
Metrics of positive scalar curvatureand connections with surgeryJonathan Rosenberg�and Stephan StolzyJanuary 2, 19981 IntroductionThis chapter discusses the connection between geometry of Riemannianmetrics of positive scalar curvature and surgery theory. While this is quitea deep subject which has attracted quite a bit of recent attention, themost surprising aspect of this whole area remains the original discoveryof Gromov-Lawson and of Schoen-Yau from about 20 years ago|namely,that there is a connection between positive scalar curvature metrics andsurgery. The Surgery Theorem of Gromov-Lawson and Schoen-Yau remainsthe most important result in this subject. We discuss it and its variants atlength in Section 3. Then in Section 4, we discuss the status of the so-calledGromov-Lawson Conjecture, which relates the existence of positive scalarcurvature metrics to index theory and KO-homology. This is preparatoryto Section 5, which explains the parallels between the classi�cation of pos-itive scalar curvature metrics and the classi�cation of manifolds via Wall'ssurgery theory. In the �nal section, Section 6, we discuss a number of openproblems.All manifolds in this paper will be assumed to be smooth (C1). Forsimplicity, we restrict attention to compact manifolds, although there arealso plenty of interesting questions about complete metrics of positive scalarcurvature on non-compact manifolds. At some points in the discussion,however, it will be necessary to consider manifolds with boundary.�Partially supported by NSF Grant # DMS-96-25336 and by the General ResearchBoard of the University of Maryland.yPartially supported by NSF Grant # DMS-95-04418.1



2 Jonathan Rosenberg and Stephan Stolz2 Background and PreliminariesOne of the most important problems in global di�erential geometry is tostudy how curvature relates to topology, or to phrase things di�erently, tostudy what constraints topology places on curvature. This problem canbe asked in several di�erent contexts. When applied to vector bundleswith a connection, it gives rise to Chern-Weil theory and the theory ofcharacteristic classes. Here we will instead ask about the scalar curvatureof a Riemannian manifold. The scalar curvature is the weakest curvatureinvariant one can attach (pointwise) to a Riemannian n-manifold. Its valueat any point can be described in several di�erent ways:1. as the trace of the Ricci tensor, evaluated at that point.2. as twice the sum of the sectional curvatures over all 2-planes ei ^ ej ,i < j, in the tangent space to the point, where e1; : : : ; en is anorthonormal basis.3. up to a positive constant depending only on n, as the leading coe�-cient in an expansion telling how volumes of small geodesic balls dif-fer from volumes of corresponding balls in Euclidean space. Positivescalar curvature means balls of radius r for small r have a smallervolume than balls of the same radius in Euclidean space; negativescalar curvature means they have larger volume.In the special case n = 2, the scalar curvature is just twice the Gaussiancurvature.We can now state the basic problems we will consider in this paper:Problems 2.11. If Mn is a closed n-manifold, when can M be given a Riemannianmetric for which the scalar curvature function is everywhere strictlypositive? (For simplicity, such a metric will henceforth be called ametric of positive scalar curvature.)2. If Mn is a closed manifold which admits at least one Riemannianmetric of positive scalar curvature, what is the topology of the spaceR+(M ) of all such metrics on M? In particular, is this space con-nected?3. If Mn is a compact manifold with boundary, when does M admita Riemannian metric of positive scalar curvature which is a productmetric on a collar neighborhood @M � [0; a] of the boundary? Whenthis is the case, what is the topology of the space of all such metrics?Of the space of all such metrics extending a �xed metric in R+(@M )?



