Using 2*cos(theta) = exp(j*theta) + exp(-j*theta), we see that
s(t) can be expressed as the (unweighted) sum of eight complex
sinusoids of the form

exp (2*xpixf*t) ,

where f (Hz) takes the four positive values (in Hz)

23+25+30 = 78
23+25-30 = 18
-23+25+30 = 32
23-25+30 = 28 ,

as well as the negatives of these values. The largest value of

fo such that all four frequencies shown are integer multiples of fo
equals fo = 2 Hz. Thus the fundamental cyclic frequency of s(t) is
fo = 2Hz and the fundamental period is To = 1/fo = 0.5 sec.

The sinusoids in s(t) have frequencies

15, 18.75, and 26.25 Hz
The largest value of fo such that all four frequencies shown are
integer multiples of fo is fo = 3.75 Hz. This is the fundamental
cyclic frequency, and the fundamental period is To = 1/fo = 4/15 sec.

The nonzero complex Fourier series coefficients correspond to

k=0, (+/=)4 , (+/-)5 and (+/-)7

Using
2*cos(theta) = exp(j*theta) + exp(-j*theta)
2xsin(theta) = -j*(exp(j*theta) - exp(-j*theta))
we have
S_0 = 11
S_4 = 0.5



S_(-4) = 0.5

S_5 = j*2.5
S_(-5) = -j*2.5
S_7 =-4.5 - j
S_(-7) = -4.5+ j

s(t) is neither odd nor even about t=0. In the time domain,

this can be seen from the fact that s(t) is a sum of both cosines
(even) and sines (odd). In the frequency domain, S_k is neither
purely real (corresponding to even s(t)) nor purely imaginary
(corresponding to odd s(t)).

When s(t) is sampled at a rate of N samples per period
(or N*fo samples/second), the kth sinusoid in the Fourier
series for s(t) becomes a discrete-time sinusoid of frequency

kx (2*%pixfo)/(N*fo) = kx(2%pi/N)

i.e, the kth Fourier sinusoid for a vector of size N. If the
Fourier series is finite, i.e,

S_k = 0 for |k|>K,
and if

N > 2%K
then the N discrete-time Fourier sinusoids obtained in this manner
will be distinct. The Fourier series for s(t) will then serve as
a synthesis equation for the sample vector

s = [s[0] s[1] ... s[N-1]1]7.°

(which consists of N uniform samples of s(t) over [0,To)).

S_k kth Fourier series coefficient for s(t)

(1/N)*(kth (or (N-k)th) entry in the DFT of s)

In this particular case, K = 8. We start with



N = 17 = 2x8+1

uniform samples contained in the vector s. We obtain the
Fourier series coefficients using

S = fft(s)/17
We then generate 340 uniform samples over [0,To) using

340*ifft( [ S(1:9) ; zeros(323,1) ; S(10:17) 1)

S 9.4.

g _ L [k=M;
7 1 0, otherwise.

Thus

M M
s(t) = Z eIkt — 1—|—2-Zcos(k‘(20t)
k=—M k=1

Following the hint, we set z = /%? and use the geometric sum formula in (*) below:

M
s(t) = Z ZF
k=—M

2M+1
(*) Z_M ] 1 —Z
= 1—=2
S—M-1/2 1 _ 2M+1
N 12 1,

SMA1/2 _  —M-1/2

S1/2 _ —1)2

Since
GMFY2 = M=12 — 95sin((M + 1/2)Q0t)
L1212 2j sin(Q0t/2)

we obtain

s(t) = sin((M + 1/2)Qqt)
B sin(Q0t/2)
This is the Dirichlet kernel introduced in the detection of sinusoids using the DFT, i.e., s(t) =
Danr+1(Qot).
S 9.5. Since S, = 27l for all k, we have

o
s(t) = Z 2~ Ikl g7hS20t

k=—00

oo o
= 14+ Z 9=k ikQot + Z 9~k o —ikQot
k=1 k=1




(Using real-valued sinusoids, s(t) =1+~ 27k +1 cos(kQt).)

Both infinite geometric sums converge, since their common ratios e/%*/2 and e=7%t /2 have mod-
ulus less than unity. Using the summation formula

o0 o0 P
E = 2 E 2k =
z—1

k=1 k=0

(valid for |z| < 1),we obtain

1 ISt 1 e 7St
21— Lei%t tyo Le=i%t
2(e7 %0t 4 =0ty _ 9
5 — 2(e7ft + e—iS0t)
4 cos(Qot) — 2
5 — 4 cos(Qot)
3
5 — 4 cos(Qt)

s(t) = 1+

- 1+

The signal is plotted below (over two periods).
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S 9.5. (i) Qo = 7/3, hence T'= 6.
s(t) is a linear combination of a constant and two rectangular pulse trains whose Fourier series
coefficients are given by sin(kr/3) sin(2kn/3)
km and km
The corresponding duty factors are 1/3 and 2/3.



(ii) We have, for —3 <t < 3,

Thus x(t) is the area under the s(-) graph over the interval (—3,¢]. This function
e increases linearly (in ¢) for —3 <t < 2;
e remains constant for —2 <t < —1;

decreases linearly for —1 <t < 1;

e remains constant for 1 < ¢ < 2;

increases linearly for 2 < ¢ < 3.

(iii) The signal z(t) is odd-symmetric, i.e., z(—t) = —x(¢).

There are no discontinuities in x(t). This is because

3

z(3) = / s(r)dr = 6Syp = 0
-3

(That the mean value of s(t) equals zero is easily seen from its graph.) Thus x(3) equals the limit

of z(t) as t | —3, and the periodic extension will have no discontinuities at the points where the

graph segments adjoin, i.e., at t = —3 + 6n.

Clearly,

s(t) = d”;(tt)




