
__

The Generalized Traveling Salesman Problem:

A New Genetic Algorithm Approach

John Silberholz
1
 and Bruce L. Golden

2

1 R.H. Smith School of Business

 University of Maryland

 College Park, MD 20742

 josilber@mail.umd.edu

2 R.H. Smith School of Business

 University of Maryland

 College Park, MD 20742

 bgolden@rhsmith.umd.edu

Summary. The Generalized Traveling Salesman Problem (GTSP) is a modification of the

Traveling Salesman Problem in which nodes are partitioned into clusters and exactly one

node from each cluster is visited in a cycle. It has numerous applications, including airplane

routing, computer file sequencing, and postal delivery. To produce solutions to this

problem, a genetic algorithm (GA) heuristic mimicking natural selection was coded with

several new features including isolated initial populations and a new reproduction

mechanism. During modeling runs, the proposed GA outperformed other published

heuristics in terms of solution quality while maintaining comparable runtimes.

Key words: Generalized traveling salesman problem; genetic algorithm.

1 Introduction

The Generalized Traveling Salesman Problem (GTSP) is a variant of the well-

known Traveling Salesman Problem (TSP). As in the TSP, the graph considered

consists of n nodes, and the cost between any two nodes is known. The GTSP

differs from the TSP in that the node set is partitioned into m clusters. An optimal

GTSP solution is a cycle of minimal cost that visits exactly one node from each

cluster.

The GTSP has numerous real-world applications including airplane routing [9],

mail delivery [6], warehouse order picking [9], welfare agency routing [13],

material flow system design [6], vehicle routing [6], and computer file sequencing

[5]. Finding efficient solutions to complex GTSP problems is vital to many

disciplines, especially as agencies struggle to cope with today’s increased

transportation costs due to higher fuel prices.

Several GTSP variations have emerged based upon the specifics of the set of

nodes considered. This paper assumes symmetric costs or distances, that is, cij =

cji, where cij is the cost or distance between nodes i and j. This means that the

2 John Silberholz and Bruce L. Golden

direction of travel between two nodes doesn’t affect the cost. Additionally, some

versions of the GTSP require that at least one node from each cluster be visited,

instead of exactly one. While these two variations are equivalent as long as the

triangle inequality holds, it may cost less to visit extra nodes if the triangle

inequality does not hold. This paper assumes that exactly one node from each

cluster is visited, an approach that is sometimes called the Equality GTSP (E-

GTSP) [2].

Ideally, an exact algorithm, or one that always produces optimal solutions,

would be most desirable. However, use of such procedures, like the one presented

in [3], is not always feasible, because they tend to have prohibitively long runtimes

for problems defined on a large number of nodes or clusters. For instance, the

authors of [3] did not attempt to run their exact algorithm on problems larger than

442 nodes or 89 clusters because runtime of their algorithm was rapidly

approaching one day. This shortcoming introduces the need for quicker heuristic

methods, or approximate algorithms, which provide reasonable solutions to a

problem in shorter runtimes. Examples of some heuristics for the GTSP include

Snyder and Daskin’s Genetic Algorithm (S+D GA) solution [14], Renauld and

Boctor’s GI
3
 heuristic [11], Noon’s generalized nearest neighbor heuristic with GI

3

improvement (NN) [11], and Fischetti et al.’s Lagrangian and root-node heuristics

[3].

A genetic algorithm (GA) is a heuristic that mimics the process of natural

selection. In such an algorithm, a population slowly converges to a final individual

with an associated objective value after a number of iterations each of which

corresponds to a new generation of that population. To facilitate this, the most

desirable solutions within the population are assigned the highest survival rate from

one generation to the next.

GAs store a population of chromosomes, each of which is a candidate solution

for its corresponding problem (in this case, the GTSP). In each generation

(iteration) of the heuristic, several operations are performed on the chromosomes to

improve the overall fitness (i.e., cost) of the population. First, replication can

occur, in which chromosomes are directly passed along to the next generation.

These chromosomes are selected with a weighting system favoring better (lower)

total cycle costs. Then, crossover, or reproduction, can occur — the GA equivalent

of two parents mating and producing two children, both of whom bear a

resemblance to each parent. Crossover operators that facilitate this reproduction

include the partially mapped crossover (PMX) found in [4], the maximal

preservative crossover (MPX) found in [8], and the ordered crossover (OX) found

in [2]. A comparison of different crossovers used for the TSP can be found in [15].

Finally, mutation, a process that alters randomly selected portions of the

chromosome, is also possible. For the GTSP, a common method of mutation is

inversion, following [7], which is considered later in this paper.

Using the basic structure of a GA as defined in [7], this paper explores effective

alternative genetic structures and crossover operators. This paper supplements the

current literature by testing an effective algorithm that uses these GA

improvements. The proposed GA generates high quality solutions to instances of

the GTSP in reasonable runtimes.

The Generalized Traveling Salesman Problem 3

2 The Genetic Algorithm

Data were collected on a Dell Dimension 8400 with 1.0 GB RAM and a 3.0 GHz

Intel Pentium 4 processor, using programs coded in Java 1.4 and run on the Eclipse

platform. This paper’s GA was developed based upon a general discussion of

heuristics developed for the TSP in [7]. Due to the simplicity and effectiveness of

using a path representation of a TSP, as described in [7], a path representation was

used for the storage of GTSP candidate solutions in chromosomes.

2.1 Path Representation

In the path representation, the most natural and simplistic way to view GTSP

pathways, each consecutive node in the representation is listed in order. For

instance, the chromosome (1 5 2) represents the cycle visiting node 1, then node

5, then node 2, and finally returning to node 1. Advantages of this representation

include simplicity in fitness evaluation, as the total cost of a cycle can easily be

calculated by summing the costs of each pair of adjacent nodes, and the usefulness

of the final representation, as it directly lists all of the nodes and the order in which

they are visited. However, a shortcoming of this representation is that it carries no

guarantee that a randomly selected representation will be valid for the GTSP,

because there is no guarantee that each cluster is represented exactly once in the

pathway without specialized procedures or repair algorithms.

