Surgery theory today —
what it is and where it’s going

Jonathan Rosenberg*

Introduction

This paper is an attempt to describe for a general mathematical audience
what surgery theory is all about, how it is being used today, and where it
might be going in the future. I have not hesitated to express my personal
opinions, especially in Sections 1.2 and 4, though I am well aware that
many experts would have a somewhat different point of view. Why such
a survey now? The main outlines of surgery theory on compact manifolds
have been complete for quite some time now, and major changes to this
framework seem unlikely, even though better proofs of some of the main
theorems and small simplifications here and there are definitely possible.
On the other hand, when it comes to applications of surgery theory, there
have been many important recent developments in different directions, and
as far as I know this is the first attempt to compare and contrast many of
them.

To keep this survey within manageable limits, it was necessary to leave
out a tremendous amount of very important material. So I needed to come
up with selection criteria for deciding what to cover. I eventually settled
on the following:

1. My first objective was to get across the major ideas of surgery theory
in a non-technical way, even if it meant skipping over many details and
definitions, or even oversimplifying the statements of major theorems.

2. My second objective was to give the reader some idea of the many
areas in which the theory can be applied.

Mathematics Subject Classifications (2000): Primary 57-02. Secondary 57R65,
57R67, 57TR91, 57N65, 53C21.
*Partially supported by NSF Grant # DMS-96-25336 and by the General Research
Board of the University of Maryland.
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3. Finally, in the case of subjects covered elsewhere (and more expertly)
in these volumes, I included a pointer to the appropriate article(s)
but did not attempt to go into details myself.

I therefore beg the indulgence of the experts for the fact that some topics
are covered in reasonable detail and others are barely mentioned at all.
I also apologize for the fact that the bibliography is very incomplete, and
that I did not attempt to discuss the history of the subject or to give proper
credit for the development of many important ideas. To give a complete
history and bibliography of surgery would have been a very complicated
enterprise and would have required a paper at least three times as long as
this one.

I would like to thank Sylvain Cappell, Karsten Grove, Andrew Ranicki,
and Shmuel Weinberger for many helpful suggestions about what to include
(or not to include) in this survey. But the shortcomings of the exposition
should be blamed only on me.

1 What is surgery?

1.1 The basics

Surgery is a procedure for changing one manifold into another (of the same
dimension n) by excising a copy of S”x D™ " for some r, and replacing it by
Dr+1x §7~m=1 which has the same boundary, S™ x S»~"~!. This seemingly
innocuous operation has spawned a vast industry among topologists. Our
aim in this paper is to outline some of the motivations and achievements
of surgery theory, and to indicate some potential future developments.

The classification of surfaces is a standard topic in graduate courses,
so let us begin there. A surface is a 2-dimensional manifold. The basic
result is that compact connected oriented surfaces, without boundary, are
classified up to homeomorphism by the genus g (or equivalently, by the
Euler characteristic x = 2—2g). Recall that a surface of genus g is obtained
from the sphere S? by attaching g handles. The effect of a surgery on
S0 x D? is to attach a handle, and of a surgery on S x D! is to remove
a handle. (See the picture on the next page.) Thus, from the surgery
theoretic point of view, the genus g is the minimal number of surgeries
required either to obtain the surface from a sphere, or else, starting from the
given surface, to remove all the handles and reduce to the sphere S2. There
is a similar surgery interpretation of the classification in the nonorientable
case, with S? replaced by the projective plane RP2.
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surface

Figure 1. Surgery on an embedded S° x D2

In dimension n = 2, one could also classify manifolds up to homeo-
morphism by their fundamental groups, with 2¢g the minimal number of
generators (in the orientable case). But for every n > 4, every finitely pre-
sented group arises as the fundamental group of a compact n-manifold.!
It is not possible to classify finitely presented groups. Indeed, the problem
of determining whether a finite group presentation yields the trivial group
or not, is known to be undecidable. Thus there is no hope of a complete
classification of all n-manifolds for n > 4. Nevertheless, in many cases it is
possible to use surgery to classify the manifolds within a given homotopy
type, or even with a fixed fundamental group (such as the trivial group).

Just as for surfaces, high-dimensional manifolds are built out of han-
dles. (In the smooth category, this follows from Morse theory [14]. In the
topological category, this is a deep result of Kirby and Siebenmann [11].)
Again, each handle attachment or detachment is the result of a surgery.
That is why surgery plays such a major role in the classification of mani-
folds. But since the same manifold may have many quite different handle
decompositions, one needs an effective calculus for keeping track of the ef-
fect of many surgeries. This is what usually goes under the name of surgery

I This fact is easy to prove using surgery. Suppose one is given a group presentation
(T1,..-,Tk | wW1,...,ws). Start with the manifold My = (S x SP~1) 4 ... # (St x
S™—1) (k factors), whose fundamental group is a free group on k generators z;. Then
for each word w; in the generators, represent this word by an embedded circle (this is
possible by the [easy] Whitney embedding theorem since n > 3). This circle has trivial
normal bundle since M; is orientable, so perform a surgery on a tube S x D™~ ! around
the circle to kill off w;. The restriction n > 4 comes in at this point since it means that
the copies of S”~2 introduced by the surgeries do not affect w1. The final result is an
n-manifold M with the given fundamental group.
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theory.

1.2

Successes

Surgery theory has had remarkable successes. Here are some of the high-
lights:

the discovery and classification of exotic spheres (see [107] and [94]);

the characterization of the homotopy types of differentiable manifolds
among spaces with Poincaré duality of dimension > 5 (Browder and
Novikov; see in particular [33] for an elementary exposition);

Novikov’s proof of the topological invariance of the rational Pontrja-
gin classes (see [110]);

the classification of “fake tori” (by Hsiang-Shaneson [82] and by Wall
[25]) and of “fake projective spaces” (by Wall [25], also earlier by
Rothenberg [unpublished] in the complex case): manifolds homotopy-
equivalent to tori and projective spaces;

the disproof by Siebenmann [11] of the manifold Hauptvermutung,
the [false] conjecture that homeomorphic piecewise linear manifolds
are PL-homeomorphic [21];

Kirby’s proof of the Annulus conjecture and the work of Kirby and
Siebenmann characterizing which topological manifolds (of dimension
> 4) admit a piecewise linear structure [11];

the characterization (work of Wall, Thomas, and Madsen [101]) of
those finite groups that can act freely on spheres (the “topological
space form problem” — see Section 3.5 below);

the construction and partial classification (by Cappell, Shaneson, and
others) of “nonlinear similarities” (see 3.4.5 below), that is, linear
representations of finite groups which are topologically conjugate but
not linearly equivalent;

Freedman’s classification of all simply-connected topological 4-mani-
folds, up to homeomorphism [63]. (This includes the 4-dimensional
topological Poincaré conjecture, the fact that all 4-dimensional ho-
motopy spheres are homeomorphic to S*, as a special case.) For a
survey of surgery theory as it applies to 4-manifolds, see [90].

the proof of Farrell and Jones [55] of topological rigidity of compact
locally symmetric spaces of non-positive curvature.
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The main drawback of surgery theory is that it is necessarily quite
complicated. Fortunately, one does not need to know everything about it
in order to use it for many applications.

1.3 Dimension restrictions

As we have defined it, surgery is applicable to manifolds of all dimensions,
and works quite well in dimension 2. The surgery theory novice is therefore
often puzzled by the restriction in many theorems to the case of dimension
> 5. In order to do surgery on a manifold, one needs an embedded prod-
uct of a sphere (usually in a specific homology class) and a disk. By the
Tubular Neighborhood Theorem, this is the same as finding an embedded
sphere with a trivial normal bundle. The main tool for constructing such
spheres is the [strong] Whitney embedding theorem [143], which unfortu-
nately fails for embeddings of surfaces into [smooth] 4-manifolds.? This is
the main source of the dimensional restrictions. Thus Smale was able to
prove the h-cobordism theorem in dimensions > 5, a recognition princi-
ple for manifolds, as well as the high-dimensional Poincaré conjecture, by
repeated use of Whitney’s theorem (and its proof). (See [15] for a nice
exposition.) The h-cobordism theorem was later generalized by Barden,
Mazur, and Stallings [88] to the s-cobordism theorem for non-simply con-
nected manifolds. This is the main tool, crucial for future developments,
for recognizing when two seemingly different homotopy-equivalent mani-
folds are isomorphic (in the appropriate category, TOP, PL, or DIFF). The
s-cobordism theorem is known to fail for 3-manifolds (where the cobordisms
involved are 4-dimensional), at least in the category TOP [39], and for 4-
manifolds, at least in the category DIFF (by Donaldson or Seiberg-Witten
theory). Nevertheless, Freedman ([63], [8]) was able to obtain remarkable
results on the topological classification of 4-manifolds by proving a version
of Whitney’s embedding theorem in the 4-dimensional topological cate-
gory, with some restrictions on the fundamental group. This in turn has
led [64] to an s-cobordism theorem for 4-manifolds in TOP, provided that
the fundamental groups involved have subexponential growth.

2The “easy” Whitney embedding theorem, usually proved in a first course on dif-
ferential topology, asserts that if M™ is a smooth compact manifold, then embeddings
are dense in the space of smooth maps from M into any manifold N™ of dimension
n > 2m + 1. The “hard” embedding theorem, which is considerably more delicate,
improves this by asserting in addition that any map M™ — N?™ is homotopic to an
embedding, provided that m # 2 and N is simply connected. This fails for smooth
manifolds when m = 2, since it is a consequence of Donaldson theory that some classes
in 72 of a simply connected smooth 4-manifold may not be represented by smoothly
embedded spheres. In fact, the “hard” embedding theorem also fails in the topological
locally flat category when m = 2.
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2 Tools of surgery

2.1 Fundamental group

The first topic one usually learns in algebraic topology is the theory of
the fundamental group and covering spaces. In surgery theory, this plays
an even bigger role than in most other areas of topology. Proper under-
standing of manifolds requires taking the fundamental group into account
everywhere. As we mentioned before, any finitely presented group is the
fundamental group of a closed manifold, but many interesting results of
surgery theory only apply to a limited class of fundamental groups.

