond to negative frequencies
between 

� 

−π   and 0 (by periodicity), which values of f correspond to analogous values of negative

frequencies?

We find the (discretized version of the) Fourier Transform of x[n] i.e. X e jω( )  by

X = fft(x); % note: X is not the same as x, and X is complex

f) In a subplot, plot 

� 

X e jω( ) , which in Matlab is called abs(X) and should be plotted as a function of

omega. Use stem() or bar() since this is a discrete sequence. Make sure you get the correct

values of ω  along the ω  axis. Fix the axis limits (for comparison with other results) using
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axis([0 omega(end) 0 max(abs(X))]). Give it a title using title(). Note that inside

title(), you can use the expression \omega and it will be displayed as ω .
g) In a subplot, plot abs(X) as a function of freq. Use stem() or bar() since this is a discrete

sequence.. Fix the axis limits using axis([0 freq(end) 0 max(abs(X))]). Give it a title
using title(). Where are the peaks? What frequencies do they fall at? Where should they fall at?

Interpreting frequencies above the half-way point as negative, where do the negative frequencies

fall at? How is this consistent with what you know about the original function? This demonstrates
that using ω  is really useful from the theoretical perspective, but freq  is really useful when

interpreting and debugging plots.
Create an ideal low pass filter with cutoff at ω = π and gain T:

LP = T*[1,ones(1,N/2-1),0,ones(1,N/2-1)];

(recall any frequencies above N/2 can be interpreted as negative frequencies.)

h) This filter lets through almost all frequencies. In a subplot, plot LP as a function of omega. Use
stem() or bar() since this is a discrete sequence.. Fix the axis limits using axis([0

omega(end) 0 max(LP)]). Give it a title using title().Which frequencies are not passed in
ω ? In f? How does this compare to your answer to (ii)?

Apply the ideal low pass filter to X:
XLP = X.*LP;

i)  In a subplot, plot the magnitude of XLP as a function of omega. Use stem() or bar() since this
is a discrete sequence. Fix the axis limits using axis([0 omega(end) 0 max(abs(XLP))]).

Give it a title using title(). Why is XLP made by multiplying X and LP instead of convolving
them?

The reconstruction of the analog signal, xr ( t) , is emulated in Matlab by:
xr = interpft(real(ifft(XLP))/T,length(t)); % reconstructed signal

j) In the last subplot, plot xr ( t)  using plot() (since it is a “continuous” function). Make sure you get

the correct values of t along the t axis. Fix the axis limits (for comparison with figure 1) using
axis([0 tmax min(xc) max(xc)]). Give it a title using title(). Does it reconstruct the

original signal? Should it? Why or why not?
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