2.2 Population Initialization

At the beginning of the GA, each new chromosome was generated by continuously

selecting random nodes and adding them to the new chromosome one by one

provided that another node from the same cluster had not already been

incorporated. An initial population consists of 50 of these chromosomes, a size

which was deemed reasonable considering examples provided in [7].

2.3 Crossover

A novel reproductive method based upon the TSP ordered crossover (OX)

operator proposed by Davis in [2] was used. The TSP’s OX crossover randomly

selects two cut points on one of two parent chromosomes. The nodes between

these two points on the first parent are maintained in their same locations, and the

remaining non-duplicate nodes from the second parent are placed, in order, at the

remaining locations of the offspring, yielding a child containing ordered genetic

material from both parents. For instance, from two parents p1 = (1 | 5 4 | 3 2) and

p2 = (2 | 3 5 | 1 4), with cut points denoted by vertical bars, the material (genes)

between the cut points in p1, nodes 5 and 4, are maintained and the non-duplicate

nodes from p2, copied in order from after the second breakpoint, are nodes 1, 2, and

3. Insertion of these nodes into the offspring would yield a final chromosome

c1 = (3 5 4 1 2). Note that the inserted material, which was added after the second

4 John Silberholz and Bruce L. Golden

Table 1. Example’s explicit, symmetric distance matrix

Node (Cluster) 1 2 3 4 5 6 7 8 9 10 11 12

1 (1) 0 41 31 86 25 57 7 13 21 19 41 47

2 (1) 41 0 38 74 43 98 35 31 11 48 24 69

3 (2) 31 38 0 50 89 7 30 74 69 16 20 58

4 (2) 86 74 50 0 89 92 34 9 69 13 44 79

5 (3) 25 43 89 89 0 56 28 35 68 86 82 83

6 (3) 57 98 7 92 56 0 85 52 32 77 31 46

7 (4) 7 35 30 34 28 85 0 59 47 36 42 18

8 (4) 13 31 74 9 35 52 59 0 43 86 81 74

9 (5) 21 11 69 69 68 32 47 43 0 50 16 95

10 (5) 19 48 16 13 86 77 36 86 50 0 29 8

11 (6) 41 24 20 44 82 31 42 81 16 29 0 19

12 (6) 47 69 58 79 83 46 18 74 95 8 19 0

cut point, wraps around to the beginning of the chromosome when it reaches the

end, providing for a complete offspring. Maintaining the same cut points, the other

offspring would be (4 3 5 2 1). An illustration of the OX operation is provided in

[7] on pp. 217-218.

A simple modification to convert this crossover to the GTSP involves insertion

of nodes from the second parent whose clusters do not coincide with those of the

selected nodes from the first parent.

The initial crossover mechanism was further modified by adding a rotational

component. Nodes selected for insertion from the second chromosome were

rotated, and numerous orientations of the nodes to be inserted were considered.

For instance, instead of simply inserting the nodes from the second parent in the

previous example in the order 1-2-3, the orderings 2-3-1 and 3-1-2 were also

considered, and the ordering which created an offspring with the least cost was

added. Though a large number of orderings are considered for larger subtours from

the second parent, little computation time is expended, as only two cost evaluations

are needed to determine the effectiveness of a rotation, each directly at a cut point.

An additional component of this rotational crossover, which allows reversals of

strings to be inserted, was also implemented. This would have yielded the

additional consideration of orderings 3-2-1, 2-1-3, and 1-3-2. This reversed

insertion is applicable only to a symmetric GTSP, because each reversed string

would have to be completely reevaluated for an asymmetric GTSP dataset. This

modified crossover, including both the rotational and reverse rotational

components, will be referred to as the rotational ordered crossover, or rOX.

The rOX was further modified with an additional rotational component at the

cut points. This operator rotates both of the bordering nodes from the second

parent through each of the possible nodes within its cluster, selecting the one that

would minimize the final cost of the tour. While this modification required

significantly more runtime, it produced better solutions that tended to increase

population diversity. It did so by increasing the one-generation survival probability

of a promising new orientation of solutions that has not yet been locally optimized

but may eventually produce better results than the current best result. This further

The Generalized Traveling Salesman Problem 5

improvement on the rOX will, hereafter, be referred to as the modified rotational

ordered crossover, or mrOX. As this crossover is a defining characteristic of this

paper’s heuristic, the algorithm presented in this paper will be referred to as the

mrOX GA. An example is provided in Table 1. Consider two parents, p1 and p2.

They are defined based on the distance matrix provided in Table 1, and cut points

were selected around the middle two nodes.

p1 = (12 1 | 3 10 | 6 8) with cost = 297

p2 = (2 4 | 6 8 | 10 12) with cost = 381

Nodes 3 and 10, which are between the cut points in p1, are in clusters 2 and 5.

After the right cut point (with wrap-around), p2 visits clusters 5, 6, 1, 2, 3, and 4.

Removing clusters 2 and 5 (to ensure that chromosome produced contains exactly

one constituent of each cluster, making it legal) leaves, in order, clusters 6, 1, 3,

and 4. Forward rotation yields the following orderings of clusters —

6, 1, 3, 4

1, 3, 4, 6

3, 4, 6, 1

4, 6, 1, 3.

Reverse rotation yields the following orderings of clusters —

4, 3, 1, 6

3, 1, 6, 4

1, 6, 4, 3

6, 4, 3, 1.