2.2 Poincaré duality

Any attempt to understand the structure of manifolds must take into ac-
count the structure of their homology and cohomology. The main phe-
nomenon here is Poincaré[-Lefschetz] duality. For a compact oriented man-
ifold M™, possibly with boundary, this asserts that the cap product with
the fundamental class [M,0M] € H,(M,0M;Z) gives an isomorphism

HI(M;Z) = Hy_;(M,0M;Z) . (eq. 2.1)

This algebraic statement has important geometric content — it tells ho-
mologically how submanifolds of M intersect.

For surgery theory, one needs the generalization of Poincaré duality
that takes the fundamental group 7 into account, using homology and
cohomology with coefficients in the group ring Z=. Or for work with non-
orientable manifolds, one needs a still further generalization involving a
twist by an orientation character w : 7 — Z /2. The general form is similar
to that in equation (eq. 2.1): one has a fundamental class [M,0M] €
H,(M,0M;Z,w) and an isomorphism

HI(M; Zw) — H,_;(M,0M; Zm,w) . (eq. 2.2)

2.3 Hands-on geometry

One of Wall’s great achievements ([25], Chapter 5), which makes a general
theory of non-simply connected surgery possible, is a characterization of
when homology classes up to the middle dimension, in a manifold of di-
mension > 5, can be represented by spheres with trivial normal bundles.
This requires several ingredients. First is the Hurewicz theorem, which
says that a homology class in the smallest degree where homology is non-
trivial comes from the corresponding homotopy group, in other words, is
represented by a map from a sphere. The next step is to check that this
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map is homotopic to an embedding, and this is where [143] comes in. The
third step requires keeping track of the normal bundle, and thus leads us
to the next major tool:

2.4 Bundle theory

If X is a compact space such as a manifold, the m-dimensional real vector
bundles over X are classified up to isomorphism by the homotopy classes
of maps from X into BO(m), the limit (as k — 00) of the Grassmannian
of m-dimensional subspaces of R™**. Identifying bundles which become
isomorphic after the addition of trivial bundles gives the classification up to
stable isomorphism, and amounts to replacing BO(m) by BO = limBO(m).
This has the advantage that [X, BO], the set of homotopy classes of maps
X — BO, is given by I?_O(X ), a cohomology theory. A basic fact is that
if m exceeds the dimension of X, then one is already in the stable range,
that is, the isomorphism classification of rank-m bundles over X coincides
with the stable classification. Furthermore, if X is a manifold, then all
embeddings of X into a Euclidean space of sufficiently high dimension
are isotopic, by the [easy] Whitney embedding theorem, and so the normal
bundle of X (for an arbitrary embedding into a Euclidean space or a sphere)
is determined up to stable isomorphism. Thus it makes sense to talk about
the stable normal bundle, which is stably an inverse to the tangent bundle
(since the direct sum of the normal and tangent bundles is the restriction
to X of the tangent bundle of Euclidean space, which is trivial).

Now consider a sphere S” embedded in a manifold M™. If 2r < n, then
the normal bundle of S in M™ has dimension m = n —r > r and so is
in the stable range, and hence is trivial if and only if it is stably trivial.
Furthermore, since the tangent bundle of S” is stably trivial, this happens
exactly when the restriction to S™ of the stable normal bundle of M™ is
trivial. If 2r = n, i.e., we are in the middle dimension, then things are more
complicated. If M is oriented, then the Euler class of the normal bundle
of S™ becomes relevant.

2.5 Algebra

Poincaré duality, as discussed above in Section 2.2, naturally leads to the
study of quadratic forms over the group ring Zm of the fundamental group
m. These are the basic building blocks for the definition of the surgery ob-
struction groups L, (Zw), which play a role in both the existence problem
(when is a space homotopy-equivalent to a manifold?) and the classifi-
cation problem (when are two manifolds isomorphic?). For calculational
purposes, it is useful to define the L-groups more generally, for example, for
arbitrary rings with involution, or for certain categories with an involution.
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The groups that appear in surgery theory are then important special cases,
but are calculated by relating them to the groups for other situations (such
as semisimple algebras with involution over a field). In fact the surgery
obstruction groups for finite fundamental groups have been completely cal-
culated this way, following a program initiated by Wall (e.g., [136]). For
more details on the definition and calculation of the surgery obstruction
groups by algebraic methods, see the surveys [118] and [80].

Algebra also enters into the theory in one more way, via Whitehead
torsion (see the survey [106]) and algebraic K-theory. The key issue here is
distinguishing between homotopy equivalence and simple homotopy equiv-
alence, the kind of homotopy equivalence between complexes that can be
built out of elementary contractions and expansions. These two notions co-
incide for simply connected spaces, but in general there is an obstruction to
a homotopy equivalence being simple, called the Whitehead torsion, living
in the Whitehead group Wh(w) of the fundamental group 7 of the spaces
involved.? This plays a basic role in manifold theory, because of the basic
fact that if M™ is a manifold with dimension n > 5 and fundamental group
m, then any element of Wh(w) can be realized by an h-cobordism based on
M, in other words, by a manifold W"*+! with two boundary components,
one of which is equal to M, such that the inclusion of either boundary
component into W is a homotopy equivalence. In fact, this is just one
part of the celebrated s-cobordism theorem [88], which also asserts that
the h-cobordisms based on M, up to isomorphism (diffeomorphism if one
is working with smooth manifolds, homeomorphism if one is working with
smooth manifolds), are in bijection with Wh(7) via the Whitehead torsion
of the inclusion M™ — W™*tl. The identity element of Wh(w) of course
corresponds to the cylinder W = M x [0,1]. By the topological invari-
ance of Whitehead torsion [43], any homeomorphism between manifolds
is necessarily a simple homotopy equivalence, so Wh(x) is related to the
complexity of the family of homeomorphism classes of manifolds homotopy
equivalent to M. In addition, the Whitehead group is important for un-
derstanding “decorations” on the surgery obstruction groups, a technical
issue we won’t attempt to describe here at all.

2.6 Homotopy theory

Homotopy theory enters into surgery theory in a number of different ways.
For example it enters indirectly via bundle theory, as indicated in Section
2.4 above. More interestingly, it turns out that surgery obstruction groups
can be described as the homotopy groups of certain infinite loop spaces,

3The Whitehead group Wh(r) is defined to be the abelianization of the general linear
group GL(Z7) = imGL(n, Z), divided out by the “uninteresting” part of this group,
generated by the units &1 € Z and the elements of =.
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related to classifying spaces such as G/O, the study of which becomes
important in the most comprehensive approaches to the subject. For this
point of view, see [13], [19], [21], and [26].

2.7 Analysis on manifolds

While surgery theory in principle provides an algebraic scheme for classi-
fying manifolds, it is rarely sufficiently explicit so that one can begin with
pure algebra and deduce interesting geometric consequences. Usually one
has to use the correspondence between geometry and algebra in both direc-
tions. One way of using the geometry is through analysis, more specifically,
the index theory of certain geometrically defined elliptic differential oper-
ators, such as the signature operator. For details of how this matches up
with surgery theory, see [121] and [120].

2.8 Controlled topology

Another tool which is not needed for the “classical” theory of surgery, but
which is playing an increasingly important role in current work, is con-
trolled topology, by which we mean topology in which one keeps track of
“how far” things are allowed to move. This idea, introduced into surgery
theory by Chapman, Ferry, and Quinn, has played an important role in the
work of many surgery theorists, and is especially important in dealing with
non-compact manifolds. But as an example of how it can be applied to
compact manifolds, suppose one has a homeomorphism h: M — M2 be-
tween compact smooth manifolds, and one wants to know how the smooth
invariants (for example, the Pontrjagin classes) of the two manifolds M;
and M» can differ from one another. One way of approaching this, which
can be used to prove Novikov’s theorem that h* preserves rational Pontr-
jagin classes, is to observe that we can approximate h as well as we like by
a smooth map h'. Now h' will not necessarily be invertible in DIFF (other-
wise M and M, would be diffeomorphic), but it is a homotopy equivalence.
In fact, given € > 0, we can choose h' and k and homotopies from ko b’ to
idps, and from k o ' to idps, which move points by no more than e (with
respect to choices of metrics). Or in other words, we can approximate h
by a controlled homotopy equivalence in the category DIFF. In the other
direction, in dimension n > 4, Chapman and Ferry showed that any con-
trolled homotopy equivalence is homotopic to a homeomorphism [44]. For
more on controlled surgery, see [59], [111], and [112].
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3 Areas of application

3.1 Classification of manifolds

The most important application of surgery theory, the one for which the
theory was invented, is the classification of manifolds and manifold struc-
tures. This begins with the existence problem for manifold structures:
when is a given finite complex X homotopy equivalent to a manifold? An
obvious prerequisite is that X satisfy Poincaré duality for some dimension
n, in the generalized sense of equation (eq. 2.2) above. When this is the
case, we call X an n-dimensional Poincaré space or Poincaré complex. This
insures that X has a “homotopy-theoretic stable normal bundle,” the Spi-
vak spherical fibration v. The Browder-Novikov solution to the existence
problem, as systematized in [25], then proceeds in two more steps. First
one must check if the Spivak fibration is the reduction of a genuine bundle
¢ (in the appropriate category, TOP, PL, or DIFF). If it isn’t, then X is
not homotopy equivalent to a manifold. If it is, then given £ reducing to
v, one finds by transversality a degree-one normal map (M,n) — (X,§),
in other words, a manifold M with stable normal bundle 7, together with
a degree-one map M — X covered by a bundle map 5 — £. The gad-
get (M,n) — (X&) is also called a surgery problem. One needs to check
whether it is possible to do surgery on M, keeping track of the bundle
data as one goes along, in order to convert M to a manifold N (simple)
homotopy equivalent to X. Here one needs an important observation of
Browder and Novikov (which follows easily from Poincaré duality): for a
degree-one map of Poincaré spaces, the induced map on homology is split
surjective. So it is enough to try to kill off the homology kernel. This is
done working up from the bottom towards the middle dimension, at which
point an obstruction appears, the surgery obstruction o((M,n) — (X,£))
of the surgery problem, which lies in the group L, (Z7), = the fundamental
group of X.

