
1

© Copyright 2011, John P. Fisher, All Rights Reserved

Dynamic Systems:
Partial Differential Equations

Adapted From:

Numerical Methods in Biomedical Engineering
Stanley M. Dunn, Alkis Constantinides, Prabhas V. Moghe

Chapter 8

Kim Ferlin and John Fisher

© Copyright 2011, John P. Fisher, All Rights Reserved

•  Transport processes are essential to the function of biological systems
•  Consequently are an important part of mathematical models that describe

physiological and cellular processes

•  Basis of transport phenomena is founded on the laws of conservation:
•  Mass
•  Momentum
•  Energy

•  When applied to the flow of fluids, we develop equations of change
•  More than one independent variable

•  Describes velocity, temperature, concentration changes with respect to time
and position

•  These processes can be modeled by partial differential equations (PDEs)

Partial Differential Equations

2

© Copyright 2011, John P. Fisher, All Rights Reserved

Partial Differential Equations
Classification of Partial Differential Equations

•  Classified according to order, linearity, and boundary conditions

•  If (*) = x, y, constants: the equation is linear

•  If (*) = x, y, u, du/dx, du/dy: the equation is quasilinear

•  If (*) = x, y, u, d2u/dx2, d2u/dy2, d2u/dxdy: the equation is non linear

𝑎(∗)𝜕↑2 𝑢/𝜕𝑦↑2  +2b(∗)𝜕↑2 𝑢/𝜕𝑥𝜕𝑦 +𝑐(∗)𝜕↑2 𝑢/𝜕𝑥↑2  +𝑑(∗)=0

© Copyright 2011, John P. Fisher, All Rights Reserved

Partial Differential Equations
Initial and Boundary Conditions

•  Initial and boundary conditions are necessary in order to obtain unique numerical

solutions

•  Consider one-dimensional unsteady-state diffusion:

𝜕𝑐/𝜕𝑡 =𝐷𝜕↑2 𝑐/𝜕𝑥↑2  

3

© Copyright 2011, John P. Fisher, All Rights Reserved

Partial Differential Equations
Initial and Boundary Conditions

•  Dirichlet conditions

•  The dependent variable is given at fixed values of the independent variables

•  Neumann conditions
•  The derivative of the dependent variable is given as a constant or as a function

of the independent variable

•  Robbins conditions
•  The derivative of the dependent variable is given as a function of the dependent

variable

© Copyright 2011, John P. Fisher, All Rights Reserved

Partial Differential Equations
Solutions to partial differential equations

•  Finite differences
 𝜕𝑢/𝜕𝑥 |↓𝑖,𝑗,𝑘 = 1/2∆𝑥 (𝑢↓𝑖+1,𝑗,𝑘 − 𝑢↓𝑖−1,𝑗,𝑘 )

𝜕↑2 𝑢/𝜕𝑥↑2  |↓𝑖,𝑗,𝑘 = 1/∆𝑥↑2  (𝑢↓𝑖+1,𝑗,𝑘 −2𝑢↓𝑖,𝑗,𝑘 + 𝑢↓𝑖−1,𝑗,𝑘 )

𝜕↑2 𝑢/𝜕𝑥𝜕𝑦 |↓𝑖,𝑗,𝑘 = 1/4∆𝑥∆𝑦 (𝑢↓𝑖+1,𝑗+1,𝑘 − 𝑢↓𝑖−1,𝑗+1,𝑘 − 𝑢↓𝑖+1,𝑗−1,𝑘 +𝑢↓𝑖−1,𝑗−1,𝑘 )

4

© Copyright 2011, John P. Fisher, All Rights Reserved

Lab Assignment 6
•  Investigate the mechanisms behind calcium concentration maintenance in smooth

muscle cells

•  Develop a simple MATLAB model of calcium transport in a cylindrical model of the
smooth muscle cell
•  Use both finite difference approximations and the MATLAB solver “pdepe”

