Problem 5A

Let $\mathbf{v}^{(1)} = \begin{bmatrix} 1 & 2 & -2 & -1 \end{bmatrix}^T$, $\mathbf{v}^{(2)} = \begin{bmatrix} 3 & -1 & 3 & -5 \end{bmatrix}^T$ and $\mathbf{v}^{(3)} = \begin{bmatrix} 7 & -6 & -4 & 3 \end{bmatrix}^T$.

(i) (3 pts.) Show that $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ and $\mathbf{v}^{(3)}$ are (pairwise) orthogonal, and compute their norms. In what follows, let $\mathbf{s} = \begin{bmatrix} 5 & 2 & -5 & 4 \end{bmatrix}^T$.

(ii) (3 pts.) Determine the projection $\mathbf{f}^{(i)}$ of s onto each $\mathbf{v}^{(i)}$ (where i = 1, 2, 3).

(iii) (2 pts.) Determine the angle between s and $v^{(1)}$.

(iv) (3 pts.) Determine the angle between s and the plane defined by $\mathbf{v}^{(1)}$ and $\mathbf{v}^{(2)}$.

(v) (3 pts.) Determine the projection g of s onto the three-dimensional subspace defined by $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ and $\mathbf{v}^{(3)}$.

(iv) (2 pts.) Verify that error vector $\mathbf{s} - \mathbf{g}$ is orthogonal to each of $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ and $\mathbf{v}^{(3)}$.

(vii) (4 pts.) Solve the system

[1	3	7	1]	$\begin{bmatrix} d_1 \end{bmatrix}$		[7]
2	-1	-6	1	d_2	=	15
-2	3	-4	1	d_3		9
$\lfloor -1$	-5	3	1	d_4		$\begin{bmatrix} -11 \end{bmatrix}$

without using Gaussian elimination.

Problem 5B

Consider the complex-valued matrix

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} & \mathbf{v}^{(4)} \end{bmatrix} = \begin{bmatrix} 1 & a+jb & 3 & 2+j \\ 2+j & 1 & a+jb & 3 \\ 3 & 2+j & 1 & a+jb \\ a+jb & 3 & 2+j & 1 \end{bmatrix}$$

(i) (6 pts.) Show that there exists only one complex number a + jb such that the columns of V are pairwise orthogonal. For that choice of a + jb, what are the resulting column norms? (Solve for a and b by setting the inner product of any two columns equal to zero, then verify that the remaining inner products are zero also. Check your answers in MATLAB using V'*V before proceeding further.)

From now on, assume that a + jb is as found in part (i) above.

(ii) (6 pts.) Determine c such that the real-valued vector

$$\mathbf{s} = \begin{bmatrix} 9 & 2 & -9 & -2 \end{bmatrix}^T$$

equals Vc. (Gaussian elimination is not needed here. Again, verify your answers in MATLAB.) (iii) (5 pts.) Determine the projection $\hat{\mathbf{s}}$ of \mathbf{s} onto the subspace generated by the vectors $\mathbf{v}^{(1)}$ and $\mathbf{v}^{(2)}$. What is the value of $\|\mathbf{s} - \hat{\mathbf{s}}\|^2$? (iv) (3 pts.) If

$$\mathbf{x} = \mathbf{v}^{(1)} + 2j\mathbf{v}^{(2)} + \mathbf{v}^{(3)} + 2j\mathbf{v}^{(4)} \mathbf{y} = \mathbf{v}^{(1)} + 3\mathbf{v}^{(2)} - 3\mathbf{v}^{(3)} - \mathbf{v}^{(4)}$$

compute $\langle \mathbf{x}, \mathbf{y} \rangle$ without using any of the numerical entries of the vectors $\mathbf{v}^{(i)}$.

Solved Examples

S 5.1 (P 2.24 in textbook). Consider the four-dimensional vectors $\mathbf{a} = \begin{bmatrix} -1 & 7 & 2 & 4 \end{bmatrix}^T$ and $\mathbf{b} = \begin{bmatrix} 3 & 0 & -1 & -5 \end{bmatrix}^T$.

(i) Compute $\|\mathbf{a}\|$, $\|\mathbf{b}\|$ and $\|\mathbf{b} - \mathbf{a}\|$.

(ii) Compute the angle θ between **a** and **b** (where $0 \le \theta \le \pi$).

(iii) Let **f** be the projection of **b** on **a**, and **g** be the projection of **a** on **b**. Express **f** and **g** as λ **a** and μ **b**, respectively (λ and μ are scalars).

(iv) Verify that $\mathbf{b} - \mathbf{f} \perp \mathbf{a}$ and $\mathbf{a} - \mathbf{g} \perp \mathbf{b}$.

S 5.2 (P 2.34 in textbook). Consider the matrix

$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{bmatrix}$$

(i) Compute the inner product matrix $\mathbf{V}^T \mathbf{V}$.

(ii) If

$$\mathbf{x} = \begin{bmatrix} 0 & 1 & -2 & 3 \end{bmatrix}^T$$

determine a vector \mathbf{c} such that $\mathbf{V}\mathbf{c} = \mathbf{x}$.

S 5.3 Let

$$\mathbf{A} = \begin{bmatrix} -3 & 1 & 3 & 9\\ 9 & -3 & 1 & 3\\ 3 & 9 & -3 & 1\\ 1 & 3 & 9 & -3 \end{bmatrix}$$

(i) Carefully compute $\mathbf{A}^T \mathbf{A}$. What special property do the columns of \mathbf{A} have?

(ii) The vector $\mathbf{b} = \begin{bmatrix} 2 & -1 & 8 & -9 \end{bmatrix}^T$ can be written as a linear combination of three columns of **A**. Determine that linear combination (i.e., its coefficients) without solving a 4×4 system.

S 5.4 The complex valued-matrix

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}^{(1)} & \mathbf{v}^{(2)} & \mathbf{v}^{(3)} \end{bmatrix} = \begin{bmatrix} 3 & a+jb & 6j \\ 6j & 3 & a+jb \\ a+jb & 6j & 3 \end{bmatrix}$$

(where a and b are real-valued) has pairwise orthogonal columns.

- (i) Determine *a* and *b*. What are the column norms?
- (ii) Express the complex-valued vector

$$\mathbf{s} = \begin{bmatrix} -5 - 2j & -10 + 8j & 1 - 14j \end{bmatrix}^T$$

as a linear combination of $\mathbf{v}^{(1)}$, $\mathbf{v}^{(2)}$ and $\mathbf{v}^{(3)}$. (iii) If

$$\mathbf{x} = \frac{1}{2}\mathbf{v}^{(1)} - \frac{1}{2}\mathbf{v}^{(2)} + 3\mathbf{v}^{(3)}$$
$$\mathbf{y} = 2\mathbf{v}^{(1)} + \frac{3}{2}\mathbf{v}^{(2)} - \mathbf{v}^{(3)}$$

explain why the projection $\lambda \mathbf{x}$ of \mathbf{y} onto \mathbf{x} is such that λ is real. Determine λ without performing complex operations.