
Solved Example 10.1

We have x(t) = s(t) + s(−t), and thus

Xk = Sk + S−k

Since s(t) is real-valued, S−k = S∗
k and thus also

Xk = 2<e{Sk}

The spectrum is real and even, as is x(t).

For y(t), we have
y(t) = x(t) + x(t− T0/2)

and thus the two sets of Fourier series coefficients—both evaluated with respect to the fundamental
period T0 of x(t)—are related by

Yk = Sk + e−jkΩ0T0/2 · Sk
= (1 + e−jkπ)Sk

= (1 + (−1)k)Sk

=

{
2Sk, k even;
0, k odd.

The fact that Yk = 0 for all odd k is not surprising, since the fundamental period of y(t) is T0/2.
Thus y(t) is a sum of sinusoids of frequency k(2Ω0) = (2k)Ω0.

If we were to express y(t) as a Fourier series with respect to its true fundamental period T0/2, then
the kth coefficient of the series would be given by 2S2k (note the doubling in the subscript).

Note: No change in time scale is involved between s(t) and y(t), i.e., y(t) 6= s(2t).

Solved Example 10.2

Here T0 = 5 and Ω0 = 2π/5. The signal s(t) is obtained from an even rectangular pulse train using
two time shifts:

 -5/2             -1/2   0   1/2                5/2

p(t)

1

... ...

(+)(−)

s(t)

-1

1

... ...

  -5/2                                  1        2   5/2

-1-2

s(t) = p

(
t− 3

2

)
− p

(
t+

3

2

)
Therefore, using the time-shift property,
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Solved Example 10.3
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We can write
y(t) = x(t) + x(t− T0/2) = x(t) + x(t+ T0/2)

and equivalently,

y(t) = 2x(t)− cos Ω0t = 2x(t)− ejΩ0t

2
− e−jΩ0t

2

If {Xk} and {Yk} are the Fourier series coefficients with respect to fundamental period T0, when
we also have two equivalent relationships between the two sets of coefficients:

Yk = Xk + e−jkΩ0T0/2 ·Xk

=
(

1 + (−1)k
)
Xk

=

{
2Xk, k even;
0, k odd.

and also

Yk =

{
2Xk, k 6= ±1;
2Xk − 1/2, k = ±1.

The two relationships together reveal two facts about {Xk}:

• X1 = X−1 = 1/4;

• Xk = 0 for odd values of k other than ±1,

both of which are consistent with the formula for Xk derived in the lecture notes.

Finally, we note that y(t) has fundamental period T0/2, which explains why the odd harmonic
coefficients Yk obtained above for fundamental period T0 were all zero. Clearly, the Fourier series
expansion of y(t) with respect to its fundamental period T0/2 has kth coefficient equal to 2X2k.

S 10.4 (P 4.5)

______________

i) MATLAB code:

b = [1 -3 1 1 -3 1].’;

H = fft(b,256);

A = abs(H);

q = angle(H);



ii) H(exp(j*w)) = 1 - 3*exp(-j*w) + exp(-j*2*w) + exp(-j*3*w)

- 3exp(-j*4*w) + exp(-j*5*w)

= exp(-j*5*w/2)*(exp(j*5*w/2) - 3*exp(j*3*w/2) + exp(j*w/2)

+ exp(-j*w/2) - 3*exp(-j*3*w/2) + exp(-j*5*w/2))

= exp(-j*5*w/2)*(2*cos(w/2) = 6*cos(3*w/2) + 2*cos(5*w/2))

iii) y[n] = H(1/2)*x[n] = H(1/2)*(1/2)^n

H(1/2) = 1 - 3*2 + 2^2 + 2^3 -3*2^4 + 2^5 = -9

So

y[n] = -9*(1/2)^n

S 10.5 (P 4.6)

______________

The vector H (in MATLAB) is obtained by sampling

sum(a[n]*exp(-j*w*n)), where n ranges from 0 to 4

at 500 equally spaced frequencies. This means that the

coefficient vector for the filter is simply = a, i.e.,

[1 -3 5 -3 1].’

(i) y[n] = x[n] -3*x[n-1]+ 5*x[n-2] -3*x[n-3] + x[n-4]

(ii) H(z) = 1-3/z + 5/(z^2) - 3/(z^3) + 1/z^4

Thus

H(1/3) = 1 - 3*3 + 5*9 - 3*27 + 81 = 37

and if the input sequence is x[n] = (1/3)^n (all n), the output sequence is

y[n] = H(1/3)*(1/3)^n = 37*(1/3)^n, all n

(iii)

H(exp(j*w))= 1-3*exp(-j*w)+5*exp(-j*2*w)-3*exp(-j*3*w)+exp(-j*4*w)

= exp(-j*2*w)*(exp(j*2*w)-3*exp(j*w)+5-3*exp(-j*w)+exp(-j*2w))



= exp(-j*2*w)*(5-6*cos(w)+2*cos(2*w))