Uniqueness of manifold structures is handled by the relative version
of the same construction. Given a simple homotopy equivalence of n-
dimensional manifolds h: M — X, one must check if the stable normal
bundle of X pulls back under A to the stable normal bundle of M. If it
doesn’t, h cannot be homotopic to an isomorphism. If it does, M and N
are normally cobordant, and one attempts to do surgery on a cobordism
W™t between them in order to convert W to an s-cobordism (a cobordism
for which the inclusion of either boundary component is a simple homotopy
equivalence). Again a surgery obstruction appears, this time in L1 (Z7).
If the obstruction vanishes and we can convert W to an s-cobordism, the
s-cobordism theorem says that the map M — X is homotopic to an iso-
morphism (again, in the appropriate category). The upshot of this analysis
is best formulated in terms of the surgery exzact sequence of Sullivan and
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Wall,

oo 2> Ly (Zm) %> S(X) N(X) -2+ L,(Z7). (eq.3.1)

discussed in greater detail in [118] and [33]. This long exact sequence relates
three different items:

1. the structure set S(X) of the Poincaré complex X, which measures
the number of distinct manifolds (up to the appropriate notion of
isomorphism) in the simple homotopy class of X

2. normal data N (X), essentially measuring the possible characteristic
classes of the normal or the tangent bundle of manifolds in the simple
homotopy type of X; and

3. the Wall surgery groups L, (Z), depending only on the fundamental
group w of X and the dimension n (modulo 4) (plus the orientation
character w, in the non-orientable case).

The map o sends a surgery problem to its surgery obstruction. Note inci-
dentally that as S(X) is simply a set, not a group, the meaning of the exact
sequence is that for x € N (X), o(z) = 0 if and only if z € im (S(X)), and
w denotes an action of L,41(Zw) on S(X) such that if a, b € S(X), a and
b map to the same element of V' (X) if and only if there is a ¢ € L, 41 (Zm)
such that w(e,a) = b.

3.2 Similarities and differences between categories:
TOP, PL, and DIFF

At this point it is necessary to say something about the different categories
of manifolds. So far we have implicitly been working in the category DIFF
of smooth manifolds, since it is likely to be more familiar to most readers
than the categories TOP and PL of topological and piecewise linear mani-
folds. However, surgery works just as well, and in fact in some ways better,
in the other categories. We proceed to make this precise.

In the smooth category, except in low dimensions, most closed mani-
folds have non-trivial structure sets (or in other words, there are usually
plenty of non-diffeomorphic manifolds of the same homotopy type). This
phenomenon first showed up in the work of Milnor and Milnor-Kervaire
on exotic spheres (see [107], [94]). From the point of view of the surgery
exact sequence (eq. 3.1), it is due to the rather complicated nature of the
normal data term, N'(X) = [X, G/O], and its relationship with the J-
homomorphism BO — B@G.

In the piecewise linear category, things tend to be somewhat simpler,
as one can already see from looking at homotopy spheres. In the category
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DIFF, the homotopy spheres of a given dimension n > 4, up to isomor-
phism, form a finite abelian group ©,, under the operation of connected
sum #, and the order of ©, is closely related to the Bernoulli numbers.
(See [94] for more details.) But in the PL category, Smale’s proof [15] of
the h-cobordism theorem shows that all homotopy spheres of a fixed di-
mension n > 4 are PL isomorphic to one another. What accounts for this
is the “Alexander trick,” the fact that if two disks D™ are glued together
by a PL isomorphism of their boundaries, then one can extend the gluing
map (by linear rescaling) to all of one of the disks, and thus the resulting
homotopy sphere is standard. From the point of view of the exact se-
quence (eq. 3.1), we can explain this by noting that the normal data term
N(X) = [X, G/PL] is smaller than in the category DIFF. In fact, after
inverting 2, it turns out (a theorem of Sullivan) that G /PL becomes homo-
topy equivalent to a more familiar space, the classifying space BO for real
K-theory [13]. This fact is not obvious, of course; it is itself a consequence
of surgery theory.

In the category TOP of topological manifolds, the work of Kirby and
Siebenmann [11] makes it possible to carry over everything we have done
so far. In fact, their work shows that (in dimensions # 4), there is very
little difference between the categories PL and TOP. What difference there
is comes from Rochlin’s Theorem in dimension 4, which says that a smooth
(or PL) spin manifold of dimension 4 must have signature divisible by 16.
(For present purposes, we can define “spin” in the PL and TOP categories
to mean that the first two Stiefel-Whitney classes vanish.) In contrast, the
work of Freedman [63] shows there are closed spin 4-manifolds in TOP with
signature 8. This difference (between 8 and 16) accounts for a single Z /2
difference between the homotopy groups of BPL and BTOP: TOP/PL ~
K (Z/2,3). This turns out to be just enough of a difference to make surgery
work even better in TOP than in PL.

To explain this, we need not only the surgery obstruction groups, but
also the surgery spectra L(Z ), of which the surgery obstruction groups are
the homotopy groups. These spectra are discussed in detail in [19]; suffice
it to say here that they are constructed out of parameterized families of
surgery problems. Then the fact that surgery works so well in the category
TOP may be summarized by saying that in this category, the normal data
term N (X) is basically just the homology of X with coefficients in L(Z).
Furthermore, obstruction theory gives us a classifying map X < B for the
universal cover of X, and the obstruction map ¢ in the exact sequence (eq.
3.1) is the composite of ¢, with the map induced on homotopy groups by
an assembly map Bry ANI(Z) — L(Z7). This point of view then makes it
possible (when STOF (X) is non-empty) to view the structure set STOF (X)
as the zero-th homotopy group of still another spectrum, and thus to put a
group structure on STOF(X). (See [19], §18.) When this is done, w in the
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exact sequence (eq. 3.1) becomes a group homomorphism, and the whole
exact sequence becomes an exact sequence of abelian groups.

3.3 Immediate consequences

This is a good point to give some concrete examples of immediate conse-
quences of the surgery classification of manifolds. Some of these follow from
the general form of the theory, and do not require any specific calculations.
For example, we have (in any of the three categories DIFF, PL, and TOP):

Proposition 3.1 Suppose f: (M,n) — (X,&) is a surgery problem, that
is, a degree-one normal map, in any of the categories DIFF, PL, or TOP.
(Here M™ is a compact manifold and X™ is a Poincaré complex. We allow
the case where M and X have boundaries, in which case all constructions
are to be done rel boundaries.) Then the surgery obstruction of f xid: M x
CP?2 — X x CP? is the same as for f, and the surgery obstruction of
f xid: M x S¥ — X x S* vanishes for k > 1. In particular, if k > 1
andn+k > 5, then f xid: M x S¥ = X x S* is normally cobordant to
a simple homotopy equivalence, so X x S* has the simple homotopy type
of a compact manifold. And if n > 5 and f x id: M x CP? — X x CP?
is normally cobordant to a simple homotopy equivalence, then the same is
true for f.

Proof.  The first statement is the geometric meaning of the periodicity
of the surgery obstruction groups. The second statement is a special case
of a product formula for surgery obstructions, in view of the fact that all
signature invariants vanish for a sphere. But it can also be proved directly,
using surgery on f below the middle dimension and the fact that a sphere
has no homology except in dimension 0 and in the top dimension. (See
[33], §1, proofs of Propositions 1.2 and 1.4, for the trick.) O

Remark. The statement of Proposition 3.1 is false if we replace S*,
k > 1, by S'. The reason is that taking a product with S! has the effect*
of replacing the fundamental group m by 7 x Z, and simply shifting the
original surgery obstruction up by one in dimension.

Other simple examples of applications of the classification theory that
make use of a few elementary facts about G/O, etc., are the following;:

Theorem 3.2 Let CAT be DIFF or PL and let M™ be a closed CAT
manifold of dimension n > 5. Then there are only finitely many CAT
isomorphism classes of manifolds homeomorphic to M™.

4modulo a “decoration” nuance, which we’re ignoring here
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Remark. This is definitely false in dimension 4, as follows from Donaldson
theory or Seiberg-Witten theory.

Proof. The issue here is to look at the commutative diagram of exact
surgery sequences (the top sequence only of pointed sets, the bottom one,
as we’ve explained in §3.2, of groups)
NCAT(M x I; 8) == L1 (Zm) > SCAT(M) — NCAT(M) == Ly, (Zr)
NTOP(M x T; 8) % Lyy1(Zm) % STOP(M) — NTOF (M) > L, (Zr)

and to show that the preimage in S®AT (M) of the basepoint in STOF (M)
is finite. But the maps NCAT(M) — NTOP (M) and NCAT(M x I; 9) —
NTOP(M x I; ) are finite-to-one since M has finite homotopy type and
since the homotopy groups of TOP/CAT are finite (see §3.2 above). So the
result follows from diagram chasing. O

Proposition 3.3 For any n > 3, there are infinitely many distinct mani-
folds with the homotopy type of CP™ (in any of the categories DIFF, PL,
or TOP).