Metrics of positive scalar curvature 3A few comments on these problems are in order. With regard to ques-tion (1), the reader might well ask what is special about positivity. Whynot ask about metrics of negative scalar curvature, or of vanishing scalarcurvature, or of non-negative scalar curvature? More generally, we couldask which smooth functions on a manifoldM are realized as the scalar cur-vature function of some metric on M . It is a remarkable result of Kazdanand Warner that the answer to this question only depends on which of thefollowing classes the manifold M belongs to:1. Closed manifolds admitting a Riemannian metric whose scalar cur-vature function is non-negative and not identically 0.2. Closed manifolds admitting a Riemannian metric with non-negativescalar curvature, but not in class (1).3. Closed manifolds not in classes (1) or (2).All three classes are non-empty if n � 2. For example, it is easy to seefrom the Gauss-Bonnet-Dyck Theorem1 that if n = 2, class (1) consists ofS2 and RP2; class (2) consists of T 2 and the Klein bottle; and class (3)consists of surfaces with negative Euler characteristic.Theorem 2.2 (Trichotomy Theorem, [KW1], [KW2]) Let Mn be aclosed connected manifold of dimension n � 3.1. If M belongs to class (1), every smooth function is realized as thescalar curvature function of some Riemannian metric on M .2. If M belongs to class (2), then a function f is the scalar curvature ofsome metric if and only if either f(x) < 0 for some point x 2M , orelse f � 0. If the scalar curvature of some metric g vanishes iden-tically, then g is Ricci 
at. (I.e., not only does the scalar curvaturevanish identically, but so does the Ricci tensor.)3. If M belongs to class (3), then f 2 C1(M ) is the scalar curvature ofsome metric if and only if f(x) < 0 for some point x 2M .We note that the Theorem shows that deciding whether a manifold Mbelong to class (1) is equivalent to solving Problem 2.1.1. Futaki [Fu] hasshown that { at least for simply connected manifolds { class (2) consists ofvery special manifolds admitting metrics with restricted holonomy groups.As further justi�cation for our concentrating on positive scalar curva-ture in Problem 2.1.2, one has the following fairly recent result:1The point is that for any choice of Riemannian metric, the integral of the scalarcurvature with respect to the measure de�ned by the metric is 4� times the Euler char-acteristic. Dyck's role in this is explained in the interesting article by D. Gottlieb, \Allthe way with Gauss-Bonnet and the sociology of mathematics," Amer. Math. Monthly103 (1996), no. 6, 457{469.



4 Jonathan Rosenberg and Stephan StolzTheorem 2.3 ([Loh])The space R�(M ) of negative scalar curvature met-rics on M is contractible, for any closed manifold Mn of dimension n � 3.Finally, one might ask the reason for the Riemannian product boundarycondition in Problem 2.1.3. The �rst part of the answer comes from thefact that without a boundary condition, any manifold with non-emptyboundary admits a metric of positive scalar curvature. (In fact, Gromov[Gr], Theorem 4.5.1, even showed it admits a metric of positive sectionalcurvature, a much stronger condition.) The second part of the answer isthat there are other interesting boundary conditions one could impose thatare relevant to the study of positive scalar curvature, such as positive meancurvature on the boundary (see [GL1], Theorem 5.7, for example), but wehave tried to limit attention to the simplest such condition. Often one canreduce to this condition anyway|see [Gaj1], Theorem 5.3 The Surgery Theorem and its VariantsThe connection between positive scalar curvature metrics and surgery be-gins with:Theorem 3.1 (Surgery Theorem, [GL2], Theorem A and [SY])Let Nn be a closed manifold, not necessarily connected, with a Rieman-nian metric of positive scalar curvature, and let Mn be obtained from N bya surgery of codimension q � 3. Then M can be given a metric of positivescalar curvature.Proof. We give the argument of Gromov-Lawson, just brie
y sketching theirinitial reduction of the problem (which is explained well in their paper), butgoing over the crucial \bending argument" in detail. (The reason for thisis that it appears there is a mistake in [GL2] on page 428|in the displayedformula on the middle of that page, there is a factor of sin2 �0 missing, andthus the argument at the bottom of page 428 doesn't work as stated.)Suppose Sp is an embedded sphere in N of codimension q = n� p � 3,with trivial normal bundle. By using the exponential map on the normalbundle of Sp, we may assume that we have an embedding of Sp � Dq(�r)into N for some �r > 0 (the radius of a \good tubular neighborhood ofSp") so that the sphere on which we will do surgery is Sp �f0g, the radialcoordinate r on Dq(�r) measures distances from Sp � f0g, and such thatcurves of the form fyg � `, where ` is a ray in Dq(�r) starting at the origin,are geodesics. However, we know nothing about the restriction of the metricon N to the sphere Sp � f0g.The key idea of the proof is to choose a suitable C1 curve 
 (withendpoints) in the t-r plane, and to considerT = f(y; x; t) 2 �Sp �Dq(�r)��R : (t; r = kxk) 2 
g



Metrics of positive scalar curvature 5with the induced metric, where R is given the Euclidean metric and �Sp �Dq(�r)� � R is given the metric of the Riemannian product N � R. Wechoose the curve 
 to satisfy the following constraints:1. 
