Dynamic Systems:
Partial Differential Equations

Adapted From:
Numerical Methods in Biomedical Engineering
Stanley M. Dunn, Alkis Constantinides, Prabhas V. Moghe
Chapter 8

Kim Ferlin and John Fisher

© Copyright 2011, John P. Fisher, Al Rights Reserved

Partial Differential Equations

e Transport processes are essential to the function of biological systems

e Consequently are an important part of mathematical models that describe
physiological and cellular processes

e Basis of transport phenomena is founded on the laws of conservation:
e Mass
e Momentum
e Energy

e When applied to the flow of fluids, we develop equations of change
e More than one independent variable
e Describes velocity, temperature, concentration changes with respect to time

and position

e These processes can be modeled by partial differential equations (PDEs)

@ Conyrgnt 201, Jo . e, A g Reseres B it

Partial Differential Equations

Classification of Partial Differential Equations

e C(Classified according to order, linearity, and boundary conditions

a(x)012 u/dy12 +2b(*)312 u/dxdy +c(x)IT2 w/dx12 +d(+)=0

e If (*) = x, y, constants: the equation is linear
e If (*) =%, Yy, u, du/dx, du/dy: the equation is quasilinear

e If (*) = X, y, u, d2u/dx?, d2u/dy?, d2u/dxdy: the equation is non linear

© Coprghe 2011, Jo . b Al Righs Resarved b

Partial Differential Equations

Initial and Boundary Conditions

e Initial and boundary conditions are necessary in order to obtain unique numerical
solutions

e Consider one-dimensional unsteady-state diffusion:

dc/0t =DAT2 c/dxT2

s

© Copyright 2011, John . Fisher, Al Rights Reserved

Partial Differential Equations

Initial and Boundary Conditions

e Dirichlet conditions
e The dependent variable is given at fixed values of the independent variables

e Neumann conditions

e The derivative of the dependent variable is given as a constant or as a function
of the independent variable

e Robbins conditions

e The derivative of the dependent variable is given as a function of the dependent
variable

&Y

S

© Copyright 2011, John P. Fisher, Al Rights Reserved

Partial Differential Equations

Solutions to partial differential equations

e Finite differences

Fuf0x [Vi),k =1/20x (uli+ 1,k —uli=1,7,k)

012 w/ox12 i =1/AxT2 (wdi+1,),k—2uli) ke +uli=1,5k)

4

012 u/oxady [Lij ke =1/A0x0y (wdi+1,/+ 1,k —udi=1/+1,k —uli+1,/-1,k +uli=1,/-1,k)

3

J/

© Copyright 2011, John . Fisher, Al Rights Reserved

‘
5

Lab Assignment 6

Investigate the mechanisms behind calcium concentration maintenance in smooth
muscle cells

Develop a simple MATLAB model of calcium transport in a cylindrical model of the
smooth muscle cell

e Use both finite difference approximations and the MATLAB solver “pdepe”

Compare the two methods of solving a partial differential equation

iR
Modeling Calcium Transport
0
Ca?* is diffusing into the cell from
circumference, but not the ends
P

4
<

© Copyright 2011, John P. Fisher, Al Rights Reserved

Modeling Calcium Transport

Fick’s Law of Diffusion

J=-DVu

Inserted into Law of Conservation
u
—=DV’u+f
at
Expanding the Laplacian into cylindrical coordinates
ac 1a/(d\ 1 d°c d%c
7=D - r— +*272+72 +f
ot ror\ or) r°d60° 9z
Simplifying for one dimension

de_plafie,
at ror\ or

e ¢ =calcium concentration,

e r = radial distance from center of cell,

e f = source or sink term, e

e D = diffusion coefficient (constant) w
 Coppio 2011, 3o . s, A it s A

Numerical Approximation to the Solution

The model cell is divided up into concentric annuli or slices (j=50), each with
.1 um thickness

The equation for calcium diffusion without a source:
a
de_pla(ac)
ot ror\ or

Can then be written for each individual annulus as (eq 5)

Ca,, -Ca,
ACa_ D ycq -2ca +Ca)+ Cn =)y ey
At (Ar) / / / 2(j-1)
For the case where j=1 the equation is written as (eq 6)
AC 4D
244 ——(Ca, -Ca,) (Eq. 6)
At (Ar)

s

© Copyright 2011, John . Fisher, Al Rights Reserved

Numerical Approximation to the Solution

e Solving these equations will give a value of dCa for a specific point in time

e The time dependent change of diffusion can then be calculated by adding the
dCa values to the previous Ca values and continuing to solve the equation for
slices in time

e To Summarize:

e Assign a starting matrix of values for the initial concentration of calcium
throughout the cell

e Use equations 5 and 6 to compute the delta C values for a point in time

e Add the delta C values to your initial values to give you the calcium
concentration values for the next time point

e Continue to use loops in Matlab to continue to compute these values for the
entire simulation

13811

L] @

© Coprghe 2011, Jo . b Al Righs Resarved b

Using MATLAB Solver “pdepe”

e This is an example illustrating the straightforward formulation, computation, and
plotting of the solution of a single PDE

e Use as a guide when writing your code
e NOTE: equations will be different - this problem is not applicable to the

assignment 712 du/ot =38/
Ox (Ju/dx)

e This equation holds on an interval 0 < x < 1 and for timest > 0
e The PDE satisfies the initial condition

u(x,0)=sinzx
e and boundary conditions
%#(0,6)=0
wel—t+du/dx (1,6)=0
e It is convenient to use subfunctions to place all the functions required by pdepe in a
single M-file.
&

»

S

© Copyright 2011, John . Fisher, Al Rights Reserved

Using MATLAB Solver “pdepe”

function pdex1

m = 0; % symmetry is zero
x = linspace(0,1,20);

t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde, @pdexlic,@pdexibc,x,t);

% Extract the first solution component as u.

u = sol(:,:,1);

% A surface plot is often a good way to study a solution.
surf(x,t,u)

title("Numerical solution computed with 20 mesh points.")
xlabel('Distance x')

ylabel('Time t')

% A solution profile can also show alot

figure plot(x,u(end,:))

title('Solution at t = 2")

xlabel('Distance x')

ylabel('u(x,2)")

© Coprghe 2011, Jo . b Al Righs Resarved b

Using MATLAB Solver “pdepe”

function [c,f,s] = pdex1lpde(x,t,u,DuDx) %This function is the pdepe function
Cc = pin2;

f = DuDx;
s =0;
0/o __

function u0 = pdexlic(x) %This function evaluates initial conditions
u0 = sin(pi*x);

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
%This function evaluates boundary conditions
pl = ul; gl = 0;

pr = pi * exp(-t); qr = 1;

s

© Copyright 2011, John . Fisher, Al Rights Reserved