Proof. Fix a category CAT, one of DIFF, PL, or TOP. We need to show
that S(CP™) is infinite. Now Lg(Z) is Z in dimensions divisible by 4,
Z/2 in dimensions 2 mod 4, 0 in odd dimensions. Since the dimension
k of CP™ is even, Lgy1(Z) = 0 and S(CP™) can be identified with the
kernel (in the sense of maps of pointed sets) of the surgery obstruction map
o: N(CP") — Li(Z). Now (see §3.2 above for the topological category and
[139] for the argument needed to make this work smoothly as well) modulo

finite ambiguities, A'(CP™) is just KO(CP"), which has rank [2], and
o is given by the formula for the signature coming from the Hirzebruch
signature formula. If n > 4, then KO(CP") has rank bigger than 1, and
if n = 3, then Ly(Z) = Z /2 is finite. So in either case, the kernel of o is

infinite. O

3.4 Classification of group actions

Surgery theory is particularly useful in classifying and studying group ac-
tions on manifolds. Depending on what hypotheses one wants to impose,
one obtains various generalizations of the fundamental exact sequence (eq.
3.1) in the context of G-manifolds, G some compact Lie group. A few key
references are [34], [4], [17], [24], and Parts II and III of [26]. Many of the
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early references may also be found in §4.6 of [33]. While there is no room
here to go into great detail, we will discuss a few cases:

3.4.1 Free actions

If a compact Lie group G acts freely on a connected manifold M, then the
quotient space N = M /G is itself a manifold, and there is a fibration

G—>M— N.
Thus the fundamental group 7 of N fits into an exact sequence
m(G) > m (M) - 7 = m(G) = 1. (eq- 3.2)

Say for simplicity that we take G to be finite, so G = mo(G) and 71 (G) = 1.
One can attempt to classify the free actions of G on M by classifying such
group extensions (eq. 3.2), and then, for a fixed such extension, classifying
those manifolds N having M as the covering space corresponding to the
map m — G. Note that in this context there is a transfer map S(N) —
S(M) defined by lifting to the covering space. It will often happen that
there are many manifolds homotopy equivalent to N, but non-isomorphic
to it, that also have M as the covering space corresponding to G. Such
manifolds give elements of the kernel of this transfer map. In section 3.5
below, we shall have more to say about the important special case where
M is a sphere.

3.4.2 Semi-free actions

After free actions, the simplest actions of a compact group G on a manifold
M are those which are semi-free, that is, trivial on a submanifold M¢ and
free on M \ M. For such an action, the quotient space M/G is naturally
a stratified space with two manifold strata, the closed stratum MY and
the open stratum (M \ M%) /G. A discussion of this case from the point
of view of stratified spaces may be found in [26], §13.6. Here is a sample
result ([138], Theorem A) about semi-free actions of a finite group G: A
PL locally flat submanifold X" of S™** for k > 2 is the fixed set of an
orientation-preserving semifree PL locally linear G-action on S™t* if and
only if ¥ is a Z /|G| homology sphere, R¥ has a free linear representation
of G, and certain purely algebraically describable conditions hold for the
torsion in the homology of X.

3.4.3 Gap conditions

An annoying but sometimes important part of equivariant surgery theory
involves what are called gap conditions. When a compact group G acts
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on a manifold M, these are lower bounds on the possible values of the
codimension of MX in M for subgroups H C K of G for which MX #
MY Let’s specialize now to the case where G is finite. Roughly speaking,
there are three kinds of equivariant surgery theory:

1. Surgery without any gap conditions. This is very complicated and
not much is known about it.

2. Surgery with a “small” gap condition, the condition that no fixed set
component be of codimension < 3 in another. Such a condition is
designed to eliminate some fundamental group problems, due to the
fact that if A% has codimension 2 in M there is no way to control
the fundamental group of the complement M \ M¥. When MK
can have codimension 1 in M¥ | then things are even worse, since one
can’t even control the number of components of M# \ M¥,

3. Surgery with a “large” gap condition, the condition that each fixed
set have more than twice the dimension of any smaller fixed set.

For each of cases (2) and (3), there are analogues of the major concepts
of non-equivariant surgery theory: normal cobordism, surgery obstruction
groups, and a surgery exact sequence. However, there are several ways
to set things up, depending on whether one considers equivariant maps
(as in most references) or isovariant maps (equivariant maps that pre-
serve isotropy groups) as in [34], and depending on whether one tries to do
surgery up to equivariant homotopy equivalence (as in [3]) or only up to
pseudoequivalence (as in [2]). (A map is defined to be a pseudoequivalence
if it is equivariant and if, non-equivariantly it is a homotopy equivalence.)
The big advantage of the large gap condition is that when this condition
is satisfied, then one can show [46] that any equivariant homotopy equiva-
lence can be homotoped equivariantly to an isovariant one. For a detailed
study of the differences between gap conditions (2) and (3), see [140].

3.4.4 Differences between categories

In the context of group actions, the differences between different categories
of manifolds become more pronounced than in the non-equivariant situation
studied in §3.2 above. Aside from the smooth and PL categories, the most
studied category is that of topological locally linear actions, meaning actions
on topological manifolds M for which each point € M has a G,-invariant
neighborhood equivariantly homeomorphic to a linear action of G, on R™.
If one studies topological actions with no extra conditions at all, then
actions can be very pathological, and the fixed set for a subgroup can
be a completely arbitrary compact metrizable space of finite dimension.
In particular, it need not be a manifold, and need not even have finite
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homotopy type. Various properties of the smooth, PL, and topological
locally linear categories are discussed in [4], [24], [26], and [83]; they are
too complicated to discuss here.

3.4.5 Nonlinear similarity

One of the most dramatic applications of surgery to equivariant topology
(even though the original work on this problem only uses non-equivariant
surgery theory) is to the nonlinear similarity problem. This goes back to
an old question of de Rham: if G is a finite group and if p;: G — O(n),
p2: G — O(n) are two linear (orthogonal) representations of G on Eu-
clidean n-spaces V7 and Vs, respectively, does a topological conjugacy be-
tween p; and p» imply that the two representations are linearly equivalent?
Here a topological conjugacy means a homeomorphism h: V; — V5 conju-
gating p; to ps. If such a homeomorphism exists, it restricts to a home-

omorphism V(%) — V#2(9) 5o these two subspaces must have the same

dimension. Since we may compose with translation in V5 by h(0) € V.’ 2(G),

there is no loss of generality in assuming that hA(0) = 0. Now if such an
h were to exist and be a diffeomorphism, then the differential of h at the
origin would be an invertible linear intertwining operator between p; and
P2, S0 this problem is only interesting if we allow A to be non-smooth.

One special case is worthy of note: if G is cyclic, if R™ carries a G-
invariant complex structure, and if G acts freely on the complement of
the origin, then S™~!/p;(G) and S™~!/ps(G) are lens spaces, and so the
question essentially comes down to the issue of whether homeomorphic
lens spaces must be diffeomorphic. The answer is “yes,” as can be shown
using the topological invariance of simple homotopy type [43] together with
Reidemeister torsion [106]. The next important progress was made by
Schultz [125] and Sullivan (independently) and then by Hsiang-Pardon [81]
and Madsen-Rothenberg [100] (again independently). The upshot of this
work is that if |G| is of odd order, then topological conjugacy implies linear
conjugacy. Then in [38], Cappell and Shaneson showed that for G cyclic
of order divisible by 4, there are indeed examples of topological conjugacy
between linearly inequivalent representations. This work has been refined
over the last two decades, and a summary of some of the most recent work
may be found in [40].

While it would be impractical to go into much detail, we can at least
sketch some of the key ideas that go into these results. First let’s consider
the theorems that give constraints on existence of nonlinear similarities.
Suppose h: Vi — V5 is a topological conjugacy between representations
p1 and po, say with h(0) = 0 (no loss of generality). Then we glue to-
gether V1 and (V2 \ {0}) U {00}, using h to identify Vi \ {0} C Vi with
Vo \ {0} C (V2 \ {0}) U {oo}. The result is a copy of S™ equipped with a
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topological (locally linear) action of G and with p; as the isotropy represen-
tation at one fixed point (0 in V1), and p3, the contragredient of po, as the
isotropy representation at another fixed point (the point at infinity in V53).
Results such as those of Hsiang-Pardon and Madsen-Rothenberg can then
be deduced from a suitable version of the G-signature theorem applied to
this situation. (Of course, the classical G-signature theorem doesn’t apply
here, since the group action is not smooth, so proving such a G-signature
theorem is not so easy.) One convenient formulation of what comes out,
sufficient to give the Hsiang-Pardon and Madsen-Rothenberg results and
much more, is the following:

Theorem 3.4 ([123], Theorem 3.3) Let p be a finite-dimensional rep-
resentation of a finite group G, and let v € G be of order k. Define the
“renormalized Atiyah-Bott number” AB(~,p) to be 0 if —1 is an eigen-
value of p(y). If this is not the case, suppose that after discarding the
+1-eigenspace of p(7y), p(7y) splits as a direct sum of n; copies of counter-
clockwise rotation by 2mj/k, 0 < j < k, and define in this case

AB(v,p)= ] (gi) §

0<j<k

where ¢ = €™/*. Then the numbers AB(v,p), v € G, are oriented topo-
logical conjugacy invariants of p, and up to sign are topological conjugacy
invariants (even if one doesn’t require orientation to be preserved).

