
Chapter 9

COMPARISON OF HEURISTICS FOR
SOLVING THE GMLST PROBLEM

Yiwei Chen†, Namrata Cornick‡, Andrew O. Hall§, Ritvik Shajpal#, John
Silberholz§, Inbal Yahav§, Bruce L. Golden§∗

†Department of Electrical Engineering, Stanford University, Stanford, CA, 94305

‡Department of Applied Mathematics, University of Maryland, College Park, MD, 20742

§R. H. Smith School of Business, University of Maryland, College Park, MD, 20742

#Department of Geography, University of Maryland, College Park, MD, 20742

Abstract Given a graph G whose edges are labeled with one or more labels, the Generalized
Minimum Label Spanning Tree problem seeks the spanning tree over this graph
that uses the least number of labels. We provide a mathematical model for this
problem and propose effective greedy heuristics and metaheuristics. We finally
compare the results of these algorithms with benchmark heuristics for the related
Minimum Label Spanning Tree problem.

Keywords: Combinatorial optimization; computational comparison; genetic algorithm; gre-
edy heuristic; metaheuristic; minimum label spanning tree.

1. Introduction
The Generalized Minimum Label Spanning Tree (GMLST) problem is a

variant of the Minimum Label Spanning Tree (MLST) problem. The problem
takes as input an undirected graph G = (V,E, L), where G is defined to have
V as the node set, E as the edge set, and L as the label set, with n = |V | and
m = |L|. While in the MLST problem, each edge is colored by exactly one

∗Corresponding author. E-mail address bgolden@rhsmith.umd.edu

182 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Figure 9.1. Sample GMLST problem graph

label from the set L, in the GMLST problem, each edge has an associated label
set, which is a subset of L. In this manner, edge e ∈ E has an associated label
set l(e) ⊂ L. The optimal solution to the GMLST problem is a minimum label
spanning tree, T , such that each edge e ∈ T has been colored by a label in l(e)
and T uses the smallest number of distinct labels.

Consider the sample graph found in Figure 9.1. One feasible spanning tree
connects nodes 2 and 3 with label a, nodes 1 and 2 with label c, nodes 1 and 4
with label c, nodes 4 and 5 with label b, and nodes 5 and 6 with label c. As labels
a, b, and c are used in the solution, this solution uses 3 total labels. Another
spanning tree connects nodes 2 and 3 with label a, nodes 1 and 2 with label
b, nodes 1 and 5 with label b, nodes 4 and 5 with label b, and nodes 5 and 6
with label b. As this spanning tree uses only two labels, a and b, it is a superior
solution to the first.

The MLST problem was motivated by problems in computer network de-
sign. Different types of media are available for computer network construction.
It is often considered optimal to minimize the different types of media used
within the network. In a typical residential community today, it is common
to find cable, optic fiber, and telephone line all connecting computer users to
the Internet. Such diversity may not be optimal in planning a computer or
telecommunications network, as shown by Patterson and Rolland, 2002. In this
example, each type of medium would be represented with a different label, and
the MLST would be a spanning tree that uses the minimum number of different
medium types. Since it is reasonable that more than one type of medium could
connect the same two locations, meaning this network could not be modeled
as a MLST problem instance, the GMLST problem also has applications in
computer network design. The MLST problem has been shown to be NP-hard
by Chang and Leu, 1997, making this problem difficult to solve to optimality
in reasonable runtimes for larger datasets.

Comparison of Heuristics for Solving the GMLST Problem 183

We will explore several new algorithms for finding good GMLST prob-
lem solutions for several classes of graphs and compare these algorithms with
Chang and Leu’s maximum vertex covering algorithm (MVCA), a benchmark
heuristic, and with the modified genetic algorithm (MGA) due to Xiong et al.,
2005a; Xiong et al., 2006, an effective metaheuristic for the MLST problem.
In Section 2, we further describe the GMLST problem and its general solu-
tion strategies. In Section 3, we provide the details of existing MLST problem
heuristics and the new algorithms we developed. In Section 4, we describe the
results from each of the algorithms solving a series of test problems. Section 5
provides conclusions and directions for future research.

2. The GMLST problem
2.1 Comparing the MLST and the GMLST Problems

For graph G = (V,E, L), where V is the set of nodes, E is the set of edges,
and L is the set of labels, the subgraph induced by the label set C ⊂ L is
G′ = (V,E′, C), with E′ = {e ∈ E|l(e) ∩ C 6= ∅}, where l(e) is the label set
associated with edge e.

Both the MLST and the GMLST problems require the search for a mini-
mum-label set for which the induced subgraph is connected. The potential
solutions for the MLST and GMLST problems can be represented by similar
data structures. The structure of the problem motivates the decomposition of
the problem into storing label sets as potential solutions and determining the
feasibility of those solutions by checking if the subgraphs induced by the label
sets on the graph considered are connected and span all nodes in V . The optimal
solution would be represented by the minimum-cardinality feasible label set.

2.2 Optimal Solutions
The GMLST problem can be modeled as a mixed integer program and results

can be obtained in reasonable runtimes for small graphs.1 The integer formula-
tion seeks to minimize the total number of labels needed subject to constraints
of having a connected directed graph. Formally, let eijk be an indicator of the
existence of an edge of label k between nodes i and j. Since the graphs we
consider are undirected, eijk = ejik. Let M be a very large number (for our
purposes: M = |E|). We define xijk as a boolean number that determines
whether there is a directed connection from node i to node j with label k in
the solution. We use the boolean variable lk to denote whether label k is in the
solution. Finally, we obtain connectivity by defining yi as a dummy variable
associated with the node i. The GMLST problem is formulated as follows.

1Up to 50 nodes when using ILOG CPLEX 3.6.1

184 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

min
∑
k∈L

lk

s.t.
Connectivity : ∀i ∈ V,

∑
j∈V,k∈L

xijk ≥ 1 (9.1)

∀i ∈ V \ {1}, j ∈ V : yi − yj + n
∑
k∈L

xijk ≤ n− 1

Feasibility : ∀i, j ∈ V, k ∈ L : xijk ≤ eijk (9.2)

Labels : ∀k ∈ L :
∑

i,j∈V

xijk ≤M ∗ lk (9.3)

V ariables : ∀i, j ∈ V, k ∈ L : xijk ∈ {0, 1} (9.4)
∀k ∈ L : lk ∈ {0, 1} (9.5)

2.3 Heuristic Algorithms
Ideally, an exact method like solving the model provided with integer pro-

gramming software would be desired for solving this combinatorial optimiza-
tion problem because this method can return the optimal solution to any problem
instance. However, exact solutions often require a prohibitively long runtime,
making them impractical approaches for solving large problem instances of
NP-complete problems. For instance, the backtrack search mentioned in Xiong
et al., 2005a, which is an exact algorithm, could not be used to analyze datasets
containing more than 50 nodes and 50 labels due to its exponential runtime.
This shortcoming demonstrates the need for heuristics that return approximate
results in much quicker runtimes. Examples of some heuristics for the MLST
problem include the genetic algorithm due to Nummela and Julstrom, 2006, the
genetic algorithm due to Xiong et al., 2005a, and the tabu search procedure due
to Cerulli et al., 2005.

In this paper, we present two greedy heuristics for the GMLST problem. The
first heuristic, the maximum vertex covering algorithm (MVCA) first posed in
Chang and Leu, 1997, is a benchmark heuristic for the MLST problem. We
show the MVCA can be used without modification on the GMLST problem in
Section 3. In addition to this benchmark heuristic, we propose a new heuristic
algorithm, the rarest insertion (RI) heuristic.

In addition to the greedy heuristics, we present a number of metaheuristics.
These metaheuristics allow for randomness. This allows these algorithms to
search more of the solution space. We present the Modified Genetic Algorithm
(MGA), a heuristic proposed in Xiong et al., 2005a. We also propose two new
heuristics: the Increasing Diverse Population Genetic Algorithm (IDP) and the
Iterative Perturbation and Correction Heuristic (IPC). Each algorithm is detailed
in full in Section 3.