 lies in the region 0 < r � �r of the t-r plane.2. 
 begins at one end with a vertical line segment t = 0, r1 � r � �r.This guarantees that near one of the two components of @T , T isisometric to a portion of N .3. 
 ends with a horizontal line segment r = r1 > 0, with r1 very small.This guarantees that near the other component of @T , T is isometricto the Riemannian product of a line segment with Sp � Sq�1(r1),where the metric on Sp�Sq�1(r1) (not in general a product metric)is induced by the embedding Sp � Sq�1(r1) � Sp �Dq(�r) � N .4. In the region r1 < r < r1, 
 is the graph of a function r = f(t)which is decreasing and (weakly) concave upward.
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 is chosen so that the scalar curvature of T is everywhere positive.This is the hard part. The Gauss curvature equation says that thesectional curvature of a hypersurface, evaluated on a plane spannedby two principal directions for the second fundamental form, is thecorresponding sectional curvature of the ambient manifold, plus theproduct of the two principal curvatures. So, summing the sectional



6 Jonathan Rosenberg and Stephan Stolzcurvatures over all the two-planes spanned by pairs of principal di-rections, one derives for small r > 0 the formula:�T = �N +O(1) sin2 � + (q � 1)(q � 2)sin2 �r2�(q � 1)k sin �r � O(r)(q � 1)k sin �; (3.1)where �T and �N are the scalar curvatures of T and N , respectively,where k is the curvature of 
 (as a curve in the Euclidean plane), andwhere � is the angle between 
 and a vertical line. (See �gure above.)Assume for the moment that we have constructed 
 as required. Sincethe metric on T is isometric to a portion of N in a collar of one componentof @T , we can glue T onto N r �Sp � Dq(�r)�, getting a manifold N 0 ofpositive scalar curvature with a single boundary component Sp�Sq�1(r1),and with a metric that is a product metric in a collar neighborhood of theboundary.Since q�1 � 2 and r1 is very small, there is a homotopy of the metric onSp�Sq�1(r1) through metrics of positive scalar curvature to a Riemannianproduct of two standard spheres: Sp(1) and Sq�1(r1). Even though Sp(1)has zero curvature if p � 1, we have large positive scalar curvature sinceSq�1(r1) has sectional curvature r�21 � 0. (See [GL2], Lemma 2.) Thishomotopy can be used to construct a metric of positive scalar curvature ona cylinder Sp�Sq�1(r1)� [0; a], which in a neighborhood of one boundarycomponent matches the metric on a collar neighborhood of @T in T , andwhich in a neighborhood of the other boundary component is a Riemannianproduct of standard spheres Sp(1) and Sq�1(r1) with an interval. (SeeProposition 3.3 below.) We glue this cylinder onto N 0 to get N 00, a manifoldof positive scalar curvature with boundary Sp(1) � Sq�1(r1), and with aproduct metric in a neighborhood of the boundary.Finally, to �nish o� the proof, we glue onto N 00 a Riemannian prod-uct Dp+1 � Sq�1(r1), where the disk Dp+1 has not the 
at metric but ametric which is a Riemannian product Sp(1) � [0; b] in a neighborhood ofthe boundary. (Such metrics on the disk are easy to write down.) Theendproduct of the construction is a metric of positive scalar curvature onM .We're still left with the most delicate step, which is construction of acurve 
 with the properties listed on page 5 above. Obviously, there is noproblem satisfying the �rst four conditions. To satisfy the last condition,we need to choose 
 so that �T > 0 in equation (3.1). Since �N is boundedbelow by a positive constant, the constraint will be satis�ed provided that(1 +C 0r2)k � (q � 2)sin �r + �0 rsin � �Cr sin �; (3.2)



