Solved Example 10.1

We have x(t) = s(t) + s(-t), and thus

$$X_k = S_k + S_{-k}$$

Since s(t) is real-valued, $S_{-k} = S_k^*$ and thus also

$$X_k = 2\Re e\{S_k\}$$

The spectrum is real and even, as is x(t). For y(t), we have

$$y(t) = x(t) + x(t - T_0/2)$$

and thus the two sets of Fourier series coefficients—both evaluated with respect to the fundamental period T_0 of x(t)—are related by

$$Y_{k} = S_{k} + e^{-jk\Omega_{0}T_{0}/2} \cdot S_{k}$$

= $(1 + e^{-jk\pi})S_{k}$
= $(1 + (-1)^{k})S_{k}$
= $\begin{cases} 2S_{k}, & k \text{ even;} \\ 0, & k \text{ odd.} \end{cases}$

The fact that $Y_k = 0$ for all odd k is not surprising, since the fundamental period of y(t) is $T_0/2$. Thus y(t) is a sum of sinusoids of frequency $k(2\Omega_0) = (2k)\Omega_0$.

If we were to express y(t) as a Fourier series with respect to its true fundamental period $T_0/2$, then the k^{th} coefficient of the series would be given by $2S_{2k}$ (note the doubling in the subscript). **Note:** No change in time scale is involved between s(t) and y(t), i.e., $y(t) \neq s(2t)$.

Solved Example 10.2

Here $T_0 = 5$ and $\Omega_0 = 2\pi/5$. The signal s(t) is obtained from an even rectangular pulse train using two time shifts:

$$s(t) = p\left(t - \frac{3}{2}\right) - p\left(t + \frac{3}{2}\right)$$

Therefore, using the time-shift property,

$$S_k = \left(e^{-jk(2\pi/5)(3/2)} - e^{jk(2\pi/5)(3/2)}\right) \cdot P_k$$
$$= -\frac{2j}{k\pi} \cdot \sin\left(\frac{k\pi}{5}\right) \cdot \sin\left(\frac{k3\pi}{5}\right)$$

Solved Example 10.3

We can write

$$y(t) = x(t) + x(t - T_0/2) = x(t) + x(t + T_0/2)$$

and equivalently,

$$y(t) = 2x(t) - \cos \Omega_0 t = 2x(t) - \frac{e^{j\Omega_0 t}}{2} - \frac{e^{-j\Omega_0 t}}{2}$$

If $\{X_k\}$ and $\{Y_k\}$ are the Fourier series coefficients with respect to fundamental period T_0 , when we also have two equivalent relationships between the two sets of coefficients:

$$Y_k = X_k + e^{-jk\Omega_0 T_0/2} \cdot X_k$$

= $\left(1 + (-1)^k\right) X_k$
= $\begin{cases} 2X_k, & k \text{ even;} \\ 0, & k \text{ odd.} \end{cases}$

and also

$$Y_k = \begin{cases} 2X_k, & k \neq \pm 1; \\ 2X_k - 1/2, & k = \pm 1. \end{cases}$$

The two relationships together reveal two facts about $\{X_k\}$:

- $X_1 = X_{-1} = 1/4;$
- $X_k = 0$ for odd values of k other than ± 1 ,

both of which are consistent with the formula for X_k derived in the lecture notes.

Finally, we note that y(t) has fundamental period $T_0/2$, which explains why the odd harmonic coefficients Y_k obtained above for fundamental period T_0 were all zero. Clearly, the Fourier series expansion of y(t) with respect to its fundamental period $T_0/2$ has k^{th} coefficient equal to $2X_{2k}$.

S 10.4 (P 4.5)

i) MATLAB code:

```
b = [1 -3 1 1 -3 1].';
H = fft(b,256);
A = abs(H);
q = angle(H);
```

(iii)

= exp(-j*2*w)*(5-6*cos(w)+2*cos(2*w))