•  Compare the two methods of solving a partial differential equation

© Copyright 2011, John P. Fisher, All Rights Reserved

Modeling Calcium Transport

z

θ r

smooth muscle cell

Ca2+ is diffusing into the cell from
circumference, but not the ends

5

© Copyright 2011, John P. Fisher, All Rights Reserved

Modeling Calcium Transport

•  Fick’s Law of Diffusion

•  Inserted into Law of Conservation

•  Expanding the Laplacian into cylindrical coordinates

•  Simplifying for one dimension

•  c ≡calcium concentration,
•  r ≡ radial distance from center of cell,
•  f ≡ source or sink term,
•  D ≡ diffusion coefficient (constant)

uDJ ∇−=

fuD
t
u

+∇=
∂

∂ 2

f
z
cc

rr
cr

rr
D

t
c

+⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂

∂
+⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

∂

∂
=

∂

∂
2

2

2

2

2

11
θ

f
r
cr

rr
D

t
c

+⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

∂

∂
=

∂

∂ 1

© Copyright 2011, John P. Fisher, All Rights Reserved

Numerical Approximation to the Solution

•  The model cell is divided up into concentric annuli or slices (j=50), each with
 .1 um thickness

•  The equation for calcium diffusion without a source:

•  Can then be written for each individual annulus as (eq 5)

•  For the case where j=1 the equation is written as (eq 6)

f
r
cr

rr
D

t
c

+⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

∂

∂
=

∂

∂ 1

]
)1(2
)(

)2[(
)(

11
112 −

−
++−

Δ
=

Δ

Δ −+
−+ j

CaCa
CaCaCa

r
D

t
Ca jj

jjj

)(
)(

4
122 CaCa

r
D

t
Ca

−
Δ

=
Δ
Δ

(Eq. 5)

(Eq. 6)

6

© Copyright 2011, John P. Fisher, All Rights Reserved

Numerical Approximation to the Solution

•  Solving these equations will give a value of dCa for a specific point in time
•  The time dependent change of diffusion can then be calculated by adding the

dCa values to the previous Ca values and continuing to solve the equation for
slices in time

•  To Summarize:
•  Assign a starting matrix of values for the initial concentration of calcium

throughout the cell
•  Use equations 5 and 6 to compute the delta C values for a point in time
•  Add the delta C values to your initial values to give you the calcium

concentration values for the next time point
•  Continue to use loops in Matlab to continue to compute these values for the

entire simulation

f
r
cr

rr
D

t
c

+⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

∂

∂
=

∂

∂ 1

z

θ r

© Copyright 2011, John P. Fisher, All Rights Reserved

Using MATLAB Solver “pdepe”
•  This is an example illustrating the straightforward formulation, computation, and

plotting of the solution of a single PDE
•  Use as a guide when writing your code
•  NOTE: equations will be different – this problem is not applicable to the

assignment

•  This equation holds on an interval 0 ≤ x ≤ 1 and for times t > 0
•  The PDE satisfies the initial condition

•  and boundary conditions

•  It is convenient to use subfunctions to place all the functions required by pdepe in a
single M-file.

𝜋↑2 𝜕𝑢/𝜕𝑡 = 𝜕/
𝜕𝑥 (𝜕𝑢/𝜕𝑥 )

𝑢(𝑥,0)= sin 𝜋𝑥 

𝑢(0,𝑡)=0

𝜋𝑒↑−𝑡 + 𝑑𝑢/𝑑𝑥 (1,𝑡)=0

7

© Copyright 2011, John P. Fisher, All Rights Reserved

Using MATLAB Solver “pdepe”
function pdex1
m = 0; % symmetry is zero
x = linspace(0,1,20);
t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
% Extract the first solution component as u.
u = sol(:,:,1);
% A surface plot is often a good way to study a solution.
surf(x,t,u)
title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')
ylabel('Time t')
% A solution profile can also show alot
figure plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')
ylabel('u(x,2)')

© Copyright 2011, John P. Fisher, All Rights Reserved

Using MATLAB Solver “pdepe”
% --
function [c,f,s] = pdex1pde(x,t,u,DuDx) %This function is the pdepe function
c = pi^2;
f = DuDx;
s = 0;

% --
function u0 = pdex1ic(x) %This function evaluates initial conditions
u0 = sin(pi*x);

% --
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
%This function evaluates boundary conditions
pl = ul; ql = 0;
pr = pi * exp(-t); qr = 1;