Next we’ll give a rough idea of how Cappell and Shaneson constructed
non-trivial nonlinear similarities between representations p; and ps of a
cyclic group G of order 4¢ with generator 7o, in the case where p;(7o) has
eigenvalue —1 with multiplicity 1 and all its other eigenvalues are primitive
4gth roots of unity. Let V; be the representation space on which p; acts.
Then V; has odd dimension 2k + 1, and we may write it as

R2k+1 o~ 0 U S2k_1 —]_ ]_ 0 U
{ } ( X [ , ] X ( 7w)) Sgk_lx{il}x(o,oo)

(D** x {~1,1} x (0,00)),

where the factor (0,00) at the end represents the radial coordinate. Here
p; acts by a free linear representation on S~  for which the quotient is a
lens space L; with fundamental group of order 4q, o acts by multiplication
by —1 on [—1,1], and -y acts trivially on (0,00). So the idea is to choose
L, and L so that they are homotopy equivalent but not diffeomorphic,
but so that their non-trivial double covers L;, which are lens spaces with
fundamental group of order 2¢, are isomorphic to one another. (This is
possible using the known classification theorems for lens spaces, as found
in [106] for example.) Then if E; denotes the non-trivial [—1,1]-bundle
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over L; (obtained by dividing S2*~! x [-1, 1] by the group action), one can
arrange for E; and E» to be h-cobordant. (This takes a pretty complicated
calculation. First one needs to make them normally cobordant, and then
one needs to show that the surgery obstruction to converting a normal
cobordism to an h-cobordism vanishes.) Then it turns out that E; and
E> become homeomorphic after crossing with (0, 00). Lifting back to the
universal covers, one gets equivariant homeomorphisms

Sk % [=1,1] x (0,00) = S~ x [~1,1] x (0, 00)

and
D?* x {=1,1} x (0,00) = D?** x {—1,1} x (0, 00),

which patch together to give the desired nonlinear similarity.

3.5 The topological space form problem

As we mentioned above, one of the successes of surgery theory is the clas-
sification of those finite groups G that can act freely on spheres. This
subject begins with the observation that if G acts freely on S™, then the
(Tate) cohomology groups of G must be periodic with period n + 1 ([42],
Chapter XVI, §9, Application 4). One of the great classical theorems on
cohomology of finite groups ([42], Chapter XII, Theorem 11.6) then says
that this happens (for some n) if and only if every abelian subgroup of G
is cyclic, or equivalently, if and only if every Sylow subgroup of G is either
cyclic or else a generalized quaternion group.

This then raises an obvious question. Suppose G has periodic cohomol-
ogy. Then does G act freely on a finite CW complex X with the homotopy
type of S™, and if so, can this space X be chosen to be S™ itself? The first
part of this question was answered by Swan [131], who showed that, yes,
G acts freely on a finite CW complex X with the homotopy type of S™.
The argument for this has nothing to do with surgery; rather, it requires
showing that the trivial G-module Z has a periodic resolution by finitely
generated free ZG-modules. (Initially, one only gets such a resolution by
finitely generated projective ZG-modules, so that it would appear that a
finiteness obstruction comes in (see [60]), but one can kill off the obstruction
at the expense of possibly increasing the period of the resolution.)

Then one has to determine if X can be taken to be a sphere. One case
is classical: if every subgroup of G of order pq (p and ¢ primes) is cyclic,
then it is known by a theorem of Zassenhaus that G acts freely and linearly
(and thus certainly smoothly) on some sphere [146]. Milnor [105] showed,
however, that in order for G to act freely on a manifold which is a homology
sphere (even in the topological category), it is necessary that all subgroups
of order 2p, p an odd prime, be cyclic rather than dihedral. The argu-
ment for this is remarkably elementary, and again doesn’t use surgery. An
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alternative argument using equivariant bordism and equivariant semichar-
acteristics, again fairly elementary, was given by R. Lee [98]. The point of
Lee’s proof is basically to show that if a closed oriented manifold M27+!
has as fundamental group the dihedral group G = Dy, of order p (p an odd
prime), then the formal sum, in an appropriate Grothendieck group, of the
G-modules Ho;(M?"t1; FG), F a suitable finite field of characteristic 2, if
non-zero, has to involve the non-abelian representations of G. This clearly
gives a contradiction if the universal cover of M is a homology sphere, since
then H,(M?"+1; FQG) is identified with the homology of a sphere, which
is only non-zero in bottom and top degree, and the action of G has to be
trivial.

The papers [134] and [101] then showed that the condition of Milnor
is sufficient as well as necessary for G to act smoothly and freely on a
sphere. The method of proof is to go back to Swan’s argument in [131] and
show that there is a simple Poincaré space with fundamental group G for
which the universal cover is (homotopy-theoretically) a sphere, and that
its Spivak fibration admits a PL bundle reduction [134], in fact, a smooth
bundle reduction [101]. Finally [101], the full power of Wall’s surgery theory
is used to show that the surgery obstruction vanishes, and thus that there is
a manifold with fundamental group G whose universal cover is a homotopy
sphere.

3.6 Algebraic theory of quadratic forms

While the main idea of surgery theory is usually to reduce manifold theory
to algebra, there are cases where it can be used in the opposite direction, to
obtain information about the theory of quadratic forms from geometry. We
give just one example. When 7 is an infinite group with some “non-positive
curvature” properties, for example, the fundamental group of a hyperbolic
manifold, then various geometrical or analytical techniques can be used to
prove the Novikov conjecture or sometimes even the Borel rigidity conjec-
ture for w. (See [61], [45], and [129] for surveys of the literature, which is
quite extensive.) This in turn, from the surgery exact sequence (eq. 3.1),
implies significant information about the stable classification of quadratic
forms over Z.

3.7 Submanifolds, fibrations, and embeddings

Surgery theory can deal not only with individual manifolds, but also with
questions concerning how one manifold can embed in another. There is
an extensive literature on such problems, but we will only mention a few
examples. For instance, suppose M is a manifold, and suppose that from
a homotopy point of view, M looks like the total space of a fibration F' —
M — B. Then can M be made into the total space of a genuine manifold
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fiber bundle with base and fiber homotopy equivalent to B and F? Or
suppose X — Y is a Poincaré embedding. That means that Y is a Poincaré
complex, say of dimension n, X is a Poincaré complex of dimension n — ¢
with a mapping to Y, and we have subspaces S C C C Y with the following
properties:

1. There is a spherical fibration S~ — § % X with S a Poincaré com-
plex of dimension n—1. (S is the homotopy analogue of the boundary
of a tubular neighborhood of a submanifold X in Y of codimension gq.
The map p corresponds to the retraction of this tubular neighborhood
onto the submanifold X.)

2. (C,S) is a Poincaré pair of dimension n. That is, C' has the Poincaré
duality properties of an n-dimensional manifold with boundary S.
The diagram

S——C——=Y

is homotopy commutative.

3. Up to simple homotopy equivalence, Y is the union of C' and the
mapping cylinder of p, joined along S. (The mapping cylinder of p
is the homotopy analogue of the closed tubular neighborhood of the
submanifold. This says that C plays the role of the complement of
an open tubular neighborhood of X in Y.)

Now suppose M is a manifold and h: M — Y is a homotopy equivalence.
Then can h be homotoped to a map A’ so that A’ *(X) is a genuine sub-
manifold N of M (of codimension ¢) and h' restricted to N is a homotopy
equivalence N — X? When this is the case, h is said to be splittable along
X.

There is an extensive literature on questions such as these but we con-
tent ourselves here with a few representative examples.

For the fiber bundle problem, the first case to be studied, but still one of
the most important, is whether a certain manifold fibers over S'. In other
words, one is given a compact manifold M™ and a map f: M™ — S with
f« surjective on 71, and one wants to know if one can change f within its
homotopy class to the projection map p of a fiber bundle N n=1 _ pn B
S'. The map f defines an infinite cyclic covering M — M, and if the
desired fiber bundle exists, then M must be isomorphic (in the appropriate
category) to N x R with NV a compact manifold. So first one must check if
the finiteness obstruction vanishes (so that Mis homotopically finite and is
equivalent to a finite Poincaré complex), and then one must solve a surgery
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problem to see if M can be realized as cylinder N x R. The solution to the
problem was found by Farrell ([50], [51]) (following earlier work by Browder
and Levine in the simply connected case), who found that if M is indeed
homotopically finite, the necessary and sufficient condition for a positive
solution to fiber bundle problem is the vanishing of a Whitehead torsion
obstruction in the Whitehead group of 1 (M).

For the splitting problem, there are essentially three cases.

1. When X is of codimension one, the issues involved are somewhat
similar to what arises in the problem of fibering over a circle, and the
key result (in the categories TOP and PL) is due to Cappell [36]. A
special case of this concerns the following question. Suppose M™ is
a closed manifold that looks homotopy-theoretically like a connected
sum. (Since we are assuming n > 2, that means in particular that
w1 (M) must be the free product of the fundamental groups of the
prospective summands.) Then does M have a splitting of the form
M = M;# M>? (This corresponds to the case where X = gn—1
and is “two-sided” and separating in Y.) Cappell discovered that
when n > 5, the answer to this question is not always “yes,” but
that the only obstruction to a positive answer is an algebraic one
related to the fundamental groups involved.’ The obstruction group
vanishes when 71 (M) has no 2-torsion, so in this case one indeed has
a splitting M = M; # M>. Incidentally, the dimension restriction is
necessary, for it follows from Donaldson theory that there are many
simply connected PL 4-manifolds (a K3 surface, for example) which
are homotopy theoretically connected sums, but which do not split
as connected sums in the PL category. (In dimension 4, the PL and
DIFF categories are equivalent.)

2. When X is of codimension two, the splitting problem is closely related
to the classification of knots; see [18], §§7.8-7.9, [22], and the survey
[96] in this collection for more details.