If the rOX were being performed, the nodes from p2 in the clusters listed above

would be inserted in order to the right of the nodes retained from p1, wrapping

around the chromosome if necessary. However, as an mrOX is being performed,

full rotation is completed on the two clusters that border the retained nodes (the

first and last clusters listed above). Thus, for the first list of clusters (6, 1, 3, 4), it

is clear that the nodes to be inserted from p2 are 12, 2, 6, and 8. However, in the

mrOX, rotating through the bordering clusters also yields orderings 11, 2, 6, 8;

12, 2, 6, 7; and 11, 2, 6, 7. These four possible insertion orders are the top four

orderings considered in Table 2. Table 2 contains all of the 32 possible orderings

considered by the mrOX crossover, along with the associated cost of each

considered pathway. It should be noted that, given a node set with n nodes, m

clusters, and a distance between cut points of d, and an ordering of clusters from p2

named w, the number of chromosomes considered is)(*
1

gfi

m

i

i rrrR +∑
=

β . R is the

reversal constant which equals 2 if reversals are considered (the space is

symmetric) and 1 if not, and βi is the cluster exclusion constant which equals 1 if a

cluster is outside of the cut points retained from p1 and 0 if it is contained between

6 John Silberholz and Bruce L. Golden

Table 2. Chromosomes considered in example mrOX crossover
 Rotational Crossover | Reverse Rotational Crossover

pos1 pos2 pos3 pos4 pos5 pos6 cost pos1 pos2 pos3 pos4 pos5 pos6 cost

6 8 3 10 12 2 317 2 12 3 10 8 6 379

6 8 3 10 11 2 293 2 12 3 10 7 6 362

6 7 3 10 12 2 306 2 11 3 10 8 6 296

6 7 3 10 11 2 282 2 11 3 10 7 6 279

8 12 3 10 2 6 346 12 8 3 10 6 2 408

8 12 3 10 1 6 276 12 8 3 10 5 2 362

8 11 3 10 2 6 315 12 7 3 10 6 2 308

8 11 3 10 1 6 245 12 7 3 10 5 2 262

12 2 3 10 6 8 326 8 6 3 10 2 12 266

12 2 3 10 5 8 318 8 6 3 10 1 12 215

12 1 3 10 6 8 297 8 5 3 10 2 12 331

12 1 3 10 5 8 289 8 5 3 10 1 12 280

2 6 3 10 8 12 350 6 2 3 10 12 8 286

2 6 3 10 7 12 244 6 2 3 10 11 8 314

2 5 3 10 8 12 377 6 1 3 10 12 8 238

2 5 3 10 7 12 271 6 1 3 10 11 8 266

the cut points.
)mod()1(dmxi

of −+= and
)mod()1(dmxi

og −−= . ri is a function that returns

the number of nodes in a cluster i, xi is a function that returns the position of a

cluster i in w, and oq is the cluster at a certain position q in w. This equation returns

32 when considering the example crossover provided in Table 2.

As (8 6 3 10 1 12) is the possible offspring with the lowest cost, 215, this

bolded entry in Table 2 becomes the actual offspring of p1 and p2. It should be

noted that the standard OX crossover, when applied to this situation, returns the

chromosome (6 8 3 10 12 2), with cost of 317.

To improve the speed of crossover execution, the distance between cut points

on the first parent was increased, decreasing the number of necessary comparisons.

The first cut point was randomly selected, and if it was on the right side of the

chromosome, the other point was inserted at position 1
2

2 +

 m
rand . Otherwise, the

point was inserted at position

−

2

2 m
randm . In these expressions, rand is a random

real number on [0, 1) and m is the number of clusters in the dataset.

2.4 Population Structure

Additional improvements were made to the fundamental structure of a GA. First,

to maintain diversity, no duplicate chromosomes (including rotations or reversals

of the same chromosome) were allowed to coexist in a population. This is easily

facilitated by maintaining the position of the cluster 1 gene in each of the

chromosomes in the population for easier comparison to determine similarity.

Instead of a standard GA structure, which involves the evolution of one

population of chromosomes into a final solution, the new structure involves

isolating several groups of chromosomes for a relatively short time at the beginning

of the solution procedure and using less computationally intensive genetic

The Generalized Traveling Salesman Problem 7

procedures and local improvement to rapidly generate reasonable solutions. Then,

the best chromosomes from each of the smaller populations are merged into a final

population, which is improved with a standard genetic algorithm structure. For the

algorithm presented in this paper, seven isolated populations were maintained, each

containing 50 chromosomes. After none of the populations produced a new best

solution in 10 generations, the best 50 solutions from the combined pool of 350

became the final population to be improved. To ensure the speed of convergence

of the initial populations, each used the rOX crossover and quicker local

improvement heuristics (see Section 2.6).

In each generation, 20 of the 50 chromosomes in the population remained

unaltered through replication from the previous generation. Instead of directly

selecting these individuals, the thirty non-replicated chromosomes were selected

through a spinner procedure, in which each chromosome was given a probability of

death (with all probabilities adding to 1), and a spinner was spun to determine

which chromosomes died. The affinity for death, adi, was calculated as
deathPow

bestii ccad)(−=

for each chromosome of index i, where ci is the cost of that

solution, cbest is the cost of the best (least cost) solution in the population, and

deathPow is a constant that controls algorithmic convergence. The deathPow was

set at 0.375, which was determined by experimentation to provide reasonable

population diversities and convergence speeds. The probability of death of each

individual chromosome was calculated by dividing each adi by ∑
=

50

1i

iad .

2.5 Reproduction

In each generation, the last 30 chromosomes added were individuals produced

through reproduction. Parents were determined through a spinner selection similar

to that used to determine death. The affinity for reproduction, ari, was calculated

as
reprodPow

iworsti ccar)(−= for each chromosome of index i, where ci is the cost of

that solution, cworst is the cost of the worst (most costly) solution in the population,

and reprodPow is a constant that controls algorithmic convergence. The

reprodPow was set at 0.375, which was determined by experimentation to provide

reasonable population diversities and convergence speeds. The probability of

reproduction of each individual chromosome was calculated by dividing each ari

by ∑
=

50

1i

iar . Individual chromosomes can be selected more than once for

reproduction.

Once a list of 30 parents was generated, each pair produced two children.

Before isolated populations merged, each child was generated with the rOX

crossover, but subsequent generations of offspring were created using the mrOX

crossover.

