
S 9.1

______

Using 2*cos(theta) = exp(j*theta) + exp(-j*theta), we see that

s(t) can be expressed as the (unweighted) sum of eight complex

sinusoids of the form

exp(2*pi*f*t) ,

where f (Hz) takes the four positive values (in Hz)

23+25+30 = 78

23+25-30 = 18

-23+25+30 = 32

23-25+30 = 28 ,

as well as the negatives of these values. The largest value of

fo such that all four frequencies shown are integer multiples of fo

equals fo = 2 Hz. Thus the fundamental cyclic frequency of s(t) is

fo = 2Hz and the fundamental period is To = 1/fo = 0.5 sec.

S 9.2

______

The sinusoids in s(t) have frequencies

15, 18.75, and 26.25 Hz

The largest value of fo such that all four frequencies shown are

integer multiples of fo is fo = 3.75 Hz. This is the fundamental

cyclic frequency, and the fundamental period is To = 1/fo = 4/15 sec.

The nonzero complex Fourier series coefficients correspond to

k = 0, (+/-)4 , (+/-)5 and (+/-)7

Using

2*cos(theta) = exp(j*theta) + exp(-j*theta)

2*sin(theta) = -j*(exp(j*theta) - exp(-j*theta))

we have

S_0 = 11

S_4 = 0.5



S_(-4) = 0.5

S_5 = j*2.5

S_(-5) = -j*2.5

S_7 = -4.5 - j

S_(-7) = -4.5 + j

s(t) is neither odd nor even about t=0. In the time domain,

this can be seen from the fact that s(t) is a sum of both cosines

(even) and sines (odd). In the frequency domain, S_k is neither

purely real (corresponding to even s(t)) nor purely imaginary

(corresponding to odd s(t)).

S 9.3

______

When s(t) is sampled at a rate of N samples per period

(or N*fo samples/second), the kth sinusoid in the Fourier

series for s(t) becomes a discrete-time sinusoid of frequency

k*(2*pi*fo)/(N*fo) = k*(2*pi/N)

i.e, the kth Fourier sinusoid for a vector of size N. If the

Fourier series is finite, i.e,

S_k = 0 for |k|>K,

and if

N > 2*K

then the N discrete-time Fourier sinusoids obtained in this manner

will be distinct. The Fourier series for s(t) will then serve as

a synthesis equation for the sample vector

s = [s[0] s[1] ... s[N-1]].’

(which consists of N uniform samples of s(t) over [0,To)).

S_k = kth Fourier series coefficient for s(t)

= (1/N)*(kth (or (N-k)th) entry in the DFT of s)

In this particular case, K = 8. We start with



N = 17 = 2*8+1

uniform samples contained in the vector s. We obtain the

Fourier series coefficients using

S = fft(s)/17

We then generate 340 uniform samples over [0,To) using

340*ifft( [ S(1:9) ; zeros(323,1) ; S(10:17) ] )

S 9.4.

Sk =

{
1, |k| ≤M ;
0, otherwise.

Thus

s(t) =
M∑

k=−M
ejkΩ0t = 1 + 2 ·

M∑
k=1

cos(kΩ0t)

Following the hint, we set z = ejΩ0t and use the geometric sum formula in (∗) below:

s(t) =
M∑

k=−M
zk

(∗)
= z−M · 1− z2M+1

1− z

=
z−M−1/2

z−1/2
· 1− z2M+1

1− z

=
zM+1/2 − z−M−1/2

z1/2 − z−1/2

Since

zM+1/2 − z−M−1/2 = 2j sin((M + 1/2)Ω0t)

z1/2 − z−1/2 = 2j sin(Ω0t/2)

we obtain

s(t) =
sin((M + 1/2)Ω0t)

sin(Ω0t/2)

This is the Dirichlet kernel introduced in the detection of sinusoids using the DFT, i.e., s(t) =
D2M+1(Ω0t).

S 9.5. Since Sk = 2−|k| for all k, we have

s(t) =
∞∑

k=−∞
2−|k|ejkΩ0t

= 1 +
∞∑
k=1

2−kejkΩ0t +
∞∑
k=1

2−ke−jkΩ0t



(Using real-valued sinusoids, s(t) = 1 +
∑

k≥1 2−k+1 cos(kΩ0t).)

Both infinite geometric sums converge, since their common ratios ejΩ0t/2 and e−jΩ0t/2 have mod-
ulus less than unity. Using the summation formula

∞∑
k=1

zk = z ·
∞∑
k=0

zk =
z

z − 1

(valid for |z| < 1),we obtain

s(t) = 1 +
1

2
· ejΩ0t

1− 1
2e

jΩ0t
+

1

2
· e−jΩ0t

1− 1
2e
−jΩ0t

= 1 +
2(ejΩ0t + e−jΩ0t)− 2

5− 2(ejΩ0t + e−jΩ0t)

= 1 +
4 cos(Ω0t)− 2

5− 4 cos(Ω0t)

=
3

5− 4 cos(Ω0t)

The signal is plotted below (over two periods).
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S 9.5. (i) Ω0 = π/3, hence T = 6.

s(t) is a linear combination of a constant and two rectangular pulse trains whose Fourier series
coefficients are given by

sin(kπ/3)

kπ
and

sin(2kπ/3)

kπ

The corresponding duty factors are 1/3 and 2/3.
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(ii) We have, for −3 < t ≤ 3,

x(t) =

∫ t

−3
s(τ) dτ

Thus x(t) is the area under the s( · ) graph over the interval (−3, t]. This function

• increases linearly (in t) for −3 ≤ t ≤ 2;

• remains constant for −2 < t ≤ −1;

• decreases linearly for −1 < t ≤ 1;

• remains constant for 1 < t ≤ 2;

• increases linearly for 2 < t ≤ 3.
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(iii) The signal x(t) is odd-symmetric, i.e., x(−t) = −x(t).

There are no discontinuities in x(t). This is because

x(3) =

∫ 3

−3
s(τ) dτ = 6S0 = 0

(That the mean value of s(t) equals zero is easily seen from its graph.) Thus x(3) equals the limit
of x(t) as t ↓ −3, and the periodic extension will have no discontinuities at the points where the
graph segments adjoin, i.e., at t = −3 + 6n.

Clearly,

s(t) =
dx(t)

dt