Metrics of positive scalar curvature 7where �0 > 0 is 1q�1 times a lower bound for �N , and where the constantsC > 0 and C0 > 0 come from the O(1) term and the O(r) term in equation(3.1), respectively. (When � = 0, the right-hand side of inequality (3.2) isto be interpreted as +1.)To satisfy this inequality, we begin by choosing0 < �0 < arcsin�r�0C � :Then for 0 � � � �0, the second term on the right in inequality (3.2)dominates the last term, and thus we can start at the point (0; r1) (where� and k are required to vanish) and �nd a small \bump function" of compactsupport for k (as a function of arc length) satisfying (3.2), so that 
 bendsin a small region around to a line segment with small positive �. Decreasing�0 if necessary, we may assume this \�rst bend" ends at � = �0. (So farthe details are just as in [GL2], except that we have made the estimatesmore explicit.)Next, we choose r0 with0 < r0 < min r 14C ; r 12C0! :This insures (since q � 2 � 1) that for r � r0,(q � 2)sin �r � Cr sin � � 3 sin �4rand 1 +C0r2 � 32 ;so that k can be as large as 23 � 3 sin �4r = sin �2r . When 
 crosses the line r = r0,we start the \second bend" by quickly bringing k up to the allowed valueof sin �2r and thereafter following the solution of the di�erential equationk = sin �2r . If we write r = f(t), thensin � = 1p1 + (f 0)2 ; k = f 00(1 + (f 0)2) 32 :So our di�erential equation can be rewrittenf 00 = 1 + (f 0)22f :This equation can be solved explicitly; the solution isf(t) = 1C1 + C14 (t� C2)2;



8 Jonathan Rosenberg and Stephan Stolzfor constants C1 and C2. Suppose we start following the di�erential equa-tion at t = t1 � r1 arctan �0. Then we will need to take f(t1) very close tor0 and f 0(t1) very close to � cot �0. This can be accomplished by taking C2bigger than t1, C1(C2�t1) large, and C1 huge. Then we follow the solutionout until t is very close to C2, at which point f(t) is approximately 1C1 ,which is very small but positive, and f 0(t) is approximately 0, i.e., � isvery close to �2 . Then we quickly bring k back down to 0 and �nish with ahorizontal line, thereby satisfying all our requirements. �There is a slight strengthening of this due to Gajer, which providesinformation about manifolds with boundary.Theorem 3.2 (Improved Surgery Theorem, [Gaj1]) Let N be aclosed manifold with a metric of positive scalar curvature ds2N , not neces-sarily connected, and letM be obtained from N by a surgery of codimension� 3. Let W be the trace of this surgery (a cobordism from N to M ). ThenW can be given a metric of positive scalar curvature ds2W which is a prod-uct metric ds2N + dt2 in a collar neighborhood of N and a product metricds2M + dt2 in a collar neighborhood of M .This indeed strengthens Theorem 3.1, since in a neighborhood of M , thescalar curvature of ds2W is the same as that of ds2M , and thus we have givenM a metric of positive scalar curvature.The study of metrics such as the one in Theorem 3.2, together with theobvious parallels in the theory of automorphisms of manifolds, motivatesthe following.De�nition. Let ds20 and ds21 be two Riemannian metrics on a compactmanifoldM , both with positive scalar curvature. (For the moment we takeM to be closed, though later we will also consider the case where M hasa boundary.) We say these metrics are isotopic if they lie in the samepath component of the space of positive scalar curvature metrics on M ,and concordant if there is a positive scalar curvature metric on a cylinderW = M � [0; a] which restricts to ds20 + dt2 in a collar neighborhood ofM � f0g and to ds21 + dt2 in a collar neighborhood of M � fag. We denoteby e�0R+(M ) the set of concordance classes of positive scalar curvaturemetrics on M .There is one important and easy result relating isotopy and concordanceof positive scalar curvature metrics.Proposition 3.3 ([GL2], Lemma 3; [Gaj1], pp. 184{185) Isotopicmetrics of positive scalar curvature are concordant.Sketch of Proof. Suppose ds2t , 0 � t � 1, is an isotopy between positivescalar curvature metrics on M . Consider the metric ds2t=a + dt2 on W =M � [0; a]. This will have positive scalar curvature for a � 0, since acalculation shows that the scalar curvature �(x; t) at a point (x; t) will be



