
1 

© Copyright 2011, John P. Fisher, All Rights Reserved 

Dynamic Systems:  
Partial Differential Equations 

Adapted From: 
 

Numerical Methods in Biomedical Engineering 
Stanley M. Dunn, Alkis Constantinides, Prabhas V. Moghe 

Chapter 8 
 

Kim Ferlin and John Fisher 
 

© Copyright 2011, John P. Fisher, All Rights Reserved 

•  Transport processes are essential to the function of biological systems 
•  Consequently are an important part of mathematical models that describe 

physiological and cellular processes 

•  Basis of transport phenomena is founded on the laws of conservation:  
•  Mass  
•  Momentum  
•  Energy  

•  When applied to the flow of fluids, we develop equations of change  
•  More than one independent variable  

•  Describes velocity, temperature, concentration changes with respect to time 
and position  

•  These processes can be modeled by partial differential equations (PDEs) 
 

Partial Differential Equations 
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Partial Differential Equations 
Classification of Partial Differential Equations  
 
•  Classified according to order, linearity, and boundary conditions  

•  If (*) = x, y, constants: the equation is linear  

•  If (*) = x, y, u, du/dx, du/dy: the equation is quasilinear  

•  If (*) = x, y, u, d2u/dx2, d2u/dy2, d2u/dxdy: the equation is non linear  

𝑎(∗)𝜕↑2 𝑢/𝜕𝑦↑2  +2b(∗)𝜕↑2 𝑢/𝜕𝑥𝜕𝑦 +𝑐(∗)𝜕↑2 𝑢/𝜕𝑥↑2  +𝑑(∗)=0 
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Partial Differential Equations 
Initial and Boundary Conditions  
 
•  Initial and boundary conditions are necessary in order to obtain unique numerical 

solutions  

•  Consider one-dimensional unsteady-state diffusion:  

 
 

𝜕𝑐/𝜕𝑡 =𝐷𝜕↑2 𝑐/𝜕𝑥↑2   
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Partial Differential Equations 
Initial and Boundary Conditions  
 
•  Dirichlet conditions  

•  The dependent variable is given at fixed values of the independent variables 

•  Neumann conditions  
•  The derivative of the dependent variable is given as a constant or as a function 

of the independent variable  

•  Robbins conditions  
•  The derivative of the dependent variable is given as a function of the dependent 

variable  
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Partial Differential Equations 
Solutions to partial differential equations  
 
•  Finite differences  
 𝜕𝑢/𝜕𝑥 |↓𝑖,𝑗,𝑘 = 1/2∆𝑥 (𝑢↓𝑖+1,𝑗,𝑘 − 𝑢↓𝑖−1,𝑗,𝑘 ) 

𝜕↑2 𝑢/𝜕𝑥↑2  |↓𝑖,𝑗,𝑘 = 1/∆𝑥↑2  (𝑢↓𝑖+1,𝑗,𝑘 −2𝑢↓𝑖,𝑗,𝑘 + 𝑢↓𝑖−1,𝑗,𝑘 ) 

𝜕↑2 𝑢/𝜕𝑥𝜕𝑦 |↓𝑖,𝑗,𝑘 = 1/4∆𝑥∆𝑦 (𝑢↓𝑖+1,𝑗+1,𝑘 − 𝑢↓𝑖−1,𝑗+1,𝑘 − 𝑢↓𝑖+1,𝑗−1,𝑘 +𝑢↓𝑖−1,𝑗−1,𝑘 ) 



4 

© Copyright 2011, John P. Fisher, All Rights Reserved 

Lab Assignment 6 
•  Investigate the mechanisms behind calcium concentration maintenance in smooth 

muscle cells 

•  Develop a simple MATLAB model of calcium transport in a cylindrical model of the 
smooth muscle cell 
•  Use both finite difference approximations and the MATLAB solver “pdepe” 

•  Compare the two methods of solving a partial differential equation  
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Modeling Calcium Transport 

z 

θ r 

smooth muscle cell 

Ca2+ is diffusing into the cell from 
circumference, but not the ends 
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Modeling Calcium Transport 

•  Fick’s Law of Diffusion 

•  Inserted into Law of Conservation 

•  Expanding the Laplacian into cylindrical coordinates 

•  Simplifying for one dimension 

•  c ≡calcium concentration,  
•  r ≡ radial distance from center of cell,  
•  f ≡ source or sink term,  
•  D ≡ diffusion coefficient (constant) 
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Numerical Approximation to the Solution 

•  The model cell is divided up into concentric annuli or slices (j=50), each with  
 .1 um thickness 

•  The equation for calcium diffusion without a source: 

•  Can then be written for each individual annulus as (eq 5) 

•  For the case where j=1 the equation is written as (eq 6) 
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Numerical Approximation to the Solution 

•  Solving these equations will give a value of dCa for a specific point in time 
•  The time dependent change of diffusion can then be calculated by adding the 

dCa values to the previous Ca values and continuing to solve the equation for 
slices in time 

•  To Summarize: 
•  Assign a starting matrix of values for the initial concentration of calcium 

throughout the cell 
•  Use equations 5 and 6 to compute the delta C values for a point in time 
•  Add the delta C values to your initial values to give you the calcium 

concentration values for the next time point 
•  Continue to use loops in Matlab to continue to compute these values for the 

entire simulation 
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Using MATLAB Solver “pdepe” 
•  This  is an example illustrating the straightforward formulation, computation, and 

plotting of the solution of a single PDE 
•  Use as a guide when writing your code 
•  NOTE: equations will be different – this problem is not applicable to the 

assignment  
 
 

•  This equation holds on an interval  0 ≤ x ≤  1 and for times t > 0  
•  The PDE satisfies the initial condition 

•  and boundary conditions 

•  It is convenient to use subfunctions to place all the functions required by pdepe in a 
single M-file. 

𝜋↑2 𝜕𝑢/𝜕𝑡 = 𝜕/
𝜕𝑥 (𝜕𝑢/𝜕𝑥 ) 

 

𝑢(𝑥,0)= sin 𝜋𝑥  

𝑢(0,𝑡)=0 

𝜋𝑒↑−𝑡 + 𝑑𝑢/𝑑𝑥 (1,𝑡)=0 
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Using MATLAB Solver “pdepe” 
function pdex1  
m = 0; % symmetry is zero 
x = linspace(0,1,20);  
t = linspace(0,2,5);  
 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);  
% Extract the first solution component as u.  
u = sol(:,:,1);  
% A surface plot is often a good way to study a solution.  
surf(x,t,u)  
title('Numerical solution computed with 20 mesh points.')  
xlabel('Distance x')  
ylabel('Time t')  
% A solution profile can also show alot  
figure plot(x,u(end,:))  
title('Solution at t = 2')  
xlabel('Distance x')  
ylabel('u(x,2)')  
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Using MATLAB Solver “pdepe” 
% --------------------------------------------------------------  
function [c,f,s] = pdex1pde(x,t,u,DuDx)  %This function is the pdepe function 
c = pi^2;  
f = DuDx;  
s = 0;  
 
% --------------------------------------------------------------  
function u0 = pdex1ic(x) %This function evaluates initial conditions  
u0 = sin(pi*x);  
 
% --------------------------------------------------------------  
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)  
%This function evaluates boundary conditions 
pl = ul; ql = 0;  
pr = pi * exp(-t); qr = 1;  