3. When X is of codimension 3 or more and Y is of dimension 5 or
more, the splitting problem always has a positive answer in the PL
category, provided that the obvious necessary condition (that X have
the simple homotopy type of a PL manifold) is satisfied, as shown by
Wall in [25], Corollary 11.3.1. In the smooth case one needs a little
more, since the spherical fibration S % X must come from a rank g
vector bundle, but the “expected results” are still true.

5In the category DIFF, the result is the same as long as one allows generalized
connected sums along a (possibly exotic) separating homotopy sphere.
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3.8 Detection on submanifolds

The study of submanifolds can also be turned around, and we can ask
to what extent surgery obstructions are determined by what happens on
submanifolds. This in turn is related to another problem: How much of the
Wall surgery groups L,,(Zw) arises from surgery obstructions of degree-one
normal maps between closed manifolds? To be more precise, the issue is
basically how much information about submanifolds of M is needed either

1. to compute the surgery obstruction of a surgery problem (N™,n) —
(M™ £), or how to best understand geometrically the obstruction
map o : N(M) — L,(Z);or

2. to determine when a class in S(M™) is trivial, or in other words, when

a homotopy equivalence N L VET homotopic to an isomorphism.

These issues often go under the general name of “oozing,” which is sup-
posed to suggest how simply connected surgery obstructions on submani-
folds “ooze up” to give obstructions on a larger manifold, not usually simply
connected.

The first major result along these lines was the characteristic variety
theorem of Sullivan (see Sullivan’s 1967 notes, republished in [21], pp. 69-
103). It says (roughly that the answer to question (2) can be formulated
in terms of simply connected surgery obstructions (signatures and Arf-
Kervaire invariants) to splitting along certain (possibly singular) submani-
folds of M. This theorem is also related to various formulas for character-
istic classes found in [109].

As far as question (1) is concerned, the basic question was whether
surgery obstructions can be computed from simply connected splitting ob-
structions on submanifolds of bounded codimension. For general funda-
mental groups this is certainly not the case (see [137]), but it was expected
by the experts (the “oozing conjecture”) that this would be the case for
manifolds with finite fundamental group. This issue has now been settled.
Codimension 2 manifolds do not suffice; Cappell and Shaneson [37] showed
that if M? is the usual quaternionic lens space (the quotient of S® by the
linear action of the quaternion group Qg of order 8) and K4+2 & g4k+2 ig
the “Kervaire problem” (a simply connected surgery problem representing
the generator of Lyg42(Z) 22 Z/2), then

o (M3 x KW%+2 6 0r3 o g442) £ 0 in Lyyy5(ZQs),

even though the obstruction here comes from the Arf invariant on the
codimension 3 manifold K*¥*2. But codimension 3 manifolds do suffice
([79], [103]).°

SFor those who know what this means: at least for the h decoration.
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3.9 Differential geometry

Surgery theory becomes especially interesting when applied to certain prob-
lems in differential geometry. We begin with Riemannian geometry. Recall
that a Riemannian metric on a manifold is a smoothly varying choice
of inner products on tangent spaces. This makes it possible to measure
lengths of curves, and thus to define geodesics (curves which locally mini-
mize length), and also to measure angles between intersecting curves. The
most important intrinsic geometric invariants of a Riemannian manifold
are those having to do with curvature. The sectional curvature of a Rie-
mannian manifold M (also called the Gaussian curvature if dim M = 2) at
a point p € M in the direction of some 2-plane P in the tangent space T, M
through p measures how the sum of the angles of a small geodesic triangle
differs from =, if one vertex of the triangle is at p, and the incident sides
there lie in the plane P. The Ricci curvature (which is a tensor) and scalar
curvature (the trace of the Ricci curvature) at p are then obtained from
various averages of the sectional curvatures there. As such, the standard
curvature invariants are defined locally, but global bounds on curvature
(for a closed or complete manifold) have implications for global topology.
We mention just a few prominent examples: the Gauss-Bonnet Theorem
for closed surfaces M, which says that [, K dA = 2r x(M), where K is
the Gaussian curvature, x(M) is the Euler characteristic, and dA is the
Riemannian area measure; Myers’ Theorem, that any complete manifold
of Ricci curvature > ¢ > 0 is closed and has finite fundamental group; the
Cartan-Hadamard Theorem, that any complete manifold of non-positive
sectional curvature is aspherical?, with universal cover diffeomorphic to
Euclidean space (and with covering map the exponential map from the
tangent space at a basepoint); and the generalized Gauss-Bonnet Theorem
of Chern and Allendoerfer, expressing the Euler characteristic as a multiple
of the integral of the Pfaffian of the curvature form. Global consequences
of positivity of the scalar curvature are discussed in [122].

3.9.1 Rigidity theorems for Riemannian manifolds

One place where surgery can be of particular help in Riemannian geometry
is in the study of rigidity theorems, results that say that two Riemannian
manifolds sharing a very specific geometric property must be homeomor-
phic, diffeomorphic, etc. Such theorems abound in Riemannian geometry.
Classical examples (proved without using surgery) are sphere theorems,
such as the fact that a complete simply connected manifold with sectional
curvature K satisfying % < K < 1 must be the union of two disks glued
together via a diffeomorphism of their boundaries, and thus a homotopy
sphere. Another famous examples is the Mostow Rigidity Theorem, which

TThat is, all its higher homotopy groups 7, j > 1, vanish.
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says that two irreducible locally symmetric spaces of dimension > 3 and
non-compact type, with finite volume and with isomorphic fundamental
groups, must be isometric to one another. Mostow’s Theorem helped to
motivate the Borel Conjecture, that two compact aspherical manifolds®
with isomorphic fundamental groups are homeomorphic.

Here is a brief [very incomplete] list of a number of rigidity theorems
proved using a combination of surgery theory and Riemannian geometry:

1.

the work of Farrell and Hsiang [52] on the Novikov Conjecture. This
was very influential in its time but has now been superseded by the
work of Farrell and Jones cited below.

Kasparov’s proof ([85], [86]) of the Novikov Conjecture for arbitrary
discrete subgroups of Lie groups. This has been improved by Kas-
parov and Skandalis [87] to give the Novikov Conjecture for “bolic”
groups, by weakening nonpositive curvature in Riemannian geometry
to a rough substitute in the geometry of metric spaces.

the work of Farrell and Jones ([5], [6]) on topological rigidity of man-
ifolds of nonpositive curvature. This includes for example:

Theorem 3.5 ([55]) Let M and N be closed aspherical topological
manifolds of dimensions # 3,4. If M is a smooth manifold with o
nonpositively curved Riemannian metric and if w1 (M) = w1 (N) is
an isomorphism, then this isomorphism is induced by a homeomor-
phism between M and N.

. the work of Farrell and Jones [54] on pseudoisotopies of manifolds of

nonpositive curvature. This gives substantial information about the
homotopy types of the diffeomorphism groups of these manifolds.

examples, constructed by Farrell and Jones ([53], [56], [57]), of man-
ifolds of nonpositive curvature which are homeomorphic but not dif-
feomorphic.

the theorem of Grove and Shiohama [76] that a complete connected
Riemannian manifold with dimension < 6, with sectional curvature
> 6 > 0 and with diameter > 7/ 24/, is diffeomorphic to a standard
sphere.

work of Grove-Peterson-Wu [75] (see also the work of Ferry [58]) show-
ing that for any integer n, any real number k£ and positive numbers D
and v, the class of closed Riemannian n-manifolds M with sectional

8Recall that locally symmetric spaces of non-compact type are included here, by the
Cartan-Hadamard Theorem.
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10.

11.

12.
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curvature Ky > k, diameter dp; < D and volume Vjs > v contains
at most finitely many homeomorphism types when n # 3, and only
finitely many diffeomorphism types if, in addition, n # 4. (There is
a similar result for manifolds with injectivity radius i5; > ig > 0 and
volume Vjs < wv.)

work of Ferry and Weinberger [62] growing out of work on the Novikov
Conjecture. This includes the very interesting result that if M™ is
an irreducible compact locally symmetric space of noncompact type
(with n > 4), then the natural forgetful map Diff(M) — Homeo(M)
has a continuous splitting.

the “packing radius” sphere theorem of Grove and Wilhelm [77], stat-
ing that for n > 3, a closed Riemannian n-manifold M with sectional
curvature > 1 and (n — 1)-packing radius > 7 is diffeomorphic to
sn.9

an improvement of the classical sphere theorem due to Weiss [142],
showing that if M™ is a complete simply connected manifold with
sectional curvature K satisfying % < K < 1, then not only is M
a homotopy sphere, but M has “Morse perfection n,” which rules
out some of the exotic sphere possibilities for M. See also [78] for
further developments. (In the other direction, Wraith [144] has con-
structed metrics of positive Ricci curvature on all homotopy spheres
that bound parallelizable manifolds. A few exotic spheres are known
to admit metrics of nonnegative sectional curvature (see [71], [119],
and work in progress by Grove and Ziller), but the sectional curva-
tures of the metrics constructed to date are not strictly positive, let
alone 1-pinched.)

work of Brooks, Perry, and Petersen [31] showing that given a se-
quence of isospectral manifolds of dimension n for which either all
the sectional curvatures are negative or there exists a uniform lower
bound on the sectional curvatures, then the sequence contains only
finitely many homeomorphism types, and if n # 4, at most finitely
many diffeomorphism types.

recent theorems of Belegradek [29] showing that in many cases, given
a group 7, an integer n larger than the homological dimension of ,
and real numbers ¢ < b < 0, there are only finitely many diffeo-
morphism types of complete Riemannian n-manifolds with curvature
a < K < b and fundamental group w. The manifolds involved here
are noncompact, and usually have infinite volume.

9The (n—1)-packing radius is defined to be half the maximum, over all configurations
of (n — 1) points in M, of the minimum distance between points.