Comparison of Heuristics for Solving the GMLST Problem 185

3. Algorithms for the GMLST Problem
3.1 MVCA

An effective heuristic for the MLST problem, the MVCA was proposed in
Chang and Leu, 1997. Bruggemann et al., 2003 proved that the MVCA can
be used to provide approximate solutions to the MLST problem in polynomial
time. Xiong et al., 2005b, using the harmonic numbers Hb =

∑b
i=1

1
i , where b

is the maximum frequency of any label in the graph, showed that the number of
labels in the MVCA heuristic solution is no worse than Hb times optimal and
demonstrated that this bound is tight.

Though the MVCA was developed for the MLST problem, it can be used
without modification for the GMLST problem because its data representation
is a label set. The MVCA begins with an empty label set. Hence, in this initial
state, the subgraph induced by the label set on a graph G has n components.
Each of them is composed of a single vertex. At each stage, the MVCA chooses
labels to add to the partial label set such that the number of components in
the subgraph induced by the new label set is minimum. Pseudocode for the
algorithm is shown below.

0 Input: A graph G = (V,E, L), where V is the set of nodes, E is the set
of edges, and L is the set of labels.

1 Let C ← {} be the set of added labels.

2 Do while the subgraph induced by C on G has more than one component

(a) minnumcomp← min(the number of components of C ∪ {k} in-
duced on G) for any k ∈ L \ C

(b) possiblelbls← {k ∈ L \C : the number of components of C ∪{k}
induced on G = minnumcomp}

(c) Randomly select label f from possiblelbls

(d) C ← C ∪ {f}

3 Report C

3.2 Rarest Insertion
We developed the Rarest Insertion (RI) algorithm to decrease the number

of labels considered for removal by the MVCA. The RI heuristic maintains
the components of the subgraph induced by the current label set on the graph
considered. Each iteration, the algorithm selects the component that has the
fewest number of labels linking its member nodes to any other node in the graph.
From that set of labels, the RI heuristic selects the label that, when added to
the current label set, results in the label set whose induced subgraph on the

186 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Figure 9.2. Sample graph after one iteration of the RI algorithm

graph considered has the least number of components. That label is added to
the heuristic solution’s label set and the components are recalculated. The RI
algorithm continues adding labels in this manner until the induced subgraph is
connected and spans all nodes in V .

To illustrate this procedure, consider the RI algorithm performed on the
graph shown in Figure 9.1. As no labels have been selected yet, each node is
its own component. Next, the rarest component (node) must be found. Node
1 is connected to other nodes by all 3 labels, node 2 is connected to other
nodes by all 3 labels, node 3 is connected to other nodes by only 1 label (a),
node 4 is connected to other nodes by all 3 labels, node 5 is connected to
other nodes by 2 labels (b and c), and node 6 is connected to other nodes by
2 labels (b and c). Hence, the component containing node 3 is selected as the
rarest component, and label a is added to the solution set. After recomputing
the components, the result is the graph shown in Figure 9.2. Now, the rarest
component is again selected. Each of the four components pictured is connected
to other components by all 2 remaining labels (b and c), so the rarest component
is selected randomly from these choices. Suppose the component containing
only node 5 is selected. As it is connected to other components by both labels b
and c, a decision must be made about which of these labels to use. Since adding
b would result in 1 remaining component (containing a feasible spanning tree)
but adding c would result in 2 remaining components (one containing nodes 1,
2, 3, and 4 and the other containing nodes 5 and 6), b is added and the procedure
terminates, having found the solution set {a, b}.

Pseudocode for this algorithm is shown next.

0 Input: A graph G = (V,E, L), where V is the set of nodes, E is the set
of edges, and L is the set of labels.

1 C ← {}, the set of added labels.

2 N ← {{1}, {2}, ..., {n}}, the components of the subgraph induced by
C on G

Comparison of Heuristics for Solving the GMLST Problem 187

3 Do while |N | > 1

(a) minnumlbl← min(|
⋃

a∈P,b∈V \P l(ab)|) for any P ∈ N , where
l(ab) is the label set of the arc between node a and node b

(b) possiblecomp← {P ∈ N : |
⋃

a∈P,b∈V \P l(ab)| =minnumlbl}
(c) Randomly select S from possiblecomp

(d) T ←
⋃

a∈S,b∈V \S l(ab), the set of labels connected to the selected
component S

(e) minnumcomp← min(the number of components of the subgraph
induced by C ∪ {k} on G) for any k ∈ T

(f) possiblelblset ← {k ∈ T : the number of components of the
subgraph induced by C ∪ {k} on G = minnumcomp}

(g) Randomly select f from possiblelblset, the selected label to be
added

(h) C ← C ∪ {f}
(i) Do while ∃J,K ∈ N, J 6= K s.t. ∃j ∈ J, k ∈ K s.t. {f} ⊂ l(jk)

i N ← N \ {J,K} ∪ {J ∪K} /* |N | ← |N | − 1 */

4 Report C

3.3 Iterative Perturbation and Correction Heuristic
The Iterative Perturbation and Correction (IPC) heuristic is an algorithm

aimed at overcoming the drawbacks of hill climbing methods. Hill climbing
methods perform a local search for increases in fitness. However, they often get
trapped at local optimal solutions, rarely discovering a solution near the global
optimal solution. The IPC allows deteriorating moves along with iterative
improvement to broaden the search space and to provide better future solutions.
The final IPC solution is less dependant upon the starting point than the hill
climbing final solution, making the initial solution a less important consideration
in the IPC. Parameters for this metaheuristic are found in Section 4.

Algorithm Structure. To generate the initial feasible solution used in our
IPC heuristic, we start with an empty label set. We then add a label using the
weighted selection technique described later in this section. We keep adding
unadded labels in this manner until the subgraph induced by the label set on the
graph considered is connected and spans all nodes in V , meaning the solution
is feasible. If this initial label set has cardinality one, we return it as the final
solution. If not, one at a time we remove all labels from the label set that are
not needed to maintain the connectivity of the label set induced on the graph
and then add a label using the weighted selection technique described below.

188 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

The algorithm continues until the best solution found has not improved for T
iterations. Pseudocode for the algorithm is found below.

0 Input: A graph G = (V,E, L), where V is the set of nodes, E is the set
of edges, and L is the set of labels; a set f of the frequencies of each label
in the graph, where fl is the frequency of label l; a value F that is the
maximum frequency of any label in the graph; and parameters T and λ.

1 C ← {}, the set of used labels.

2 Do while the subgraph induced by C on G has more than one component

(a) C ← C ∪ { a randomly selected l ∈ L \ C}, with the probability

of selecting l as e
−λ(

F−fl
F

)∑
k∈L\C

e
−λ(

F−fk
F

)
for any l ∈ L \ C.

3 If |C| = 1 then return final solution C and terminate

4 numstagnant← 0, the number of iterations with no improvement in the
best solution

5 Do while numstagnant< T

(a) possibleremove← {l ∈ C : the subgraph induced by C \ {l} on G
is connected and spans all nodes in V } /* the set of all labels we
can remove while maintaining a feasible solution */

(b) Do while |textitpossibleremove| > 0

i Let rem be the label in possibleremove added to C the longest
time ago

ii C ← C \ {rem} /* |C| ← |C| − 1 */
iii possibleremove← {l ∈ C : the subgraph induced by C\{l} on

G is connected and spans all nodes in V } /* As the cardinality
of C decreases, the cardinality of possibleremove will approach
0 */

(c) If |C| is the smallest yet encountered by the heuristic, then num-
stagnant← 0

(d) C ← C ∪{a randomly selected l ∈ L \C}, with the probability of

selecting l as e
−λ(

F−fl
F

)∑
k∈L\C

e
−λ(

F−fk
F

)
for any l ∈ L \ C

(e) numstagnant← numstagnant+1

6 Report the lowest-cardinality C ever encountered

Comparison of Heuristics for Solving the GMLST Problem 189

Exponentially Weighted Selection. Selections of labels are made based
on an exponential distribution, where labels with a higher frequency in the
graph are given preference. A parameter λ is used to govern how strongly more
frequent labels are favored. The preference given to a label l ∈ L\C is modeled

by e−λ(
F−fl

F
), where fl is the number of times a label l is present in the graph,

F is the maximum frequency of any label in the graph, L is the set of all labels,
and C is the current label set. The probability of a label l ∈ L\C being selected
in the weighted selection is given by that label’s selection preference divided by

the sum of the selection preferences of all labels not in C, or e
−λ(

F−fl
F

)∑
k∈L\C

e
−λ(

F−fk
F

)
.