2.6 Local Improvement Heuristics

Local improvement heuristics, which apply a set of transformations to a single

solution, significantly improve the performance of GAs [14]. Thus, the popular 2-

8 John Silberholz and Bruce L. Golden

opt local improvement heuristic was implemented. In the context of a Euclidean

GTSP, in which all nodes are points on a plane, this is equivalent to uncrossing two

crossed pathways.

Additionally, the swap operator described in [14] was used to further strengthen

local optimization in the solution. The swap operator removes each node from the

tour and replaces it in every other possible position, selecting the first position that

improves overall solution quality. In replacement, the node can be rotated through

its cluster. Consider the example below, which uses the distance matrix from Table

1.

The chromosome considered is (2 12 3 5 7 9), with a cost of 302. The first

node to be considered is 2. Insertion into each other possible position in the

chromosome yields possible solutions (12 2 3 5 7 9), (12 3 2 5 7 9),

(12 3 5 2 7 9), (12 3 5 7 2 9), and (12 3 5 7 9 2). The costs of these solutions

are, respectively, 366, 309, 367, 316, and 302. Since none of these new

positionings produced an improvement in solution cost, the other node in 2’s

cluster, 1, is considered in each position as a replacement for 2. The first

chromosome considered, (1 12 3 5 7 9), has a cost of 290, which is lower than the

cost of the initial chromosome considered, and thus becomes the final solution

produced by the swap operation.

For the initial isolated populations, a lower level of local optimization was used

to shorten runtime, in which the best chromosome found in the previous generation

replaces the first chromosome in the current population if it is not already present,

and the best chromosome in the current generation receives exactly one two-opt (or

one swap if all available 2-opts are exhausted).

After the isolated populations are merged, each child produced with a better

fitness (lower cost) than its parents receives full local improvement, which involves

carrying out 2-opts until none are available and then swaps until none are available.

Since a swap could cause a two-opt to become available, and vice versa, the cycle

is repeated until no more local improvements are available. Full local optimization

is also used on a randomly selected 5% of the new chromosomes produced through

reproduction to improve diversity and solution quality at the cost of increased

runtime.

2.7 Mutation

To facilitate mutation and thus improve population diversity, each chromosome in

the population had a 5% probability of being selected for mutation, a rate similar to

those used in example algorithms in [7]. If selected, two cut points were randomly

selected from each chromosome’s interior, and the nodes between these two points

were reversed. If p1 = (1 | 5 4 | 3 2), with the selected cut points denoted by the

vertical bars, then the inverted chromosome p1′ = (1 4 5 3 2).

2.8 Termination Conditions

The algorithm terminated after the merged population did not produce a better

solution for 150 generations. This termination generation count is larger than that

The Generalized Traveling Salesman Problem 9

of most genetic algorithms because the heuristic proposed has less local

optimization than most other approaches.

3 Computational Experiments

The Snyder and Daskin GA (S+D GA) was selected for machine-independent

comparison with this paper’s mrOX GA both because it is also a genetic algorithm,

and thus comparable, and because it produced some of the best heuristic results for

the GTSP to date, as detailed in [14]. We implemented the S+D GA, whose

attributes are detailed in [14]. In particular, we coded it in Java to produce

comparable runtimes and to allow comparisons with our GA for larger datasets

than those tested in [14]. The Java implementation had nearly identical

performance to the Snyder and Daskin program over the datasets cited in [14],

which ranged in size from 48 to 442 nodes. A two-sided paired t-test comparing

results of five trials for each dataset considered in [14] with a null hypothesis that

the algorithms were identical yielded a p-value of 0.9965, suggesting near-identical

results. Because all heuristics rely heavily on random numbers, it is expected that

the results are slightly different from the published values.

The datasets tested, as with all testing sets considered in this paper, were

acquired from Reinelt’s TSPLib [10]. This data source was selected because of

easy Internet accessibility at softlib.rice.net, and because most papers concerning

GTSP heuristics have used these datasets.

Each dataset was clustered using the procedure “CLUSTERING” described in

Section 6 of [3] and implemented in, for example, [11] and [14]. This method

clusters nodes based on proximity to each other, iteratively selecting 5/nm =

centers of clusters such that each center maximizes its distance from the closest

already-selected center. Then, all n nodes are added to the cluster whose center is

closest.

Computational tests were run on the data. Since Fischetti et al.'s branch and cut

(B&C) algorithm provided exact values for TSPLib datasets with size 48 ≤ n ≤ 442

in [3], direct comparisons with the optimal values were possible on these datasets.

Table 3 follows the format in [14] and provides for each dataset a comparison

of percentage above optimal and runtime for the heuristics considered, with bolded

entries denoting the best average heuristic solution quality on a dataset. The entries

that are not bolded even though they have the value 0.00 indicate that modeling

runs were not perfectly optimal, but that the average percentage above optimal

rounded down to 0.00. The “Dataset Name” category identifies the name of the

dataset considered, with the number of clusters preceding the name and the number

of nodes following. For each grouping of columns, “Pct” denotes the average

percentage above optimal of the run or runs and “Time” denotes the average

runtime of the run or runs, in seconds. The “# Trials” row details the number of

trials run per dataset for each algorithm, and the “Platform” row contains the

computing platform on which testing was performed. The “GI
3
” column refers to

Renaud and Boctor’s GI
3
 heuristic found in [11], the “NN” column refers to

Noon’s generalized nearest neighbor heuristic followed by GI
3
 improvement found

10 John Silberholz and Bruce L. Golden

Table 3. Comparison of heuristic solution qualities and runtimes
 mrOX GA S+D GA GI3 NN FST-Lagr FST-Root B&C