Surgery theory today 29

What most of these references have in common is that a geometric as-
sumption, usually based on curvature bounds, is used to deduce some con-
sequences that, while sometimes rather technical and not always directly
interesting in themselves, can be plugged into the “surgery machine” to
deduce the desired rigidity theorem.

3.9.2 Surgery and positive scalar or Ricci curvature

Surgery enters into differential geometry in another somewhat different
way as well: through “surgery theorems” that say that under appropriate
hypotheses, a certain geometrical structure on one manifold may be trans-
ported via a surgery to some other manifold. In this subsection we will
discuss application of this principle to positive scalar or Ricci curvature, in
section 3.9.4 we will discuss conformal geometry, and in section 3.9.5 we
will discuss application to the study of symplectic or contact structures.

So far the most remarkable and useful surgery theorem is the theorem
of [73] and [124] regarding positive scalar curvature. (See also [122] for an
exposition and for a correction to one point in the Gromov-Lawson proof.)
This says that if M7 is a compact manifold (not necessarily connected)
with a Riemannian metric of positive scalar curvature, and if M3 can be
obtained from M; by surgery on a sphere of codimension > 3, then M,
can also be given a metric of positive scalar curvature. This result is so
powerful that, when combined with known index obstructions to positive
scalar curvature based on the Dirac operator, it has made complete classifi-
cation of the manifolds admitting positive scalar curvature metrics feasible
in many cases. See [122] for a detailed exposition.

In the case of positive Ricci curvature, a surgery theorem as general as
this could not be true, for surgery on S° < S results in a manifold with
infinite fundamental group, which cannot have a metric of positive Ricci
curvature by Myers’ Theorem. Nevertheless, there is no known reason
why surgery on a sphere of dimension > 1 and codimension > 3 in a
manifold of positive Ricci curvature cannot result in a manifold of positive
Ricci curvature, and in fact there is some positive evidence for this in
[126] and [145]. But Stolz in [130], based upon both heuristics of Dirac
operators on loop spaces and upon calculations with homogeneous spaces
and complete intersections, has conjectured that the Witten genus vanishes
for spin manifolds with positive Ricci curvature and with vanishing .10 If
this is the case, then Stolz has shown [130] that there are simply connected
closed manifolds with positive scalar curvature metrics but without metrics
of positive Ricci curvature, and thus a surgery theorem this general for
positive Ricci curvature cannot hold. So perhaps it should be necessary to

10For spin manifolds M, the first Pontrjagin class p; is always divisible by 2, and there
is an integral characteristic class &L € H 4(M;2) which when multiplied by 2 gives p1.



30 Jonathan Rosenberg

restrict to surgeries of some greater codimension.

3.9.3 Surgery and the Yamabe invariant

The problem of prescribing scalar curvature on a manifold also has a quan-
titative formulation in terms of the so-called Yamabe invariant. If M™ is
a closed manifold and we fix a Riemannian metric g on M, then by the
solution of the Yamabe problem, it is always possible to make a (pointwise)
conformal change in the metric, i.e., to multiply g by a positive real-valued
function, so as to obtain a metric with constant scalar curvature and total
volume 1. The minimum possible value of the scalar curvature of such a
metric is an invariant of the conformal class of the original metric, known as
the Yamabe constant of the conformal class. The Yamabe invariant Y (M)
of M is then defined as the supremum, taken over all conformal classes of
metrics on M, of the various Yamabe constants. It is bounded above by a
universal constant depending only on n, namely n(n—1)(vol S*(1))%/" (the
scalar curvature of a round n-sphere of unit volume), and is closely related
to the question of determining what real-valued functions can be scalar
curvatures of Riemannian metrics on M with volume 1 [92]. Note that
Y (M) > 0if and only if M admits a metric of positive scalar curvature. It
is known that “most” closed 4-manifolds have negative Yamabe invariant
[95]. In a counterpart to the surgery theorem of [73] and [124], it is shown
in [115] that if M’ can be obtained from M by surgeries in codimension
>3andif Y(M) <0, then Y(M') > Y (M). This fact has been applied in
[113] to obtain exact calculations of Y (M) for some 4-manifolds M, and in
[114] to show that Y (M) > 0 for every simply connected closed n-manifold
M™ with n > 5.

3.9.4 Surgery and conformal geometry

A conformal structure on manifold M™ is an equivalence class of Rieman-
nian structures, in which two metrics are identified if angles (but not nec-
essarily distances) are preserved. For oriented 2-manifolds, this is the same
thing as a complex analytic structure. A conformal structure is called con-
formally flat if each point in M has a neighborhood conformally equivalent
to Euclidean n-space R™. (This is true for the standard round metric on
8™, for example.) An immersion M™ 9+ R*t* is called conformally flat if
the standard flat metric on R*** pulls back to a conformally flat struc-
ture on M. One of the important problems in conformal geometry is the
classification of conformally flat manifolds and conformally flat immersions
into Euclidean space. For immersions of hypersurfaces, i.e., immersions in
codimension k = 1, a complete classification has been given (begun in [93],
completed in [41]) using the idea of conformal surgery. The final result is:
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Theorem 3.6 ([41]) A compact connected manifold M™ has a conformal
immersion into R"! 4if and only if M can be obtained from S™ by adding
finitely many 1-handles, i.e., by doing surgery on a finite set of copies of
SO in S™. In particular, any such M has free fundamental group.

3.9.5 Surgery and symplectic and contact structures

A symplectic structure on an even-dimensional manifold M?2™ is given by a
closed 2-form w such that w® = w Aw A --- Aw (n factors) is everywhere
non-zero, i.e., is a volume form. A contact structure on an odd-dimensional
manifold M2"*! is a maximally non-integrable subbundle ¢ of T M of codi-
mension 1, and thus is locally given by & = ker «, where « is a 1-form such
that a A (da)™ is a volume form. Symplectic and contact structures arise
naturally in classical mechanics, and there is a close link between them.

The problem of determining what manifolds admit symplectic or con-
tact structures is not so easy, though there are some obvious necessary
conditions. If M2™ is a closed connected manifold which admits a symplec-
tic form w, then if [w] € H?(M;R) denotes its de Rham class, [w]™ must
generate H2"(M;R) = R. In particular, M is oriented, and w gives a re-
duction of the structure group of TM from GL(2n,R) to Sp(2n,R), which
has maximal compact subgroup U(n); thus w defines an isomorphism class
of almost complex structures J on M. The most familiar examples of sym-
plectic manifolds are Kahler, in other words, admit a Riemannian metric
g and an integrable (and parallel) almost complex structure J for which
w(X,Y) = g(JX,Y) for all vector fields X and Y. However, it is known
that there are plenty of symplectic manifolds without K&hler structures
[135]. A promising line of attack in constructing symplectic structures is
therefore to start with the standard examples and try construct new ones
using fiber bundles, “blow-ups,” and surgery methods. (See [102] for a
detailed exposition.) In particular, “symplectic surgery” has been studied
in [70] and [132]. With it Gompf has proved [70] that every finitely pre-
sented group is the fundamental group of a compact symplectic 4-manifold,
even though there are constraints on the fundamental groups of Kahler
manifolds. It is not always possible to put a symplectic structure on the
connected sum of two symplectic manifolds, since in dimension 4, Taubes
[133] has shown using Seiberg-Witten theory that a closed symplectic man-
ifold cannot split as a connected sum of two manifolds each with b > 0.
Gompf’s “symplectic connected sum” construction is therefore somewhat
different: if M2", M2", and N2"~2 are symplectic and one has symplectic
embeddings N — M;, N — M, whose normal bundle Euler classes are
negatives of one another, then Gompf’s M; # M, is obtained by joining
the complements of tubular neighborhoods of N in M; and in M, along
their common boundary (a sphere bundle over N).

Surgery has also played an important role in a number of other prob-
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lems connected with symplectic geometry: the theory of Lagrangian em-
beddings'! (see, e.g., [99], [49], and [116]) and Eliashberg’s topological clas-
sification [47] of Stein manifolds.'?> A Stein manifold of complex dimension
n is known to admit a proper Morse function with all critical points of index
< n (so that, roughly speaking, M is the thickening of an n-dimensional
CW-complex), and Eliashberg showed that for n > 2, a 2n-dimensional
almost complex manifold admits a Stein structure exactly when it satisfies
this condition.

A contact structure on an odd-dimensional manifold appears at first
sight to be a very “flabby” object. If we consider only contact structures
& for which TM/¢ is orientable (this is only a slight loss of generality,
and turns out to be automatic if M is orientable and n even), then every
contact structure ¢ is defined by a global 1-form « such that a A (da)™ # 0
everywhere, and « is determined by £ up to multiplication by an everywhere
non-zero real function. Note also that as da defines a symplectic structure
on &, a defines an almost contact structure on M, that is, an isomorphism
class of reductions of the structure group of TM from GL(2n + 1,R) to
1 x U(n). So a natural question is whether an odd-dimensional manifold
always admits a contact structure within every homotopy class of almost
contact structures. When n = 1, i.e., dim M = 3, the answer is known to
be “yes,” though Eliashberg showed that there are basically two distinct
types of contact structure, “tight” and “overtwisted.” Furthermore, if M
is a closed oriented 3-manifold, then every class in H2(M;Z) is the Euler
class of an overtwisted contact structure, but only finitely many homology
classes in H2(M;Z) can be realized as the Euler class of a tight contact
structure. (For surveys, see [69] and [48].) In higher dimensions, it is not
known if every manifold with an almost contact structure admits a contact
structure, though the experts seem to doubt this. And it is known that
S§27+1 has at least two non-isomorphic contact structures in the homotopy
class of the standard almost contact structure ([48], Theorem 3.1).