Clearly, if λ is set to a high value, labels with a higher frequency will gain more
of an advantage in selection over those with a lower frequency, making the IPC
more greedy in nature. From our data, the IPC solution quality decreased when
λ was set too high or too low.

3.4 Modified Genetic Algorithm
We implemented the MGA due to Xiong et al., 2005a; Xiong et al., 2006.

Though this heuristic was designed for the MLST problem, no modifications
to the metaheuristic were necessary, as its data representation is a label list.
This genetic algorithm uses a single parameter to set the number of generations
equal to the population size. A large parameter value is associated with longer
runtimes.

3.5 An Increasing Diverse Population Genetic Algorithm
The MGA sacrifices population diversity for intensive local optimization.

Therefore, we were motivated to develop a genetic algorithm that involves less
local optimization and a greater focus on population diversity to yield better
solutions for datasets. This prompted the creation of the IDP.

The IDP stores candidate solutions in data structures called chromosomes.
As suggested in Xiong et al., 2005a, we use a list of the labels to store the
candidate solutions. The parameters used for this heuristic in data collection
are discussed in Section 4.

Initial Chromosome Generation. The initial chromosome begins as an
empty label set. An initial chromosome is generated iteratively by randomly
selecting initlabelselect labels not in the current label set and adding the one
that minimizes the number of components of the graph when all edges contain-
ing that label are added, continuing until the subgraph induced on the graph by
the label set is connected and spans all nodes in V . Though for large initla-
belselect this process requires more runtime than the random method of initial

190 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

chromosome generation used in Xiong et al., 2005a, it results in a fitter initial
population. If an element of the initial population has a cardinality of one, the
IDP terminates after this stage.

Another initial chromosome generation technique we considered but decided
not to use involved using domain-specific knowledge to create an overlap matrix
to create initial chromosomes of better fitness than those produced by a fully
random procedure like the one used by the MGA. The overlap matrix is a m×m
matrix that stores in each entry the number of edges in the graph whose label
sets contain both the label represented by the row and the label represented
by the column. An initial chromosome is generated by iteratively adding the
label with the least overlap with the labels already selected to be included in
the chromosome and breaking ties randomly.

The procedure can be made fast by precomputing the overlap matrix. How-
ever, we noted that this method did not produce as fit initial chromosomes as
other algorithms. This could be due to the fact that some overlapped edges may
be counted multiple times as we build up the chromosome.

Crossover and Mutation. A key component of any genetic algorithm is the
crossover operation, which combines the genetic information from two parents
into a child that is similar to both. In this genetic algorithm, the crossover begins
by first maintaining all the labels in the label sets of both parents. Next, it adds
random unused labels from either of the parents’ label sets. The crossover
continues this process until the subgraph induced by the label set on the graph
is connected and spans all nodes in V . A feasible label set is guaranteed to
exist, since both parents are feasible solutions, meaning the union of their label
sets would also induce a connected subgraph.

To maintain population diversity, nummutate chromosomes in the population
are randomly selected each generation. Each of these chromosomes is mutated.
The mutation operator is very simple: a label l /∈ C is selected at random and
added to the label set C of the chromosome.

Local Search. As discussed in Michalewicz, 1996, genetic algorithms
for network problems will often perform poorly without a unary local search
procedure to iteratively improve chromosomes in a population. For IDP, a
non-intensive local search procedure removes the first label it finds that can be
removed from the label set while maintaining that label set’s feasibility. The
IDP also uses a second type of local search, an intensive local search. The
intensive local search iterates through all of the labels in the label set, removing
each that is not necessary for the feasibility of the label set. Because the non-
intensive local search can only remove one unneeded label while the intensive
local search can remove multiple labels, the non-intensive local search allows
for quicker runtimes but is a weaker local search operator.

Comparison of Heuristics for Solving the GMLST Problem 191

Generation Structure. Each generation, numreplace of the popsize chro-
mosomes in a population are selected for replacement by new chromosomes.
These chromosomes are selected based on a probability distribution, in which
the probability of selecting a chromosome P from the population Q for re-
placement is |P |−|best|+1∑

A∈Q
|A|−|best|+1

, where best is the fittest chromosome in the

population. Therefore, chromosomes with a larger number of associated la-
bels, and hence a worse fitness, are more likely to be replaced, simulating an
evolutionary process.

The popsize − numreplace chromosomes not selected to be replaced are
maintained until the next population by replication. Next, the numreplace new
chromosomes for the next generation are generated by the crossover opera-
tor described earlier in this section. The unique parents for each crossover
operation are also generated using a probability distribution. For this distri-
bution, the probability of selecting a chromosome P from the population Q is

|worst|−|P |+1∑
A∈Q

|worst|−|A|+1
, where worst is the least fit chromosome in the population.

The chromosomes with the smaller number of labels, and hence a greater fit-
ness, are more likely to be selected as parents, again simulating an evolutionary
process.

The numreplace new chromosomes are placed into the population for the
next generation. After this replacement, mutation is carried out as described
above. Next, numlocaloptimize random selections of chromosomes are made.
Each time a chromosome is selected, local optimization is applied to it as long as
the chromosome has not had exhaustive local search performed on it in previous
generations, in which case no action is taken after selection. The type of local
search used will be discussed during the explanation of the population structure.

Population Structure. In an effort to prevent premature population con-
vergence, a check is done for concurrent label sets. Two label sets are defined
to be concurrent if one is a subset of the other. If two chromosomes have
concurrent label sets, then only one needs to be maintained in the population.
If two concurrent label sets are found, then the one with fewer labels, P , is
maintained, with ties broken randomly. The other chromosome is mutated nu-
malterations(P) times, where numalterations is a function found in Section 4.
Next, the non-intensive local search is performed until no more improvements
can be made, but no more than numalterations(P) times.

Finally, to avoid having one population converge to a poor solution, numiso-
lated isolated populations are maintained in a structure similar to that used in
Silberholz and Golden, 2007. Each population contains popsize chromosomes
and the populations are maintained until the best chromosome found by any of
the populations has not improved for numgensisolated generations. To main-
tain shorter runtimes, the non-intensive local search is used during the local

192 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

search phase for these isolated populations. After this time of isolated evolu-
tion, the isolated populations are combined into a final population of popsize
chromosomes using a probability distribution identical to the one used for par-
ent selection in the reproduction phase of the genetic algorithm. The single
combined population is maintained until the best chromosome produced by the
population has not improved for numgensfinal generations. The intensive local
search procedure is used instead of the non-intensive version for this final single
population. Additionally, since the MVCA runs so quickly, MVCA solutions
are incorporated into this part of the GA. numinitmvca of the chromosomes
in the initial combined population are generated by the MVCA heuristic, and
each generation, nummvcaeachgen of the chromosomes are generated by the
MVCA.

4. Computational Results
4.1 Small-World Dataset Generation

The first type of datafile generation technique that we used is based on the
Small-World datafile generator proposed in Watts and Strogatz, 1998. Essen-
tially, the Small-World generator works in two steps as follows: for a selected
number of nodes n and density d (where d = |E|

|V |2):

1 Create a regular lattice-like network, i.e., n nodes connected to form a
circle, with each node linked to its |E|

|V | neighbors.

2 For each arc, with probability p, rewrite the arc’s end node such that the
graph remains connected.

3 Repeat the second step for i iterations.

To account for arcs labels, we expanded the Watts and Strogatz algorithm by
labeling each arc such that the arc has a maximum of l labels (LabelsPerArc ∼
Uniform[0, l])

In our generator we set the rewriting probability p to be 0.5, the number of
iteration i = 3, and the maximum labels per arc l = 5.2

4.2 TSPLib-Based Dataset Generation
In addition to creating datasets based on the Small-World datafile generator

as discussed above, we also generated datasets based on the TSPLib datasets
from Reinelt, 1990. In the following sections, we will describe the deterministic
algorithms used to generate these datasets so that others may compare results

2The graph generator is available at http://www.rhsmith.umd.edu/faculty/phd/inbal/

Comparison of Heuristics for Solving the GMLST Problem 193

with those presented in this paper by downloading TSPLib datasets from the
Internet and implementing our labeling algorithms.3 Our algorithms for creat-
ing GMLST problem graphs from TSPLib datasets were divided into two steps.
First, we generated a frequency distribution of the number of labels between
every pair of nodes. We then determined which labels would be used for each
arc. For each of these steps, we generated two algorithms.