Dataset Name Pct Time Pct Time Pct Time Pct Time Pct Time Pct Time Time

10ATT48 0.00 0.36 0.00 0.18 * * * * 0.00 0.90 0.00 2.10 2.10

10GR48 0.00 0.32 0.00 0.08 * * * * 0.00 0.50 0.00 1.90 1.90

10HK48 0.00 0.31 0.00 0.08 * * * * 0.00 1.10 0.00 3.80 3.80

11EIL51 0.00 0.26 0.00 0.08 0.00 0.30 0.00 0.40 0.00 0.40 0.00 2.90 2.90

12BRAZIL58 0.00 0.78 0.00 0.10 * * * * 0.00 1.40 0.00 3.00 3.00

14ST70 0.00 0.35 0.00 0.07 0.00 1.70 0.00 0.80 0.00 1.20 0.00 7.30 7.30

16EIL76 0.00 0.37 0.00 0.11 0.00 2.20 0.00 1.10 0.00 1.40 0.00 9.40 9.40

16PR76 0.00 0.45 0.00 0.16 0.00 2.50 0.00 1.90 0.00 0.60 0.00 12.90 12.90

20RAT99 0.00 0.50 0.00 0.24 0.00 5.00 0.00 7.30 0.00 3.10 0.00 51.40 51.50

20KROA100 0.00 0.63 0.00 0.25 0.00 6.80 0.00 3.80 0.00 2.40 0.00 18.30 18.40

20KROB100 0.00 0.60 0.00 0.22 0.00 6.40 0.00 2.40 0.00 3.10 0.00 22.10 22.20

20KROC100 0.00 0.62 0.00 0.23 0.00 6.50 0.00 6.30 0.00 2.20 0.00 14.30 14.40

20KROD100 0.00 0.67 0.00 0.43 0.00 8.60 0.00 5.60 0.00 2.50 0.00 14.20 14.30

20KROE100 0.00 0.58 0.00 0.15 0.00 6.70 0.00 2.80 0.00 0.90 0.00 12.90 13.00

20RD100 0.00 0.51 0.00 0.29 0.08 7.30 0.08 8.30 0.08 2.60 0.00 16.50 16.60

21EIL101 0.00 0.48 0.00 0.18 0.40 5.20 0.40 3.00 0.00 1.70 0.00 25.50 25.60

21LIN105 0.00 0.60 0.00 0.33 0.00 14.40 0.00 3.70 0.00 2.00 0.00 16.20 16.40

22PR107 0.00 0.53 0.00 0.20 0.00 8.70 0.00 5.20 0.00 2.10 0.00 7.30 7.40

24GR120 0.00 0.66 0.00 0.32 * * * * 1.99 4.90 0.00 41.80 41.90

25PR124 0.00 0.68 0.00 0.26 0.43 12.20 0.00 12.00 0.00 3.70 0.00 25.70 25.90

26BIER127 0.00 0.78 0.00 0.28 5.55 36.10 9.68 7.80 0.00 11.20 0.00 23.30 23.60

28PR136 0.00 0.79 0.16 0.36 1.28 12.50 5.54 9.60 0.82 7.20 0.00 42.80 43.00

29PR144 0.00 1.00 0.00 0.44 0.00 16.30 0.00 11.80 0.00 2.30 0.00 8.00 8.20

30KROA150 0.00 0.98 0.00 0.32 0.00 17.80 0.00 22.90 0.00 7.60 0.00 100.00 100.30

30KROB150 0.00 0.98 0.00 0.71 0.00 14.20 0.00 20.10 0.00 9.90 0.00 60.30 60.60

31PR152 0.00 0.97 0.00 0.38 0.47 17.60 1.80 10.30 0.00 9.60 0.00 51.40 94.80

32U159 0.00 0.98 0.00 0.55 2.60 18.50 2.79 26.50 0.00 10.90 0.00 139.60 146.40

39RAT195 0.00 1.37 0.00 1.33 0.00 37.20 1.29 86.00 1.87 8.20 0.00 245.50 245.90

40D198 0.00 1.63 0.07 1.47 0.60 60.40 0.60 118.80 0.48 12.00 0.00 762.50 763.10

40KROA200 0.00 1.66 0.00 0.95 0.00 29.70 5.25 53.00 0.00 15.30 0.00 183.30 187.40

40KROB200 0.05 1.63 0.01 1.29 0.00 35.80 0.00 135.20 0.05 19.10 0.00 268.00 268.50

45TS225 0.14 1.71 0.28 1.09 0.61 89.00 0.00 117.80 0.09 19.40 0.09 1298.40 37875.90

46PR226 0.00 1.54 0.00 1.09 0.00 25.50 2.17 67.60 0.00 14.60 0.00 106.20 106.90

53GIL262 0.45 3.64 0.55 3.05 5.03 115.40 1.88 122.70 3.75 15.80 0.89 1443.50 6624.10

53PR264 0.00 2.36 0.09 2.72 0.36 64.40 5.73 147.20 0.33 24.30 0.00 336.00 337.00

60PR299 0.05 4.59 0.16 4.08 2.23 90.30 2.01 281.80 0.00 33.20 0.00 811.40 812.80

64LIN318 0.00 8.08 0.54 5.39 4.59 206.80 4.92 317.00 0.36 52.50 0.36 847.80 1671.90

80RD400 0.58 14.58 0.72 10.27 1.23 403.50 3.98 1137.10 3.16 59.80 2.97 5031.50 7021.40

84FL417 0.04 8.15 0.06 6.18 0.48 427.10 1.07 1341.00 0.13 77.20 0.00 16714.40 16719.40

88PR439 0.00 19.06 0.83 15.09 3.52 611.00 4.02 1238.90 1.42 146.60 0.00 5418.90 5422.80

89PCB442 0.01 23.43 1.23 11.74 5.91 567.70 0.22 838.40 4.22 78.80 0.29 5353.90 58770.50

Averages 0.03 2.69 0.11 1.77 0.98 83.09 1.48 171.56 0.46 16.44 0.11 964.79 3356.47

Trials 5 5 1 1 1 1 1

Platform Dell Dimension 8400 | Sun Sparc Station LX | HP 9000 / 720

in [11], and “FST-Lagr” and “FST-Root” respectively refer to the Lagrangian and

root-node heuristics found in [3].

No percentage above optimal was provided for the B&C column, as that

algorithm always produces optimal solutions.