Nevertheless, in many cases one can construct contact structures in a
given homotopy class of almost contact structures through a process of
“contact surgery.” The key tools for doing this may be found in [141] and
in [47]. These references basically prove that if (M7"*! &) is a contact
manifold and M2™*" can be obtained from M; by surgery on S* ¢ M,

U1 (M2™,w) is a symplectic manifold, an embedding f: N* < M2 is called La-
grangian if f*w = 0. Aside from the obvious bundle-theoretic consequence, that w
induces an isomorphism between the cotangent bundle of N and the normal bundle for
the embedding, this turns out to put considerable constraints on isotopy class of the
embedding.

12A complex manifold M is called a Stein manifold if HY (M,S) = 0 for all j > 0 for
any coherent analytic sheaf S on M (though it is enough to assume this for j = 1), or
equivalently, if M has a proper holomorphic embedding into some C*, that is, M is an
affine subvariety of C¥. An open subset of C"* is a Stein manifold if and only if it is a
domain of holomorphy.
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then M, also admits a contact structure &» (in the corresponding homo-
topy class of almost contact structures), provided that S* is tangent to the
contact structure &, and has trivial “conformal symplectic normal” (CSN)
bundle. Since ¢; is maximally non-integrable, the first condition (S* tan-
gent to & ) forces T'S* to be isotropic in & for the symplectic form do on &,
a a 1-form defining &;. In other words, if (7'S*)* denotes the orthogonal
complement of T'S* in &, which has rank 2n — k, then T'S* C (T'S*)*, so
k < n. The CSN bundle is then (T'S¥)+/T'S*, and a trivialization of this
bundle determines a homotopy class of almost contact structures on M.
Applications of this theorem may be found in [27], [65], [66], [67], and [68].
Some of the results are that:

1. Every finitely presented group is the fundamental group of a closed
contact manifold of dimension 2n + 1, for any n > 1 [27].

2. Every simply connected spin® 5-manifold admits a contact structure
in every homotopy class of almost contact structures [65]. (The spin®
condition is necessary for existence of an almost contact structure.)

3. Every closed spin 5-manifold with fundamental group of odd order
and with periodic cohomology admits a contact structure [68].

3.10 Manifold-like spaces

While the original applications of surgery theory were to the classification
and study of manifolds, in recent years surgery has also been applied quite
successfully to spaces which are not manifolds but which share some of the
features of manifolds. We list just a few examples:

1. Poincaré spaces: Poincaré spaces have already appeared in this
survey; they are spaces with the homotopy-theoretic features of man-
ifolds. Thus for example it makes sense to talk about the bordism the-
ory QF defined like classical oriented bordism Q,, but using oriented
Poincaré complexes in place of oriented smooth manifolds. Since
Poincaré complexes do not satisfy transversality, this theory does
not agree with the homology theory defined by the associated Thom
spectrum M SG (whose homotopy groups are all finite), but the two
are related by an exact sequence where the relative groups are the
Wall surgery groups. The proof uses surgery on Poincaré spaces, and
may be found in [97], or in slightly greater generality, in [9]. An-
other interesting issue is the extent to which Poincaré spaces can be
built up by pasting together manifolds with boundary, using homo-
topy equivalences (instead of diffeomorphisms or homeomorphisms)
between boundary components. It turns out that all Poincaré spaces
can be pieced together this way (at least if one avoids the usual
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problems with dimensions 3 and 4), and that the minimal number of
manifold pieces required is an interesting invariant. See [84] and [9]
for more details, as well as [91] for a survey of several other issues
about Poincaré spaces.

. Stratified spaces: Stratified spaces are locally compact spaces X

which are not themselves manifolds but which have a filtration Xy C
X; C--- C X}, = X by closed subspaces such that each X;\X;_;isa
manifold and the strata fit together in a suitable way. There are many
different categories of such spaces, depending on the exact patching
conditions assumed. But two important sets of examples motivate
most of theory: algebraic varieties over R or C, and quotients of
manifolds by actions of compact Lie groups. Surgery theory has been
very effective in classifying and studying such spaces. There is no
room to go into details here, but see [26] and [83] for surveys.

. ENR homology manifolds: Still another way to weaken the def-

inition of a manifold is to consider homology n-manifolds, spaces
X with the property that for every x € X, H;(X,X \ {z};Z) =
{ OZ’ j f Z’ In order for such a space to look more like a topologi-

, j=mn.
cal manifold, it is natural to assume also that it is an ENR (Euclidean
neighborhood retract). So a natural question is: is every ENR homol-
ogy n-manifold M homeomorphic to a topological n-manifold? It has
been known for a long time that the answer to this question is “no”
(the simplest counterexample is the suspension of the Poincaré ho-
mology 3-sphere), so to make the question interesting, let’s throw in
the additional assumption that M has the “disjoint disks property.”
Then M has (at least) a very weak kind of transversality, and is thus
quite close to looking like a manifold. Does this make it a manifold?
This question has a long history, and the surprising answer of “no,”
due to Bryant, Ferry, Mio, and Weinberger [35], is discussed in this
collection in [108].

3.11 Non-compact manifolds

Almost all the applications of surgery theory which we have discussed so
far are for compact manifolds, but surgery can also be used to study non-
compact manifolds as well. Here we just mention a few cases:

1. Siebenmann’s characterization [127] of when a non-compact manifold

X™ (without boundary) is the interior of some compact manifold W™
with boundary. Obvious necessary conditions are that X have finite
homotopy type and have finitely many ends. Furthermore, the fun-
damental group “at infinity” in each end must be finitely presented,
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4

and the Wall finiteness obstruction (see [60]) of the end must van-
ish. Siebenmann’s Theorem ([127] or [26], §§1.5-1.6) says that these
obvious necessary conditions are sufficient if n > 6.

. Siebenmann’s characterization of when a non-compact manifold W

with boundary is an open collar of its boundary, or in other words,
when W 2 0W x [0,00). It turns out ([128], Theorem 1.3) that
necessary and sufficient conditions when dim M > 5 (in any of the
three categories TOP, PL, or DIFF) are that (W,0W) is (n — 2)-
connected, W has one end, and 7 is “essentially constant at co” with
“m (00)” = w1 (W). An alternative statement is that W = W x [0, o0)
if and only if (W, 8W) is (n—2)-connected and W is proper homotopy
equivalent to OW x [0,00). An elegant application ([128], Theorem
2.7) is a characterization of R": if X™ is a noncompact oriented
n-manifold, n > 5, then X™ = R™ (in any of the three categories
TOP, PL, or DIFF) if and only if there exists a degree-1 proper map
R* = X™.

. Classification in a proper homotopy type. Surgery theory can be used

to classify noncompact manifolds with a given proper homotopy type.
For example, Siebenmann’s Theorem 2.7 in [128] can be restated as
saying that a non-compact n-manifold of dimension > 5 is isomorphic
to R™ if and only if it has the proper homotopy type of R”. Similarly
much of the proof of the Farrell Fibration Theorem in section 3.7
above may be interpreted as a classification of manifolds with the
proper homotopy type of N x R, for some compact manifold N.

. There is a close connection between the classification of compact

manifolds with fundamental group Z™ and the classification of non-
compact manifolds with a proper map to R™, which played a vital role
in Novikov’s proof of the topological invariance of rational Pontrjagin
classes (see [110]).

. Finally (and probably most importantly), controlled surgery classifies

noncompact manifolds in various “bounded” and “controlled” cate-
gories. See [111] and [112] for surveys and references.

Future directions

So where is surgery theory heading today? A glance at the dates on the pa-
pers in the bibliography to this article shows that history has proved wrong
those who felt that surgery is a dead subject. At the risk of being another
false prophet, I would predict that future development of the subject, at
least over the next ten years, will lie mostly in the following areas:
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e Surgery in dimension 4. Some very basic (and very hard!) ques-

tions remain concerning surgery in the topological category in di-
mension 4. (See [117].) In particular, is the surgery exact sequence
valid without any restriction on fundamental groups? We can prob-
ably expect more work on this question, and also on the question of
whether the smooth s-cobordism theorem is valid for 4-dimensional
s-cobordisms (between 3-manifolds).

Differential geometry. One of the areas of application of surgery
theory that is developing most rapidly is that of applications to dif-
ferential geometry. I would expect to see further growth in this area,
especially in the areas of application to positive Ricci curvature (sec-
tion 3.9.2 above) and to symplectic and contact geometry (section
3.9.5 above). In these areas what we basically have now are a lot of
tantalizing examples, but very little in the way of definitive results,
so there is lots of room for innovative new ideas.

Coarse geometry. Still another area of very rapid current develop-
ment is the study of “behavior at infinity” of noncompact manifolds.
Especially fruitful ideas in this regard have been the “macroscopic”
or “asymptotic” notions of Gromov [72] in geometry and geometric
group theory and Roe’s notion of “coarse geometry” [23]. But the
Gromovian approach to geometry has not yet been fully integrated
with surgery theory. The author expects a synthesis of these subjects
to be a major theme in coming years. Ideas of what we might expect
may be found in the work of Attie on classification of manifolds of
bounded geometry [28] and in the work of Block and Weinberger [30].

Manifold-like spaces. Last but not least, I think we can expect
much more work on surgery theory applied to manifold-like spaces
which are not manifolds (section 3.10 above). While outlines of basic
surgery theories for stratified and singular spaces are now in place,
major applications are only beginning to be developed. When it
comes to homology manifolds, the situation is even more mysterious,
due to the fact that all current arguments for “constructing” exotic
ENR homology manifolds are basically non-constructive. It is also
not clear if these spaces are homogeneous (like manifolds) or not.
(See [108] for a discussion of some of the key unsolved problems.) So
we can expect to see much further investigation of these topics.
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