Algorithms for Generating Frequency Distributions. Algorithms for
generating frequency distributions were based on three parameters. The first,
maxlabelsperarc, is the maximum number of labels associated with an individ-
ual arc in the graph. This value was set to be 5. The next parameter, totnumla-
bels, is the sum of the number of labels associated with each arc over all arcs in
the graph. This parameter was set at b

(n
2

)
∗ density ∗maxlabelsperarcc, where

density is a value that varied in experimentation between .005 and .1. The final
parameter, m, or the number of labels for the dataset, was determined by the
equation m = b n2

100c, where n is the number of nodes specified in the TSPLib
dataset. Since the values of m and totnumlabels both varied with degree 2 in
relation to n, the number of labels in datasets with the same density stayed
approximately constant regardless of the size of that dataset.

Two algorithms were used for generating the frequency distributions. The
first, random frequency, uses the distance matrix of the TSPLib dataset to gener-
ate a distribution that is relatively pattern-free. Pseudocode for this algorithm is
provided in Appendix A. The other algorithm, length-based frequency, is based
on the idea that in many applications of the GMLST problem, most labels will
be found on shorter arcs. For instance, in the example of a telecommunications
network, it is likely that a provider would connect two distant cities through
a series of shorter connections rather than a single direct connection. The al-
gorithm assigns each arc a number of labels proportional to the inverse of the
length of that arc. Pseudocode for this algorithm is provided in Appendix A.

Algorithms for Determining Labels for Each Arc. Two algorithms were
developed for determining the labels for each arc in the graph, given the number
of labels associated with that arc determined by one of the two algorithms
presented above. The first, random label selection, again uses the distance
matrix of the TSPLib dataset to make label selections that are generally pattern-
free. Pseudocode for this algorithm is provided in Appendix A. The other
algorithm, clustered label selection, stems from the concept of localization
of services in the real-world applications of the GMLST problem. A local
company would only provide services to a small geographical range, meaning
its labels would touch a small number of nodes. This effect is approximated

3At http://www.rhsmith.umd.edu/faculty/bgolden/, the graph generator and problem instances can be found

194 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

in the clustered labels algorithm by assigning each label a central node. The
algorithm then labels arcs based on proximity to node centers, finally evening
the distribution so that there is less variation in the frequency of labels in the
graph. Pseudocode for this algorithm is provided in Appendix A.

4.3 Parameters for Computational Experiments
Parameters for the IPC heuristic were determined based on preliminary mod-

eling runs and were selected to be values that returned good results. The value
3000 was used for T , the number of iterations without improvement. The value
6 was used for λ, the affinity to add high-frequency labels. Preliminary testing
showed that as T increased the solution quality became less sensitive to the λ
value.

Parameters for the IDP were also selected based on preliminary modeling
runs. Parameters for the structure of the GA were also based on suggested val-
ues from Michalewicz, 1996. The number of labels considered before choosing
the most advantageous in the initial chromosome creation, initlabelselect, was
selected to be 10. The number of chromosomes mutated in each population,
nummutate, was selected to be 7. The size of each population, popsize, was
set to be 40 chromosomes. The number of chromosomes to be replaced by
crossover each generation, numreplace, was selected to be 25. The number of
chromosomes selected to have local optimization performed each generation,
numlocaloptimize, was selected to be 40. The number of times a chromosome
was mutated and then locally optimized if it was found to have a concurrent
label set with another chromosome, numalterations(P), was set to be b |P |

10 c+3,
where |P | is the number of labels in the candidate chromosome P . The num-
ber of isolated populations maintained at the beginning of the IDP heuristic,
numisolated, was set to be 6. The number of generations without improve-
ment that isolated populations are maintained, numgensisolated, was set to be
7. The number of generations without improvement that the final population is
maintained, numgensfinal, was set to be 30. The number of MVCA solutions
introduced to the population after the initial combination of isolated popula-
tions, numinitmvca, was set to be 3. Finally, the number of MVCA solutions
introduced to the final population each generation, nummvcaeachgen, was set
to be 1.

4.4 Computational Experiments
Computational experiments were performed on 52 datasets generated using

the Small-World generation methods described above. We considered densities
of 0.04, 0.06, 0.08, and 0.1 for datafiles with 50, 100, 200, and 400 nodes. For
datafiles with 800 nodes, we considered densities of 0.04 and 0.06. For each
density used, except 0.06 for 800-node problems, we tested a datafile with 10

Comparison of Heuristics for Solving the GMLST Problem 195

labels, a datafile with 55 labels, and a datafile with 100 labels. For the remaining
datasets, we used 10 labels only. For each dataset, 5 instances were generated
with different random seeds and each of those instances was tested, with the
average results reported.

Computational experiments were also performed on 64 datafil-es generated
using the TSPLib-based methods described above. We chose 4 TSPLib datafil-
es, eil51, pr152, tsp225, and rd400, for experimentation. Using the formula
provided earlier in this section, the datafiles generated had 26, 231, 506, and
1600 labels, respectively. For datafiles generated from eil51, densities of 0.025,
0.05, and 0.1 were used. For datafiles generated from pr152 and tsp225,
densities of 0.01, 0.025, 0.05, and 0.1 were used. Finally, for datafiles generated
from rd400, densities of 0.005, 0.01, 0.025, 0.05, and 0.1 were used. For each
density used, we generated a datafile with a length-based frequency distribution
and random labeling, a datafile with a length-based frequency distribution and
clustered labeling, a datafile with a random frequency distribution and random
labeling, and a datafile with a random frequency distribution and clustered
labeling.

Computational experiments were performed on a Systemax Venture H524
computer with 512 MB RAM and a 3.06 GHz processor using code programmed
in C and C++. Computational experiments considered the MGA, the IDP, and
the IPC. Additionally, we tested the repeated MVCA (RMVCA), which is the
MVCA repeated 100 times with the best result returned, and the repeated RI
(RRI), which is the RI procedure repeated 100 times with the best result re-
turned. For each of the executions of these heuristics, a different random seed
was used. Because both the MVCA and RI use random selection to break ties,
the solutions returned by these heuristics often varied between executions. For
each of the TSPLib-based datasets considered, 5 modeling runs were performed
with each heuristic with a different random seed used each time. For each of
the Small-World datasets considered, 5 modeling runs were performed with
each heuristic on each of the 5 instances for that datafile, resulting in 25 total
modeling runs performed by each heuristic for each of those datafiles. Multi-
ple trials are necessary because every heuristic considered is nondeterministic,
meaning results will vary between modeling runs. The average solutions and
runtimes for the modeling runs are provided in Appendix 9.B.1 so direct runtime
comparisons can be made with the results of this paper.

4.5 Results
In our computational experiments, we counted the number of datasets for

which each heuristic performed better than each other heuristic. In Table 9.1,
each heuristic is compared with all of the other heuristics on the smallest
datasets, which are all 36 datasets with n ≤ 100. This includes both Small-

196 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Heuristic IDP RMVCA RRI MGA IPC Sum
IDP 0 23 18 16 4 61

RMVCA 0 0 5 1 0 6
RRI 0 14 0 2 0 16

MGA 1 22 16 0 1 40
IPC 5 23 17 15 0 60

Sum 6 82 56 34 5 183

Table 9.1. Comparison over 36 small dataset instances. Entries represent the number of datasets
for which the algorithm in the row heading returned fewer labels on average than the algorithm
in the column heading.

Heuristic IDP RMVCA RRI MGA IPC Sum
IDP 0 28 29 13 14 84

RMVCA 3 0 10 3 8 24
RRI 4 21 0 1 9 35

MGA 18 30 27 0 20 95
IPC 15 28 24 11 0 78

Sum 40 107 90 28 51 316

Table 9.2. Comparison over 44 medium dataset instances. Entries represent the number of
datasets for which the algorithm in the row heading returned fewer labels on average than the
algorithm in the column heading.

Heuristic IDP RMVCA RRI MGA IPC Sum
IDP 0 17 19 13 17 66

RMVCA 3 0 7 7 12 29
RRI 2 11 0 8 10 31

MGA 10 17 17 0 20 64
IPC 8 14 15 5 0 42

Sum 23 59 58 33 59 232

Table 9.3. Comparison over 36 large dataset instances. Entries represent the number of datasets
for which the algorithm in the row heading returned fewer labels on average than the algorithm
in the column heading.

