Problem 2A

Consider the discrete-time sinusoids

$$x[n] = \cos\left(\frac{8\pi n}{15} + \frac{\pi}{6}\right)$$
 and $y[n] = \cos\left(\frac{\sqrt{5}\pi n}{2} + \frac{\pi}{6}\right)$

(i) (3 pts.) Which of the two sinusoids is periodic, and what is its fundamental period?

- (ii) (4 pts.) Use MATLAB to generate separate plots of x[n] and y[n] for n = 0, ..., 44.
- (iii) (4 pts.) Let N be the value of the period found in part (i). For what values of ω in $[0,\pi]$ is

 $\cos(\omega n)$

periodic with fundamental period N?

(iv) (3 pts.) An equivalent form for $x[\cdot]$ is

$$x[n] = \cos\left(\omega n + \phi\right)$$

where ω is between π and 2π . What are the values of ω and ϕ ?

(v) (2 pts.) The sequence $v[\cdot]$ is formed by taking every third sample in $x[\cdot]$, i.e.,

v[n] = x[3n]

Write an equation for v[n]. What is the period of $v[\cdot]$?

(vi) (4 pts.) Using phasors, express

$$x[n] + 4x[n-1] + x[n-2]$$

as a single real-valued sinusoid.

Problem 2B

Two periods of the sinusoid $x(t) = A\cos(\Omega t + \phi)$ are plotted below. The value of x(0) equals $-4\cos(2\pi/5)$.

(i) (6 pts.) Determine A, Ω and ϕ . Express ϕ as an exact rational multiple of π in the range $[0, 2\pi)$.

In what follows: A and ϕ are as found in part (i) and $x[n] = x(nT_s)$, where T_s is a suitably chosen sampling period.

(ii) (3 pts.) Determine all values of T_s such that x[n] = -x[n-1] for all n.

(iii) (3 pts.) Determine all values of T_s such that $x[n] = A\cos((3\pi/4)n + \phi)$.

(iv) (4 pts.) Determine all values of T_s such that x[n] = x[n+8] for all n.

(v) (4 pts.) Determine all values of T_s such that $x[n] = A\cos((2\pi/5)n - \phi)$.

Solved Examples

S 2.1. Find all frequencies ω in $[0,\pi]$ for which the discrete-time sinusoid

$$x[n] = \cos \omega n$$

is periodic with fundamental period N = 16.

S 2.2 (P 1.15 in textbook). (i) For exactly one value of ω in $[0, \pi]$, the discrete-time sinusoid

$$v[n] = A\cos(\omega n + \phi)$$

is periodic with period equal to N = 4 time units. What is that value of ω ?

(ii) For that value of ω , suppose the first period of v[n] is given by

$$v[0] = 1,$$
 $v[1] = 1,$ $v[2] = -1$ and $v[3] = -1$

What are the values of A > 0 and ϕ ?

S 2.3 (P 1.17 in textbook). (i) Use MATLAB to plot four periods of the discrete-time sinusoid

$$x_1[n] = \cos\left(\frac{7\pi n}{9} + \frac{\pi}{6}\right)$$

(ii) Show that the product

$$x_2[n] = x_1[n] \cdot \cos(\pi n)$$

is also a (real-valued) discrete-time sinusoid. Express it in the form $A\cos(\omega n + \phi)$, where A > 0, $\omega \in [0, \pi]$ and $\phi \in (0, 2\pi)$.

S 2.4 (P 1.16 in textbook; more difficult). (i) Use the trigonometric identity

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

to show that

$$\cos(\omega(n+1) + \phi) + \cos(\omega(n-1) + \phi) = 2\cos(\omega n + \phi)\cos\omega$$

(ii) Suppose

$$x[1] = 1.7740, \quad x[2] = 3.1251 \text{ and } x[3] = 0.4908$$

are three consecutive values of the discrete-time sinusoid $x[n] = A\cos(\omega n + \phi)$, where A > 0, $\omega \in [0, \pi]$ and $\phi \in [0, 2\pi]$. Use the equation derived in (i) to evaluate ω . Then use the ratio x[2]/x[1] together with the given identity for $\cos(\alpha + \beta)$ to evaluate $\tan \phi$ and hence ϕ . Finally, determine A.

S **2.5** (P **1.19** in textbook). The continuous-time sinusoid

$$x(t) = \cos(150\pi t + \phi)$$

is sampled every $T_s = 3.0$ ms starting at t = 0. The resulting discrete-time sinusoid is

$$x[n] = x(nT_s)$$

(i) Express x[n] in the form $x[n] = \cos(\omega n + \phi)$ i.e., determine the value of ω .

(ii) Is the discrete-time sinusoid x[n] periodic? If so, what is its period?

(iii) Suppose that the sampling rate $f_s = 1/T_s$ is variable. For what values of f_s is x[n] constant for all n? For what values of f_s does x[n] alternate in value between $-\cos \phi$ and $\cos \phi$?

S 2.6. The first period of the sinusoid $x(t) = A\cos(\Omega t + \phi)$ is plotted below, where $x(0) = 3\sqrt{2}/2$.

(i) Determine the values of A, Ω and ϕ .

(ii) The sinusoid is sampled every $T_s = 0.05$ seconds starting at t = 0 to produce

$$x[n] = x(nT_s)$$

Write an equation for x[n]. Is x[n] periodic, and if so, what is its period?

(iii) What is the relationship between the vector $(x[0], \ldots, x[4])$ and the vector $(x[5], \ldots, x[9])$?

S 2.7 (this problem has a somewhat different flavor). The continuous time sinusoid $x(t) = \cos(1200\pi t)$ is sampled every T_s seconds starting at time t = 0. The value of T_s is chosen so that every zero of $x(\cdot)$ is also a (zero-valued) sample in $x[\cdot]$.

(i) What are the possible values of T_s ?

(ii) What is the maximum value of T_s (less than one-quarter period of $x(\cdot)$) such that the difference between two consecutive samples does not exceed 0.01 (in absolute value)?