The mrOX GA produced, on average, better solution qualities than the other

heuristics. Over the datasets considered in Table 3, the mrOX GA averaged only a

0.03% error, less than a third that of the S+D GA and FST-Root heuristic, the two

algorithms with the nearest solution qualities. It should be noted that FST-Root

had slow runtimes, running within 5% of the exact algorithm’s runtime on 35 of the

41 datasets.

The solution qualities produced by the mrOX GA were also close to the

published optimal solutions to certain difficult problems being investigated, like

89PCB442, an 89-cluster, 442-node GTSP dataset found in the TSPLib [10]. The

* The NN and GI3 heuristics were not tested in [11] on these datasets.

The Generalized Traveling Salesman Problem 11

algorithm found an optimal solution in four of the five trials run, averaging a 0.01%

error over the five trials.

While previous papers presenting heuristics have, in general, limited their scope

to problems for which optimal solutions have been published so that percentages

above optimal can be calculated, this paper seeks to investigate larger datasets for

which the exact algorithm’s solution has not been determined due to prohibitively

high runtimes. These datasets are clearly the ones for which heuristics are most

applicable, and thus should be of the most interest to those who design approximate

algorithms.

Thus, five trials were completed comparing the S+D GA and the mrOX GA

based on runtime and solution quality on TSPLib datasets of size 493 ≤ n ≤ 1084,

with full results presented in the appendix.

Since no optimal solutions have been published for the larger problems, the

success of the mrOX GA was gauged by its performance in relation to the S+D GA

on the same datasets. Nearly all mrOX GA solutions to datasets had equal or

superior solution qualities compared to those of the S+D GA.

Over all datasets, the mrOX GA provided 0.31% better solutions than the S+D

GA, though over the larger datasets (containing more than 442 nodes), the average

advantage of the mrOX GA was 1.09%. These are significant improvements, as

neither the S+D GA nor the mrOX GA averaged more than 1.09% above optimal

for any dataset with 442 or fewer nodes, and the average percentage above optimal

for the S+D GA was just 0.11% for the smaller problems. Over the same larger

datasets, the mrOX GA produced a better average solution quality than the S+D

GA on 12 of the 13 datasets.

The S+D GA, meanwhile, demonstrated on average a 42.79% faster runtime

than the mrOX GA. On the larger datasets tested (containing more than 442

nodes), the S+D GA had a 28.79% advantage in runtime, significantly less than the

advantage over all datasets, suggesting that the runtimes will continue to remain

comparable for larger datasets.

Runtime comparisons with other heuristics were difficult because different

computers with various computing powers were used to test the algorithms.

Experimentation was then completed to consider the feasibility of decreasing

total runtime of the mrOX GA while maintaining similar solution qualities.

Decreasing the number of static generations before termination in the mrOX GA

from 150 to 50 provided this effect. Experimentation (with results available in the

“50-Gen Value” and “50-Gen Time (ms)” columns of Table 4 in the appendix)

demonstrated an overall decrease of 16.51% in runtime, with a decrease of 0.21%

in solution quality. The effects were magnified for datasets of size 493 ≤ n ≤ 1084,

with an overall average decrease of 47.52% in runtime and an average decrease of

0.56% in solution quality. Thus, while solution quality, not runtime, was the focus

of this paper, the mrOX GA can produce results of reasonable quality very quickly

if slightly modified.

Data were collected to quantify the effects of this paper’s novel improvements.

The population structure involving seven isolated populations, which was used in

the mrOX GA, produced 0.04% better solution qualities than the 1-population

(standard GA), which was also tested. Considering the small deviation from

12 John Silberholz and Bruce L. Golden

optimal for the mrOX GA (the average error for mrOX GA solutions on datasets of

size 48 ≤ n ≤ 442 was 0.03%), this represents a significant improvement in solution

quality. However, the 20-population model tested was not significantly different

from the 7-population scheme, averaging only 0.006% better solution qualities.

Thus, limited benefits can clearly be gained through using isolated populations.

Naturally, maintaining more isolated populations caused a longer runtime for

the heuristic. For each dataset tested, the 1-population model averaged 43.05

seconds of runtime, the 7-population model averaged 44.44 seconds of runtime,

and the 20-population model averaged 49.04 seconds of runtime. As dataset size

increases, the percentage of total runtime used in early improvement significantly

decreases, from 48.02% for the small 22PR107 to 5.09% for the large 212U1060.

Experimentation was also carried out to determine the advantages of the mrOX

crossover over the OX crossover. The mrOX crossover demonstrated a significant

advantage in solution quality over the OX crossover, averaging a 0.18% increase in

solution quality. The runtimes of the algorithms using the mrOX and OX

crossovers were not significantly different, with the mrOX GA running on average

2.59% quicker.

4 Conclusions

Based on the data collected, the mrOX GA detailed in this paper outperformed all

of the other heuristic solutions considered in terms of solution quality, while

maintaining comparable runtimes, especially on larger datasets. A trend was

established demonstrating an overall improvement in mrOX GA solution qualities

in comparison to other heuristics like Snyder and Daskin’s GA described in [14].

Additionally, the mrOX GA consistently provided optimal solutions to historically

difficult datasets like 89PCB442. It could also be easily modified to provide faster

solutions of good (but slightly diminished) quality.

The heuristic thus performed well in comparison to other published algorithms

for run-time characteristics, and is further useful because GAs are quite simple to

implement in comparison to other heuristics like the FST-Root method.

Additionally, changing evaluation functions or performing basic structural

transformations into other related problems like the Median Tour Problem

described in [1] or Traveling Circus Problem considered in [12] are simple tasks

with a GA. However, the effectiveness of these transformations would have to be

investigated experimentally.

This paper’s research can be applied to other GA solutions of transportation

problems through the mrOX crossover. This new crossover significantly improved

solution qualities while maintaining similar runtimes in comparison to the OX

crossover, characteristics that make it useful in a variety of GAs. Additionally, the

initial population isolation mechanism, which was proven to provide better results

than a standard GA, can be applied to a wide variety of GAs. This is a far-reaching

application of this paper’s findings, considering the many GAs used as heuristic

solutions in computing today.