Metrics of positive scalar curvature 9of the form �t=a(x) + O(1=a), where �t=a is the scalar curvature of M forthe metric ds2t=a. (In fact, if one is careful, the O(1=a) can be improvedto O(1=a2), though this doesn't matter to us.) Since M is compact andall the metrics ds2t=a have positive scalar curvature, we may choose �0 > 0such that �t=a(x) � �0 > 0 for all x and for all t. For a large enough, theerror terms will be less than �0=2, so W also has positive scalar curvature.� It is still not known if the converse holds or not; indeed, there is noknown methodology for approaching this question, as there is no knownmethod for distinguishing between isotopy classes of positive scalar curva-ture metrics which is not based on distinguishing concordance classes. How-ever, dimension 2 is special enough so that for the two closed 2-manifoldswhich admit positive scalar curvature metrics, S2 and RP2, we can give acomplete classi�cation up to isotopy, and even say a bit more.Theorem 3.4 Any two metrics of positive scalar curvature on S2 or onRP2 are isotopic. In fact, the spaces R+(S2) and R+(RP2) are contractible.Proof. We begin with a general observation. Let M be any manifold,say for simplicity compact, and let Di� M be its di�eomorphism group,a topological group in the C1 topology. (For M compact, there is onlyone reasonable topology on Di�M .) When M is oriented, we denote theorientation-preserving subgroup of Di� M by Di�+M . Let C1(M ) bethe smooth functions on M , viewed as a topological vector space (and, inparticular, as a topological group under addition). Then one can form thesemidirect product group C1(M )oDi� M , with Di� M acting on C1(M )by pre-composition. Note that C1(M )oDi�M acts on Riemannian met-rics on M on the right by the formulag � (u; ') = '�(eug); u 2 C1(M ); ' 2 Di� M;and that this action is continuous for the C1 topologies. Any two metricsin the same orbit for this action are said to be conformal to one another;any two metrics in the same orbit for the action of the subgroup C1(M )are said to be pointwise conformal to one another.Now we need to recall the Uniformization Theorem for Riemann sur-faces. When formulated in the language of di�erential geometry (ratherthan complex analysis), it says that if M is an oriented connected closed2-manifold, then C1(M ) o Di�+M acts transitively on the space of Rie-mannian metrics on M . Let's apply this to S2. Then we get an identi-�cation of the (contractible) space of Riemannian metrics on S2 with thequotient of C1(S2) o Di�+S2 by the subgroup �xing the standard met-ric g0 of constant Gaussian curvature 1. This subgroup is identi�ed with



10 Jonathan Rosenberg and Stephan StolzPSL(2; C ), the group of M�obius transformations,2 since a famous result ofcomplex analysis says that all (orientation-preserving) pointwise conformalautomorphisms for the standard spherical metric come from holomorphicautomorphisms of S2 = CP1. Since PSL(2; C ) has the homotopy type ofits maximal compact subgroup PSU (2) �= SO(3), and since�C1(S2)o Di�+S2� =PSL(2; C )must be contractible, it follows that Di�+S2 has a deformation retractiondown to its subgroup SO(3), which in turn is the group of orientation-preserving isometries for the standard metric. Also observe that since S2is the double cover of RP2, taking the Z=2-action into account shows thatC1(RP2) oDi�RP2 acts transitively on the Riemannian metrics on RP2,and that the stabilizer of the standard metric is precisely SO(3), the isom-etry group. So Di�RP2 also has a deformation retraction down to SO(3).Let's come back to metrics of positive scalar curvature. If g0 and �g0denote the standard metrics on S2 or RP2 of constant Gaussian curvature1, then a conformally related metric g0 � (u; ') (respectively, �g0 � (u; ')) haspositive scalar curvature if and only if eug0 (resp., eu�g0) does (since positivescalar curvature is preserved under the action of Di�). Since g0 has scalarcurvature � 2, the formula computing the change in scalar curvature undera conformal change in the metric (found in [KW1], for example) gives�(u) = 2� eu�; (3.3)where � is the Laplace-Beltrami operator for the metric g0 (with the signconvention making this a negative semi-de�nite operator) and � is thescalar curvature of the metric eug0. We claim that the setS = fu 2 C1 : � in (3.3) is strictly positivegis star-shaped about the origin.To prove this, suppose u is such that � in (3.3) is strictly positive. Thenif �t denotes the scalar curvature of the metric etug0, replacing u by tu in(3.3) gives �(tu) = 2� etu�t:Since � is linear and �0 � 2, we obtain:2� etu�t = t�(u) = t (2� eu�) ;2Caution: While PSL(2; C) embeds in Di�+S2, the identi�cation of PSL(2; C) withthe stabilizer of g0 is via a \diagonal embedding," since we need to take the \conformalfactor" into account.



Metrics of positive scalar curvature 11or etu�t = teu�+ 2(1� t):Since, by assumption, � is everywhere positive and 0 � t � 1, both termson the right are non-negative. Furthermore, the �rst term on the right onlyvanishes when t = 0, and the second term only vanishes when t = 1. Thusetu�t is everywhere positive, and so �t is everywhere positive, proving thatS is star-shaped (and thus contractible).Finally, we see that R+(S2) is identi�ed with�S(S2) �Di�+(S2)� =PSL(2; C ) � �C1(S2) �Di�+(S2)� =PSL(2; C );and similarly R+(RP2) is identi�ed with�S(RP2) �Di�(RP2)� =SO(3) � �C1(RP2) �Di�(RP2)� =SO(3):As Di�+(S2)=PSL(2; C ), Di�(RP2)=SO(3), S(S2), and S(RP2) are allcontractible, we see that R+(S2) and R+(RP2) must be contractible. �4 The Gromov-Lawson Conjecture and itsVariantsIn the discussion so far, we have not explained (except in the case of di-mension 2) why it is that there are closed manifolds which cannot admit apositive scalar curvature metric. Most of the known results of this sort, atleast for manifolds of large dimension, stem from a fundamental discoveryof Lichnerowicz [Li], which is that if D= is the Dirac operator on a spinmanifold M (a self-adjoint elliptic �rst-order di�erential operator, actingon sections of the spinor bundle), thenD= 2 = r�r+ �4 : (4.1)Here r is the covariant derivative on the spinor bundle induced by theLevi-Civita connection, and r� is the adjoint of r. Since the operatorr�r is obviously self-adjoint and non-negative, it follows from equation(4.1) that the square of the Dirac operator for a metric of positive scalarcurvature is bounded away from 0, and thus that the Dirac operator cannothave any kernel. It follows that any index-like invariant of M which can becomputed in terms of harmonic spinors (i.e., the kernel of D= ) has to vanish.E.g., if M is a spin manifold of dimension n, there is a version of the Diracoperator which commutes with the action of the Cli�ord algebra C`n (see



12 Jonathan Rosenberg and Stephan Stolz[LaM], x II.7). In particular, its kernel is a (graded) C`n-module, whichrepresents an element �(M ) in the real K-theory group KOn = KO�n(pt)(see [LaM], Def. II.7.4).Theorem 4.1 (Lichnerowicz [Li]; Hitchin [Hit]) IfMn is a closed spinmanifold for which �(M ) 6= 0 in KOn, then M does not admit a metric ofpositive scalar curvature.We recall that KOn �= Z for n � 0 mod 4, that KOn �= Z=2 forn � 1; 2 mod 8, and KOn = 0 for all other values of n. Furthermore,for n � 0 mod 4, the invariant �(M ) is essentially equal to Hirzebruch'sbA-genus bA(M ), namely �(M ) = bA(M ) for n � 0 mod 8, and �(M ) =bA(M )=2 for n � 4 mod 8. So this result immediately shows that there aremany manifolds, even simply connected ones, which do not lie in class (1)of the Kazdan-Warner trichotomy (see Theorem 2.2). E.g., the Kummersurface K4, the hyperplane in the complex projective space CP3 given bythe equation z40 + z41 + z42 + z43 = 0, is spin and has bA(K) = 2, and hencedoes not admit a metric of positive scalar curvature.We observe that �(M ) depends only on the spin bordism class [M ] 2