Comparison of Heuristics for Solving the GMLST Problem 197

Comparison of Heuristics for Small-World Datasets

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

50 100 200 400 800

Number of Nodes

P
e

rc
e

n
ta

g
e

 o
f

R
M

V
C

A
 S

o
lu

ti
o

n

IDP

RRI

MGA

IPC

Figure 9.3. Effects of Small-World dataset size on comparative solution qualities of heuristics
tested

World datasets and TSPLib-based datasets. Each entry in the table is the number
of datasets considered for which the heuristic in the row label had a lower aver-
age number of labels returned than the heuristic in the column label. The column
sum shows the number of times the heuristic was outperformed by any other
heuristic, and the row sum is the number of times the heuristic outperformed
any other heuristic. The row and column sums provide good summary statistics
for how well each heuristic performed on the datasets considered. Successful
heuristics had high row sums and low column sums. Table 9.2 has the same
format, but considers all 44 datasets with 100 < n ≤ 225. Table 9.3 considers
all 36 datasets with n > 225.

To illustrate the solution quality and runtime trends, we considered the ef-
fects of certain datafile attributes of the comparative solutions of the heuristics.
In Figures 9.3 and 9.4 we consider how the size of the dataset affects the com-
parative solution qualities for both Small-World and TSPLib-based datasets. In
Figure 9.5, we demonstrate how the density of a TSPLib-based dataset affects
comparative solution qualities for the heuristics.

The RRI performed better than the RMVCA in modeling runs, averaging
0.79% fewer labels than the benchmark greedy heuristic. Of the 68 datafiles for
which the two heuristics did not return the same average solutions, the RRI out-

198 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Comparison of Heuristics Over TSPLib-Based Datasets

0.9

0.92

0.94

0.96

0.98

1

1.02

51 152 225 400

Number of Nodes

P
e

rc
e

n
ta

g
e

 o
f

R
M

V
C

A
 S

o
lu

ti
o

n

IDP

RRI

MGA

IPC

Figure 9.4. Effects of TSPLib-based dataset size on comparative solution qualities of heuristics
tested

Comparison of Heuristics for Solving the GMLST Problem 199

Comparison of Heuristics over TSPLib-Based Datasets

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.005 0.01 0.025 0.05 0.1

Density

P
ro

p
o

rt
io

n
 o

f
R

M
V

C
A

 S
o

lu
ti

o
n

IDP

RRI

MGA

IPC

Figure 9.5. Effects of TSPLib-based dataset density on comparative solution qualities of heuris-
tics tested

200 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

performed the RMVCA in 46 instances. The comparison between the RRI and
RMVCA seems to be highly dependent on the particular dataset considered. In
TSPLib-based datasets using clustered label selection, the RRI averaged 2.47%
fewer labels than the RMVCA, while the heuristic actually performed worse
than the RMVCA on TSPLib-based datasets using random label selection, av-
eraging 0.91% more labels than the benchmark. This difference may be due
to the fact that the RRI chooses between fewer labels than the RMVCA in an
even label distribution like the one found in a dataset generated through clus-
tered label selection, causing the RRI to make more informed label selections
that help it perform better than the benchmark. In addition to outperforming
the RMVCA in solution quality, the RRI performs faster than the RMVCA,
completing all the modeling runs in 56.71% the runtime of the RMVCA.

The IDP and MGA consistently outperformed both of the greedy heuristics,
validating both as useful metaheuristics. On average, the IDP returned solutions
with 3.16% fewer labels than the RMVCA solution and 2.28% fewer labels than
the RRI solution, while the MGA on average returned solutions with 2.73%
fewer labels than the RMVCA solution and 1.84% fewer labels than the RRI
solution. The computational results of the two metaheuristics are similar. Over
all modeling runs, the IDP outperformed the MGA on 42 datasets and the MGA
outperformed the IDP on 29 datasets. On average, the IDP solutions had 0.41%
fewer labels than the MGA solutions. Though the IDP performed better than
the MGA in solution quality comparisons, this may be due to the parameters
for the IDP being set to favor solution quality over runtime. Though the IDP
performed in reasonable runtimes, averaging 76.83 seconds per modeling run
with the longest average runtime for a datafile slightly more than 15 minutes,
the MGA executed all datasets considered in about a third the IDP runtime.

While the RMVCA and RRI solution comparison was most affected by the
label selection technique for TSPLib datafiles, the comparison between the IDP
and MGA is most affected by a more subtle attribute of datafiles: the cardinal-
ity of good solution sets. For this analysis, we introduce b, the best solution
encountered by any of the heuristics tested for a given dataset. On datasets
with low-cardinality good solutions, specifically those with b ≤ 5, the IDP
averaged solutions with 0.77% fewer labels than the MGA’s results. Likewise,
on datasets with medium-cardinality good solutions, specifically those with
5 < b ≤ 20, the IDP averaged solutions with 1.12% fewer labels than the
MGA’s results. However, on the solutions with the high-cardinality good solu-
tions, specifically those with b > 20, the MGA averaged solutions with 0.93%
fewer labels than the IDP’s solutions. Indeed, this trend extends to comparisons
with other heuristics. On datasets with medium-cardinality good solutions, the
IDP dominates all other heuristics considered, averaging 3.53% fewer labels
than the RMVCA, 2.67% fewer labels than the RRI, and 0.87% fewer labels
than the IPC. Likewise, on datasets with high-cardinality good solutions, the

Comparison of Heuristics for Solving the GMLST Problem 201

MGA dominates all other heuristics considered, averaging 3.62% fewer labels
than the RMVCA, 2.64% fewer labels than the RRI, and 1.54% fewer labels
than the IPC. Though this trend exists based on the cardinality of good solutions
for datasets, the trend does not seem to extend to the size of datasets. The IDP
actually outperformed the MGA on large datafiles, averaging 0.60% fewer la-
bels than the MGA on 400-node TSPLib-based datasets and 1.10% fewer labels
than the MGA on 400-node Small-World datasets.

Over the Small-World datasets, the IPC produced solutions of good quality.
Over these datasets, the IPC and the IDP had nearly identical results, with the
IPC averaging 0.09% more labels than the IDP, and the IPC outperformed all
other heuristics considered in solution quality. Over the Small-World datasets,
the IPC averaged 0.61% fewer labels than the MGA, 3.29% fewer labels than
the RMVCA, and 2.44% fewer labels than the RRI. In runtime comparisons, the
IPC was outperformed by all other heuristics and used 49% more runtime than
the IDP, the closest heuristic in runtime, over all problem instances. However,
the IPC runtimes were fast; the IPC averaged 8.89 seconds of runtime per
Small-World dataset instance and did not average over one minute of runtime
for any Small-World dataset.

On TSPLib-based datasets, the IPC performed better on datasets with a low
density. With density 0.005, the IPC used 0.30% more labels than the MGA and
6.98% fewer labels than the RMVCA. However, on the highest density TSPLib
graphs, with density 0.1, the IPC performed the worst of all the algorithms
considered, averaging 1.46% more labels than the MGA and 0.86% more labels
than the RMVCA. The IPC results seemed much less affected by the generation
technique used for the TSPLib-based dataset considered. In the comparison
between the IPC and MGA for different generation techniques, we averaged
the number of labels for each heuristic over all datasets of that type and then
compared those averages. The MGA averaged 1.5% fewer labels than the IPC
on datasets with length-based frequency distribution and clustered label section,
0.8% fewer labels on datasets with length-based frequency distribution and
random label selection, 1.05% fewer labels on datasets with random frequency
distribution and clustered label selection, and 0.7% fewer labels on datasets
with random frequency distribution and random label selection. On TSPLib-
based datasets, the IPC performed better on graphs with fewer nodes. The
IPC averaged 2.01% fewer labels than the MGA on TSPLib-based datasets
with 51 labels, but the MGA outperformed the IPC as the number of nodes
increased. For TSPLib-based datasets with 400 nodes, the MGA averaged
1.77% fewer labels than the IPC. For TSPLib-based datasets with 51 nodes, the
IPC performed slower than the other heuristics, but for 400-node TSPLib-based
graphs the IPC runtime was similar to that of other heuristics except for the IDP,
which the IPC outperformed significantly on those datasets in terms of runtime.