The Generalized Traveling Salesman Problem 13

Table 4: Experimental data collected
Dataset Name Value Time Merge Swaps 2-opts Cross- 50-Gen 50-Gen S+D GA S+D GA

 (ms) Time overs Value Time Value Time

 (ms) (ms) (ms)

10ATT48 5394.0 356.0 118.6 3171.2 1592.6 31565.4 5394.0 209.6 5394.0 178.2

10GR48 1834.0 321.8 90.6 2238.8 1601.2 33357.8 1834.0 190.6 1834.0 75.2

10HK48 6386.0 312.8 90.8 3837.6 1102.2 30119.2 6386.0 175.2 6386.0 81.2

11EIL51 174.0 259.2 75.0 1553.2 695.0 23491.8 174.0 134.6 174.0 78.2

11BERLIN52 4040.0 315.4 87.2 2694.8 1490.8 29458.0 4040.0 196.8 4040.0 106.2

12BRAZIL58 15332.0 775.2 228.0 1798.0 1715.4 28722.6 15332.0 190.6 15332.0 97.0

14ST70 316.0 353.0 137.4 1671.4 820.6 26347.8 316.0 225.0 316.0 65.6

16EIL76 209.0 369.0 134.4 1249.2 890.0 26419.8 209.0 228.4 209.0 106.4

16PR76 64925.0 447.0 172.0 3587.2 1293.4 31823.2 64925.0 290.8 64925.0 156.2

20RAT99 497.0 500.0 169.0 2389.8 1437.2 32818.8 497.0 356.2 497.0 243.8

20KROA100 9711.0 628.2 222.0 4876.2 2007.8 39313.8 9711.0 731.2 9711.0 249.8

20KROB100 10328.0 603.2 224.8 4627.0 1682.2 37787.2 10328.0 462.4 10328.0 215.6

20KROC100 9554.0 621.8 206.4 5018.4 2335.4 39378.4 9554.0 443.4 9554.0 225.0

20KROD100 9450.0 668.8 250.0 5078.0 2464.0 39192.8 9450.0 853.0 9450.0 434.4

20KROE100 9523.0 575.0 240.6 3663.8 1721.8 37705.8 9523.0 672.0 9523.0 147.0

20RD100 3650.0 506.2 231.4 2891.6 1292.2 32891.0 3650.0 1003.2 3650.0 290.8

21EIL101 249.0 478.2 218.8 2261.0 1378.2 30152.2 249.0 1434.4 249.0 184.6

21LIN105 8213.0 603.2 256.4 3754.4 1910.0 37844.6 8213.0 1887.2 8213.0 334.4

22PR107 27898.6 534.4 256.6 1340.8 888.8 34388.4 27898.0 1537.4 27898.6 197.0

24GR120 2769.0 659.6 284.4 3176.6 1868.4 37310.2 2769.0 1606.0 2769.0 321.8

25PR124 36605.0 678.0 322.0 3734.8 1626.6 38968.6 36605.0 1118.8 36605.0 259.0

26BIER127 72418.0 784.4 334.4 5499.6 2792.4 40084.2 72418.0 906.4 72418.0 275.2

26CH130 2828.0 790.6 328.2 4126.8 2108.8 43434.2 2828.0 750.4 2828.0 418.4

28PR136 42570.0 793.8 356.2 4200.2 2066.0 38556.8 42570.0 568.8 42639.8 362.8

29PR144 45886.0 1003.2 434.6 5946.6 2776.4 53049.8 45886.0 709.2 45887.4 437.6

30CH150 2750.0 884.4 378.0 4454.6 2743.6 41030.6 2750.0 630.8 2750.0 403.2

30KROA150 11018.0 981.2 421.8 4315.0 2471.0 46399.0 11018.0 621.8 11018.0 319.0

30KROB150 12196.0 978.4 368.8 5270.4 2252.0 45276.6 12196.0 675.2 12196.0 712.4

31PR152 51576.0 965.4 349.8 5753.6 3424.4 39005.6 51577.6 587.6 51576.0 381.2

32U159 22664.0 984.4 381.2 4529.0 2789.8 42891.8 22664.0 675.0 22664.0 553.2

35SI175 5564.0 974.8 353.2 3826.4 3886.2 36402.2 5564.2 806.4 5590.4 387.2

39RAT195 854.0 1374.8 543.8 4307.8 2485.6 50919.2 854.0 868.8 854.0 1325.0

40D198 10557.0 1628.2 572.0 7795.4 3864.4 51261.8 10563.8 996.6 10564.0 1468.6

40KROA200 13406.0 1659.4 590.6 6197.6 3389.6 59078.2 13406.0 1037.2 13406.0 950.2

40KROB200 13117.6 1631.4 618.8 5786.0 2949.6 62330.8 13115.4 1081.4 13112.2 1294.2

45TS225 68435.2 1706.2 593.6 5156.8 3472.8 52474.6 68613.6 1078.0 68530.8 1087.4

46PR226 64007.0 1540.6 712.4 2783.4 2501.2 60787.4 64007.0 968.6 64007.0 1094.0

53GIL262 1017.6 3637.4 912.4 8949.2 5856.4 73077.2 1022.2 1587.6 1018.6 3046.8

53PR264 29549.0 2359.4 1012.6 4445.4 2638.2 71733.4 29549.0 1475.0 29574.8 2718.6

56A280 1080.8 2921.8 1018.8 5591.8 3314.8 68932.6 1088.8 1806.2 1080.6 3321.8

60PR299 22627.0 4593.8 1415.8 8194.2 4062.8 92713.4 22647.2 3540.8 22650.2 4084.4

64LIN318 20765.0 8084.4 1475.2 16282.6 7666.8 91508.2 21036.6 3565.6 20877.8 5387.6

80RD400 6397.8 14578.2 2453.2 19330.2 7989.2 117979.2 6413.2 8041.0 6407.0 10265.6

84FL417 9654.6 8152.8 2312.2 6724.2 5790.8 110035.2 9668.2 4553.4 9657.0 6175.2

88PR439 60099.0 19059.6 3581.6 19792.0 8235.8 143845.4 60348.2 10996.6 60595.4 15087.6

89PCB442 21658.2 23434.4 3309.4 26512.2 12235.8 137437.0 21904.0 10927.8 21923.0 11743.8

99D493 20117.2 35718.8 3675.0 33168.8 13203.8 134546.2 20146.2 21972.0 20260.4 14887.8

107ATT532 13510.8 31703.0 4440.4 24098.0 10421.6 145720.0 13520.0 20043.6 13529.8 31875.2

107SI535 13513.2 26346.8 3518.8 16626.2 19904.8 118799.6 13533.2 14543.8 13557.6 11250.2

113PA561 1053.6 21084.2 3837.6 10258.4 11026.2 127844.0 1051.2 13759.4 1065.6 26818.6

115RAT575 2414.8 48481.0 5706.0 29366.8 12684.8 177752.8 2436.4 23506.2 2442.4 46834.4

131P654 27508.2 32672.0 5909.4 11381.4 10344.2 173235.6 27439.0 17903.0 27448.4 46996.8

132D657 22599.0 132243.6 8681.2 66083.8 22186.6 218083.4 22624.0 59046.8 22857.6 58449.8