spinn . In fact, we can interpret �(M ) as the image of [M ] under a naturaltransformation of generalized homology theories as follows. Let KO�(X)and ko�(X) denote the periodic and connective real K-homology of a spaceX, respectively (so KO�(X) satis�es Bott periodicity, and ko� = ko�(pt) isobtained from KO� = KO�(pt) by killing the groups in negative degree).Then there are natural transformations
spin� (X) D�! ko�(X) per�! KO�(X);the �rst of which sends the bordism class [M; f ] to f�([M ]ko), where [M ]ko2ko�(M ) denotes the ko-fundamental class of M determined by the spinstructure. With this notation, �(M ) = per �D([M ]).Next, we want to state an important consequence of Theorem 3.1, but�rst we need a relevant de�nition.De�nition. Let B ! BO be a �bration. A B-structure on a manifold isde�ned to be a lifting of the (classifying map of the) stable normal bundleto a map into B. Then one has bordism groups 
Bn of manifolds with B-structures, de�ned in the usual way. (For instance, if B = BSpin, mappingas usual to BO, then 
Bn = 
spinn .) We note that given a connected closedmanifold M , there is a choice of such a B 3 for which M has a B-structureand the map M ! B is a 2-equivalence. (Example: If M is a spinmanifold, choose B = B��BSpin, where � = �1(M ), and let B ! BO bethe projection onto the second factor composed with the mapBSpin ! BO3We will see in Section 5 how to formalize this in a functorial way.



Metrics of positive scalar curvature 13induced by Spin ! O. Map M to the �rst factor by means of the classifyingmap for the universal cover, and to the second factor by means of the spinstructure.)The simply connected cases of the following theorem were proved in[GL2]; the general case, with this formulation, is in [RS1].Theorem 4.2 (Bordism Theorem) Let Mn be a B-manifold with n =dimM � 5, and assume that the map M ! B is a 2-equivalence. ThenM admits a metric of positive scalar curvature if and only if there is someB-manifold of positive scalar curvature in the same B-bordism class.Sketch of Proof. Let N be a B-manifold B-bordant to M . The hypothesescombine (via the method of proof of the s-Cobordism Theorem) to showthat M can be obtained from N by surgeries in codimension � 3. Then ifN admits a metric of positive scalar curvature, one can apply Theorem 3.1to conclude that the same is true for M . �Remark. Note that in the proof of Theorem 4.2, M and N do not quiteplay symmetrical roles. While M can be obtained from N by surgeries incodimension � 3, the converse may not be the case unless N ! B is alsoa 2-equivalence. This is useful in applications, since often the \obvious"generators for B-bordism groups do not satisfy the 2-equivalence condition.Theorem 4.3 (Gromov-Lawson [GL2]) If M is a simply connectedclosed manifold of dimension n � 5, and if w2(M ) 6= 0, then M admits ametric of positive scalar curvature.Sketch of Proof. If M is simply connected with w2(M ) 6= 0, then theappropriate B ! BO to use in Theorem 4.2 is just BSO ! BO, andthe corresponding bordism theory is oriented bordism. Gromov-Lawsonproceed to show that the generators of 
� constructed by Wall all admitpositive scalar curvature metrics. �Of course, the restriction w2(M ) 6= 0 in Theorem 4.3 is important,because Theorem 4.1 shows that otherwise there can be obstructions topositive scalar curvature. It is also well-known that the maps Dn : 
spinn !kon(pt) are all surjective, so all potential obstructions are in fact realized.In the simply connected spin case, Gromov and Lawson were not able toget as sharp a result as in the non-spin case, but at least they were able toprove:Theorem 4.4 If M is a simply connected closed manifold of dimensionn � 5, and if w2(M ) = 0 (so that, once an orientation is �xed, M de-�nes a class [M ] 2 
spinn ), then a �nite connected sum of copies of Madmits a metric of positive scalar curvature if and only if [M ] maps to0 2 KOn(pt)
ZQ under �.