202 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

From the computational results, the advantages of each type of dataset also
became evident. The Small-World datasets are easier to generate, as the pro-
cedure for generation is simple compared to that of the TSPLib-based datasets.
However, the TSPLib-based datasets seemed to produce more difficult datafiles.
The average number of labels returned by any heuristic for the TSPLib-based
datasets was 36.67, while that average for the Small-World datasets was only
5.65. Additionally, the average spread between the best and worst heuristic
results for the TSPLib-based datafiles was 6.68%, while the average spread
for Small-World datafiles was 4.49%. A final consideration should be that
the generation of TSPLib-based datafiles requires much less runtime than the
generation of a Small-World datafile.

5. Conclusions and Future Research
In this paper we presented the GMLST problem and discussed effective

heuristics for generating approximate solutions to the problem. We presented
the IDP, a genetic algorithm that performed as well as the MGA, a genetic
algorithm in the literature for the MLST problem, and we also proposed the
IPC, a fast metaheuristic that performed well in testing runs. The IPC is also a
simple concept that is easy to implement, a further benefit of this approach to
the GMLST problem. We also developed the RI heuristic, an effective greedy
heuristic that produces solutions better than those of the MVCA, a benchmark
approach for the MLST problem, in significantly less runtime.

Much can be done to extend the results published in this paper. Though the
datafiles considered were interesting from a computation standpoint, creating
datasets based on real-world GMLST problems would further strengthen the
analysis of the heuristics presented.

Additionally, mathematical analysis of the runtime and solution quality per-
formance of the RI heuristic is needed. For example, it might be possible to
derive an upper bound on the solution error.

Finally, we must analyze how the methods we used to solve the GMLST
problem perform on similar problems, like the MLST problem. It is likely that
some of the methods we developed for the GMLST problem can be applied to
other network optimization problems.

Appendix: A: Datafile Generation Pseudocodes
1. Datafile Generation Pseudocodes

As the pseudocode provided in this section is meant to help programmers to reimplement
the dataset generation procedures described in this paper, throughout this appendix nodes and
labels will be numbered between 0 and n− 1 and between 0 and m− 1 repectively to emulate
common programming techniques.

Comparison of Heuristics for Solving the GMLST Problem 203

1.1 Random Frequency Distribution
0 Input: A distance matrix dist for TSPLib graph G = (V, E), totnumlabels, and maxla-

belsperarc.

1 frequencypos← 1

2 for labeladdcount = 0 to totnumlabels −1

(a) Add a link between a = b frequencypos
n

c and b = frequencypos modn

(b) frequencypos← (frequencypos +distab+ labeladdcount) mod n2

(c) While the arc ab associated with frequencypos as calculated in step 2a already
has maxlabelsperarc associated with it or both nodes in that arc are the same,
frequencypos← (frequencypos +1) mod n2

1.2 Length-Based Frequency Distribution
0 Input: A distance matrix dist for TSPLib graph G = (V, E), totnumlabels, and

maxlabelsperarc.

1 currval, currfreq, node1, node2 ← 0

2 for edgecount = 0 to
(

n
2

)
− 1

(a) node2 ← node2 + 1

(b) if node2 = n then

i node1 ← node1 + 1

ii node2 ← node1 + 1

(c) freqarrayedgecount ← currval + 1
distnode1node2+1

(d) currval← freqarrayedgecount

3 for edgecount = 0 to
(

n
2

)
− 1

(a) Using node1, node2 associated with edgecount as assigned in steps 2a through 2b,
assign b freqarrayedgecount∗totnumlabels

currval
c− currfreq labels to the arc between

node1 and node2

(b) if more than maxlabelsperarc were assigned, assign maxlabelsperarc instead

(c) currfreq← currfreq + the number of labels just added

4 edgecount← 0

5 do while currfreq < totnumlabels, meaning not all labels have been distributed

(a) using node1, node2 associated with edgecount as assigned in steps 2a through 2b,
increase the number of labels between node1 and node2 up to either maxlabelsper-
arc or the totnumlabels − currfreq + the previous number of labels assigned to
the arc, whichever is less

(b) currfreq← currfreq + the number of labels just added

(c) edgecount← edgecount +1

204 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

1.3 Random Label Selection
0 Input: A distance matrix dist for TSPLib graph G = (V, E), a matrix numlabels of the

number of labels for any given arc.

1 for node1 = 0 to n− 1, node2 = node1 + 1 to n− 1

(a) for labelcount = 0 to numlabelsnode1node2 − 1

i currlbl← (node1+ node2 + (labelcount +1)∗ distnode1node2) mod m

ii while the label currlbl is already used between node1 and node2, currlbl
← (currlbl +1) mod m

iii assign currlbl to the arc between node1 and node2

1.4 Clustered Label Selection
0 Input: A distance matrix dist for TSPLib graph G = (V, E), a matrix numlabels of the

number of labels for any given arc, totnumlabels as provided to earlier algorithms

1 for ctrcnt= 0 to m− 1

(a) centerctrcnt ← ctrcnt modn, the node used as the center of label ctrcnt’s cluster

(b) labelfreqctrcnt ← 0, the number of label ctrcnt added to the graph

2 for node1 = 0 to n−1, for node2 = 0 to node1−1, for lblcnt= 1 to numlabelsnode1node2

(a) lblselect← −1, the next label selected to be added (−1 means none yet selected)

(b) for lbl = 0 to m − 1, if lbl has not been added to the arc between node1

and node2 then if lblselect = −1 or distnode1centerlbl+ distnode2centerlbl <
distnode1centerlblselect+ distnode2centerlblselect then lblselect← lbl

(c) assign lblselect to the arc between node1 and node2

(d) labelfreqlblselect ← labelfreqlblselect + 1

3 minlbl← b totnumlabels
m

c, the minimum number of arcs to be assigned to any label

4 for node1 = 0 to n− 1, node2 = 0 to node1 − 1, lbl = 0 to m− 1

(a) if lbl is assigned to the arc between node1 and node2 and either labelfreqlbl >
minlbl +1 or (labelfreqlbl = minlbl +1 and ∃l, 0 ≤ l ≤ m−1, s.t. labelfreql <
minlbl) then

i bestreplace← −1, the label to replace lbl on the arc (−1 means none found)
ii for lbl2 = 0 to m− 1, if lbl2 is not on the arc between node1 and node2 and

(either labelfreqlbl2 < minlbl or (labelfreqlbl2 = minlbl and ∀l, 0 ≤ l ≤
m−1, labelfreql ≥minlbl)) and (bestreplace= −1 or distnode1centerlbl2

+
distnode2centerlbl2

<distnode1centerbestreplace+distnode2centerbestreplace)
then bestreplace← lbl2

iii if bestreplace 6= −1 then
A labelfreqlbl ← labelfreqlbl − 1

B labelfreqbestreplace ← labelfreqbestreplace + 1

C remove lbl from the arc between node1 and node2 and add bestreplace
to the arc

Comparison of Heuristics for Solving the GMLST Problem 205

Appendix: B: Detailed Computational Results
1. Detailed Computational Results

In this section, we provide the average results of each heuristic tested over all of the datasets to
provide a basis for comparison with the results presented in this paper. In each of the tables, n is
the number of nodes in a dataset, m is the number of labels, d is the density, and type describes the
type of dataset. For TSPLib-based datasets, LC implies the length-based frequency distribution
was used with clustered label selection, LR means the length-based frequency distribution was
used with random label selection, RC means the random frequency distribution was used with
clustered label selection, and RR means the random frequency distribution was used with random
label selection. A type of SW means a Small-World dataset was used. Beneath each heuristic
name, lbl is the average number of labels returned over the modeling runs for each dataset and
sec is the average runtime in seconds for the modeling runs. Bolded entries indicate the best
solution for a given dataset.

Table 9.B.1 displays the results of the heuristics (IDP, RMVCA, RRI, MGA, and IPC) on
TSPLib-based datasets, and Table 9.B.2 displays the results of the heuristics on Small-World
datasets.

References
Bruggemann, Tobia, Monnot, Jerome, and Woeginger, Gerhard J. (2003). Local search for the

minimum label spanning tree problem with bounded color classes. Operations Research
Letters, 31(3):195–201.