145U724 17370.6 161815.2 9921.6 62581.8 22077.2 223626.6 17681.8 58994.0 17806.2 59625.2

157RAT783 3300.2 152147.0 12421.8 48479.2 19752.6 231742.4 3330.8 68056.2 3341.0 89362.4

201PR1002 114582.2 464356.4 26940.6 89278.4 27910.8 339429.2 116058.4 295209.2 117421.2 332406.2

207SI1032 22388.8 242366.0 19397.2 32418.6 52047.0 253389.2 22415.2 126962.4 22515.2 135431.0

212U1060 108390.4 594637.4 30281.4 106204.4 30766.4 352773.6 109519.8 239453.2 110158.0 216999.8

217VM1084 131884.6 562040.6 32193.6 78499.2 32331.6 331020.4 133563.4 290765.6 133743.4 390115.6

Further research could be conducted on the effects of the novel improvements

on the schemata theorem, the basic theoretical support for GAs. Additional

research could consider the use of an entirely different crossover (such as the edge

recombination crossover) in conjunction with a rotational inversion mechanism, or

the effectiveness of a slightly modified mrOX GA on other transportation

problems.

14 John Silberholz and Bruce L. Golden

5 Appendix

In Table 4, the “Value” column contains the mrOX GA fitness value, the “Time

(ms)” column contains the total mrOX GA runtime including time both before and

after the population merge, the “Merge Time (ms)” column contains the mrOX

GA’s runtime until it merges isolated populations, the “Swaps” column contains

the mrOX GA number of swaps, the “2-opts” column contains the number of

mrOX GA 2-opts, the “Crossovers” column contains the number of mrOX GA

crossovers, the “50-Gen value” column contains the mrOX GA fitness value for the

50-generation termination run, the “50-Gen Time (ms)” column contains the total

mrOX GA runtime for the 50-generation termination run, the “S+D GA Value”

column contains the S+D GA fitness value, and the “S+D GA Time (ms)” column

contains the S+D GA’s runtime. S+D values and runtimes are from this paper’s

coding of the heuristic. Fractional values are the effects of averaging results from 5

trial runs.

References

1. J.R. Current, D.A. Schilling. The median tour and maximal covering tour

problems: Formulations and heuristics, European Journal of Operational

Research 73: 114–126, 1994.

2. L. Davis. Applying Adaptive Algorithms to Epistatic Domains. Proceeding of

the International Joint Conference on Artificial Intelligence, 162-164, 1985.

3. M. Fischetti, J.J. Salazar-Gonzalez, P. Toth. A branch-and-cut algorithm for

the symmetric generalized traveling salesman problem. Operations Research

45 (3): 378–394, 1997.

4. D.E. Goldberg and R. Lingle. Alleles, loci and the traveling salesman problem.

In: J.J. Grefenstette (ed.), Proceedings of the First International Conference

on Genetic Algorithms and Their Applications, pp. 154-159. Lawrench

Erlbaum Associates, Hillsdale, N.J., 1985.

5. A.L. Henry-Labordere. The record balancing problem: A dynamic

programming solution of a generalized traveling salesman problem. RAIRO

B2: 43-49, 1969.

6. G. Laporte, A. Asef-Vaziri, C. Sriskandarajah. Some Applications of the

Generalized Traveling Salesman Problem. Journal of the Operational

Research Society 47: 1461-1467, 1996.

7. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, Charlotte, NC, 1999.

8. H. Mühlenbein, M.G. Schleuter, and O. Krämer. Evolution algorithms in

combinatorial optimization. Parallel Computing 7: 65-85, 1988.

9. C.E. Noon. The generalized traveling salesman problem. Ph. D. Dissertation,

University of Michigan, 1988.

10. G. Reinelt. TSPLIB—A traveling salesman problem library. ORSA Journal on

Computing 4: 134–143, 1996.

The Generalized Traveling Salesman Problem 15

11. J. Renaud, F.F. Boctor. An efficient composite heuristic for the symmetric

generalized traveling salesman problem. European Journal of Operational

Research 108 (3): 571–584, 1998.

12. C.S. Revelle, G. Laporte. The plant location problem: New models and

research prospects. Operations Research 44 (6): 864–874, 1996.

13. J.P. Saksena. Mathematical model of scheduling clients through welfare

agencies. CORS Journal 8: 185-200, 1970.

14. L. Snyder and M. Daskin. A random-key genetic algorithm for the generalized

traveling salesman problem. European Journal of Operational Research 17

(1): 38-53, 2006.

15. H.-K. Tsai, J.-M. Yang, Y.-F. Tsai, C.-Y. Kao. Some issues of designing

genetic algorithms for traveling salesman problems. Soft Computing 8: 689-

697, 2004.