Cerulli, Raffaele, Fink, Andreas, Gentili, Monica, and Voss, Stefan (2005). Metaheuristics com-
parison for the minimum labelling spanning tree problem. In Golden, B, Raghavan, S, and
Wasil, E, editors, The Next Wave in Computing, Optimization, and Decision Technologies,
pages 93–106.

Chang, RS and Leu, Shing-Jiuan (1997). The minimum labeling spanning trees. Information
Processing Letters, 63(5):277–282.

Michalewicz, Z (1996). Genetic Algorithms+ Data Structures= Evolution Programs. Springer.
Nummela, Jeremiah and Julstrom, Bryant A. (2006). An effective genetic algorithm for the

minimum-label spanning tree problem. In GECCO ’06: Proceedings of the 8th Annual Con-
ference on Genetic and Evolutionary Computation, pages 553–558, New York, NY, USA.
ACM Press.

Patterson, RA and Rolland, Erik (2002). Hybrid fiber coaxial network design. Operations Re-
search, 50(3):538–551.

Reinelt, G (1990). TSPLIB-A Traveling Salesman Problem Library. Inst. für Mathematik.
Silberholz, John and Golden, Bruce (2007). The generalized traveling salesman problem: A

new genetic algorithm approach. In Baker, E, Joseph, A, Mehrotra, A, and Trick, M, editors,
Extending the Horizons: Advances in Computing, Optimization, and Decision Technology,
pages 165–181.

Watts, Duncan J. and Strogatz, Steven H. (1998). Collective dynamics of ‘small-world’ networks.
Nature, 393(6684):409–410.

Xiong, Yupei, Golden, Bruce, and Wasil, Edward (2005a). A one-parameter genetic algorithm
for the minimum labeling spanning tree problem. IEEE Transactions on Evolutionary Com-
putation, 9(1):55–60.

Xiong, Yupei, Golden, Bruce, and Wasil, Edward (2005b). Worst-case behavior of the mvca
heuristic for the minimum labeling spanning tree problem. Operations Research Letters,
33(1):77–80.

206 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Datafile IDP RMVCA RRI MGA IPC
d n m type lbl sec lbl sec lbl sec lbl sec lbl sec

0.025 51 26 LC 10 0.85 10 0.05 10 0.07 10 0.14 10 1.03
0.025 51 26 LR 8 0.60 9 0.05 8 0.06 8 0.13 8 0.85
0.025 51 26 RC 9 0.91 10 0.05 10 0.07 9 0.15 9 1.00
0.025 51 26 RR 7 0.65 7 0.04 7 0.06 7 0.11 7 0.84
0.05 51 26 LC 6 0.57 7 0.05 6 0.05 6.8 0.11 6 1.03
0.05 51 26 LR 4 0.44 4 0.04 5 0.05 4.4 0.07 4 0.79
0.05 51 26 RC 6 0.58 7 0.06 7 0.05 6.2 0.12 6 1.14
0.05 51 26 RR 5 0.38 5 0.04 5 0.05 5 0.08 5 0.94
0.1 51 26 LC 4 0.49 5 0.05 4 0.05 4 0.09 4 1.32
0.1 51 26 LR 3 0.32 3 0.04 3 0.04 3 0.06 3 1.17
0.1 51 26 RC 4 0.42 4 0.05 4 0.05 4 0.07 4 1.30
0.1 51 26 RR 3 0.31 3 0.04 3 0.05 3 0.06 3 1.17

0.01 152 231 LC 60 27.34 63.8 3.48 60.8 2.76 58 15.34 59.4 16.77
0.01 152 231 LR 33 20.84 33.6 2.10 33.2 1.66 33 6.56 33 7.85
0.01 152 231 RC 57 27.33 61.2 3.48 58.2 2.66 55.6 14.90 56.8 14.16
0.01 152 231 RR 37.2 18.71 38.4 2.32 38 1.83 37.4 8.03 37 9.99

0.025 152 231 LC 28.4 23.36 30.2 2.67 28.6 1.55 28.2 7.63 28.2 12.28
0.025 152 231 LR 17 9.76 17 1.71 18 1.08 17.4 3.48 17.2 6.57
0.025 152 231 RC 28.4 24.05 29.4 2.74 29 1.57 27.4 7.99 27.6 10.31
0.025 152 231 RR 17.6 8.25 18 1.87 18 1.08 18 3.71 17.6 5.80
0.05 152 231 LC 18.2 12.46 18.4 2.49 18 1.16 18 5.49 18.2 10.12
0.05 152 231 LR 11 5.91 12 1.78 11 0.88 11 2.61 11 5.60
0.05 152 231 RC 17.4 11.59 17.2 2.66 17 1.13 16.4 5.12 17.4 11.03
0.05 152 231 RR 10.6 5.90 11 1.73 10 0.89 11 2.41 10.4 5.93
0.1 152 231 LC 11 7.48 11 2.38 11 0.92 10.4 3.09 10.8 10.37
0.1 152 231 LR 7 3.79 7 1.85 7 0.85 6.6 1.81 6.6 8.17
0.1 152 231 RC 10.2 6.90 10 2.65 10.4 0.96 10.4 3.48 11 8.80
0.1 152 231 RR 6.8 4.03 7 1.98 7 0.94 7 1.68 7 6.44

0.01 225 506 LC 80.4 76.31 83.8 14.84 80.6 10.04 77.4 46.15 78 45.95
0.01 225 506 LR 43 66.10 43.8 7.81 43.6 5.75 42.8 17.80 43 20.22
0.01 225 506 RC 76.6 85.52 81.6 14.93 77.6 9.68 75.2 44.06 75.8 36.30
0.01 225 506 RR 41 75.33 42.2 7.70 43.8 5.71 40.6 17.16 41.2 19.18

0.025 225 506 LC 39.2 84.69 41 11.60 40.4 5.77 38.4 22.44 40 23.32
0.025 225 506 LR 21.6 36.93 21.6 6.28 24 3.56 21.4 9.34 21.2 14.93
0.025 225 506 RC 38.6 69.64 40 11.67 39.2 5.69 37.8 22.60 38.4 27.07
0.025 225 506 RR 22 40.10 22.4 6.64 22 3.48 22 9.96 22.4 14.51
0.05 225 506 LC 24.8 35.29 24.2 10.56 24 4.08 23.8 15.34 24.8 25.49
0.05 225 506 LR 13.8 18.42 14 6.40 14 2.67 14 6.91 14.2 13.99
0.05 225 506 RC 23.8 35.06 23.8 11.03 24 4.14 23.4 15.23 24.2 23.74
0.05 225 506 RR 13.6 20.32 14 6.82 14 2.96 13.6 6.57 14 11.53
0.1 225 506 LC 14.8 24.09 14.8 10.16 15 3.18 14.8 9.57 15 23.66
0.1 225 506 LR 9 12.47 9 6.56 10 2.59 8.8 4.58 8.8 16.61
0.1 225 506 RC 14.8 20.02 14.8 11.32 15 3.49 15 9.85 15.4 25.19
0.1 225 506 RR 8.2 12.39 9 6.94 9 2.88 9 4.45 8.6 15.66

0.005 400 1600 LC 208 850.06 227.4 197.38 215 158.54 205 351.47 205.4 173.08
0.005 400 1600 LR 93.2 634.82 97.8 83.38 96 73.69 92.8 133.58 92.6 94.12
0.005 400 1600 RC 215.4 911.50 234.8 202.72 218.2 160.72 214 382.73 214 187.73
0.005 400 1600 RR 97.2 584.54 102.8 88.88 101.6 78.11 97.4 137.81 98.6 88.22
0.01 400 1600 LC 136.2 680.22 144.2 164.80 138.2 106.07 134.2 256.08 135 175.40
0.01 400 1600 LR 58.4 531.47 59 66.06 61.6 49.67 57 77.76 59.4 64.93
0.01 400 1600 RC 135.6 623.13 143.2 165.41 138 106.02 134.2 256.83 135.2 136.65
0.01 400 1600 RR 60.8 517.35 62.4 69.92 62.8 50.19 60 86.63 60.8 76.98

0.025 400 1600 LC 68.6 396.31 69 124.49 68.6 58.43 66.2 125.77 69 111.35
0.025 400 1600 LR 31.2 219.89 31 55.23 31.4 28.53 30 46.27 31.4 52.32
0.025 400 1600 RC 67.8 384.34 67.8 124.21 67.6 57.77 67.4 128.47 67.6 106.38
0.025 400 1600 RR 32 232.73 32 57.62 32.6 29.47 32 47.94 32.2 52.83
0.05 400 1600 LC 40.8 206.09 41 113.74 41 39.38 41.8 86.25 42 92.62
0.05 400 1600 LR 18 94.46 18 50.57 18 19.90 18.8 28.77 19 46.20
0.05 400 1600 RC 40.2 233.07 40 115.06 40 39.48 41 84.65 41.2 96.07
0.05 400 1600 RR 19.2 112.46 20 55.32 20 21.76 20 31.15 20.6 52.82
0.1 400 1600 LC 25 162.27 24.8 108.91 25 28.86 25.8 56.68 27.6 79.57
0.1 400 1600 LR 11 55.13 11 48.59 11 16.72 11.8 18.82 11.6 48.34
0.1 400 1600 RC 24 179.11 24 111.24 24.2 29.53 25.2 54.15 26.6 88.78
0.1 400 1600 RR 12 55.07 12 57.27 12 19.75 12.2 20.04 12.6 56.63

Average runtime 134.29 sec. 35.16 sec. 19.86 sec. 43.26 sec. 37.52 sec.

Table 9.B.1. Heuristic results on TSPLib-based datasets. n is the number of nodes, m is the
number of labels, d is the density, lbl is the average number of labels returned by a heuristic,
bst is the best number of labels returned by a heuristic over the 5 modeling runs, and sec is the
average runtime in seconds of a heuristic.

Comparison of Heuristics for Solving the GMLST Problem 207

Datafile IDP RMVCA RRI MGA IPC
d n m type lbl sec lbl sec lbl sec lbl sec lbl sec

0.04 50 10 SW 6.4 0.73 6.8 0.02 6.4 0.04 6.4 0.08 6.4 1.23
0.04 50 55 SW 18.6 1.44 18.76 0.13 18.6 0.14 18.64 0.27 18.6 1.68
0.04 50 100 SW 23.52 1.68 23.6 0.28 23.6 0.23 23.6 0.87 23.48 1.93
0.06 50 10 SW 3.6 0.44 3.6 0.01 3.6 0.02 3.6 0.05 3.6 0.96
0.06 50 55 SW 10.8 0.76 11 0.10 11.16 0.10 10.96 0.16 10.88 1.23
0.06 50 100 SW 14.32 0.98 14.52 0.20 14.4 0.16 14.24 0.50 14.24 1.37
0.08 50 10 SW 2.6 0.36 2.8 0.01 2.6 0.02 2.6 0.04 2.6 0.94
0.08 50 55 SW 7.8 0.54 7.8 0.09 7.92 0.08 7.8 0.11 7.8 1.02
0.08 50 100 SW 11 0.80 11.4 0.17 11.2 0.14 11.12 0.39 11.08 1.26

0.1 50 10 SW 2.2 0.31 2.4 0.02 2.6 0.02 2.2 0.04 2.2 1.04
0.1 50 55 SW 6.08 0.50 6.6 0.08 6.4 0.07 6.16 0.10 6.08 0.98
0.1 50 100 SW 9.4 0.72 9.4 0.16 9.4 0.13 9.4 0.31 9.4 1.15

0.04 100 10 SW 3 1.22 3 0.05 3 0.05 3 0.31 3 2.08
0.04 100 55 SW 10 2.36 10.96 0.23 10.2 0.20 10.2 0.94 10.12 2.64
0.04 100 100 SW 14 3.28 14.88 0.42 14.2 0.34 14.04 1.32 14.2 3.19
0.06 100 10 SW 2.4 0.96 2.6 0.05 2.4 0.05 2.4 0.29 2.4 2.52
0.06 100 55 SW 7 1.66 7.4 0.23 7.8 0.18 7.08 0.72 7 2.35
0.06 100 100 SW 10.08 2.13 10.4 0.40 10.24 0.28 10.16 1.00 10.08 2.67
0.08 100 10 SW 2 0.93 2 0.05 2 0.06 2 0.26 2 2.92
0.08 100 55 SW 5.24 1.45 6 0.23 6 0.17 5.32 0.55 5.2 2.37
0.08 100 100 SW 8 1.89 8.2 0.40 8.12 0.27 8.04 0.85 8 2.63

0.1 100 10 SW 1.8 0.70 1.8 0.06 1.8 0.06 1.8 0.26 1.8 3.41
0.1 100 55 SW 4.64 1.23 4.8 0.23 4.8 0.17 4.76 0.51 4.6 2.54
0.1 100 100 SW 6.68 1.63 7 0.40 7 0.26 6.76 0.73 6.6 2.71

0.04 200 10 SW 2 3.51 2 0.19 2 0.16 2 0.95 2 6.15
0.04 200 55 SW 6.6 5.49 7 0.81 6.8 0.43 6.76 2.53 6.68 5.70
0.04 200 100 SW 10.04 8.14 10.6 1.39 10.4 0.67 10.2 3.74 10.16 6.45
0.06 200 10 SW 1.8 2.36 1.8 0.20 1.8 0.20 1.8 0.92 1.8 8.57
0.06 200 55 SW 5 4.37 5.2 0.86 5 0.46 5 1.96 5 5.85
0.06 200 100 SW 7.04 6.24 7.4 1.41 7.8 0.67 7.16 2.75 7 7.09
0.08 200 10 SW 1 0.01 1 0.21 1 0.20 1 0.47 1 5.98
0.08 200 55 SW 4 3.86 4 0.91 4 0.55 4 1.66 4 6.43
0.08 200 100 SW 5.96 4.79 6 1.49 6 0.71 5.96 2.28 5.92 6.95

0.1 200 10 SW 1 0.01 1 0.21 1 0.23 1 0.48 1 7.53
0.1 200 55 SW 3 3.42 3.4 0.93 3.6 0.63 3.04 1.39 3 7.53
0.1 200 100 SW 5 4.42 5.2 1.53 5 0.84 5 2.04 5 7.53

0.04 400 10 SW 1 0.04 1 0.76 1 0.71 1 1.75 1 13.50
0.04 400 55 SW 4.88 15.37 5 3.55 5 1.74 4.96 7.73 4.8 17.73
0.04 400 100 SW 7 22.58 7 5.95 7.2 2.20 7 10.51 7.04 18.62
0.06 400 10 SW 1 0.03 1 0.80 1 0.83 1 1.85 1 0.05
0.06 400 55 SW 3.08 12.71 3.6 3.74 3.4 2.34 3.28 6.02 3.12 23.46
0.06 400 100 SW 5 17.13 5.2 6.30 5 2.90 5 8.09 5.04 22.36
0.08 400 10 SW 1 0.03 1 0.81 1 0.90 1 1.84 1 0.06
0.08 400 55 SW 3 11.48 3 3.86 3 2.89 3 5.46 3 27.28
0.08 400 100 SW 4 15.49 4 6.44 4 3.61 4 6.88 4 27.20

0.1 400 10 SW 1 0.04 1 0.89 1 1.01 1 1.98 1 0.08
0.1 400 55 SW 2 11.25 2.2 4.05 2.2 3.24 2 4.08 2 31.68
0.1 400 100 SW 3.48 14.15 4 6.72 3.6 4.26 3.68 6.84 3.4 35.00

0.04 800 10 SW 1 0.13 1 3.23 1 3.36 1 7.21 1 0.11
0.04 800 55 SW 3 49.93 3 15.56 3 10.22 3 20.93 3 58.23
0.04 800 100 SW 4.72 65.00 5 26.83 5 13.18 4.84 32.32 4.92 58.23
0.06 800 10 SW 1 0.14 1 3.60 1 3.85 1 8.07 1 0.16

Average runtime 5.98 seconds 2.06 seconds 1.27 seconds 3.14 seconds 8.89 seconds

Table 9.B.2. Heuristics results on Small-World datasets. n is the number of nodes, m is the
number of labels, d is the density, lbl is the average number of labels returned by a heuristic, bst
is the best number of labels returned by a heuristic over the 5 modeling runs for each of the 5
instances considered, and sec is the average runtime in seconds of a heuristic.

208 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

Xiong, Yupei, Golden, Bruce, and Wasil, Edward (2006). Improved heuristics for the minimum
label spanning tree problem. IEEE Transactions on Evolutionary Computation, 10(1):700–
703.