14 Jonathan Rosenberg and Stephan StolzFor manifolds with a non-trivial fundamental group, the situation ismore complicated, as can already be seen in the 2-dimensional case. (As wehave already observed, no closed connected 2-dimensional with an in�nitefundamental group admits a positive scalar curvature metric. Nevertheless,oriented surfaces map trivially to KO2(pt) = Z=2, at least for the usual(bounding) choice of a spin structure.) It was shown in [GL1] and [SY] thattori never admit positive scalar curvature metrics (in any dimension), andthat in general, there are extra obstructions to positive scalar curvaturethat come from the fundamental group. Extrapolating from Theorem 4.4and from their results in [GL3], Gromov and Lawson arrived at:Conjecture 4.5 (\Gromov-Lawson Conjecture" [GL3]) SupposeMis a connected closed spin manifold of dimension n � 5 with \reasonable"fundamental group � (in a sense to be discussed below). Let f : M ! B�be the classifying map for the universal cover of M , so that (M; f) de�nesa class [M; f ] 2 
spinn (B�). Then M admits a metric of positive scalarcurvature if and only if per �D([M; f ]) = 0 in KOn(B�).The conjecture in the simply connected case was settled by:Theorem 4.6 (Stolz [St1]) If M is a simply connected closed manifoldof dimension n � 5, and if w2(M ) = 0 (this means M admits a spinstructure, which since M is simply connected is unique once we �x anorientation), then M admits a metric of positive scalar curvature if andonly if the Lichnerowicz-Hitchin obstruction �(M ) vanishes in KOn(pt).Sketch of Proof. The �rst step in the proof is to reduce this to a 2-primaryproblem in homotopy theory. This reduction is primarily due to Miyazaki,who showed [Mi] by explicit construction of enough manifolds of positivescalar curvature that the subgroup of 
spinn generated by manifolds of pos-itive scalar curvature is a subgroup of the kernel of � of index a power of 2.The main part of the proof is then based on the observation that the �rstnon-trivial element in the kernel of � is the quaternionic projective spaceHP2. A careful transfer argument (relying on the mod 2 Adams spectralsequence) then shows that, after localizing at 2, the kernel of � in generalis generated by the total spaces of �ber bundles over spin manifolds with�ber HP2 and structure group PSp(3), the isometry group of HP2. It isnot hard to show that all such �ber bundles admit positive scalar curva-ture metrics (since one can rescale the metric so that the positive scalarcurvature on the projective space �bers dwarfs any contributions from thebase). So the result follows from the simply connected case of Theorem4.2. �To explain progress regarding the conjecture in the non-simply con-nected case, we need one additional ingredient.



Metrics of positive scalar curvature 15De�nition. Let � be any discrete group. Then the real group ring R� canbe completed in two standard ways to get a C�-algebra C�(�).4 (Either onelets R� act on `2(�) on the left in the usual way, and takes the completionin the operator norm, obtaining what is usually called C�r (�), or else onelets R� act on the Hilbert space direct sum of the spaces of all unitaryrepresentations of � (suitably interpreted to avoid set-theoretic problems),and takes the completion in the operator norm, obtaining what is usuallycalled C�max(�).) The two completions coincide if and only if � is amenable,but for present purposes it will not matter which one we use, so we won'tdistinguish in the notation.There is an assembly map A : KOn(B�) ! KOn(C�(�)) de�ned asfollows. Form the bundle VB� = E� �� C�(�) over B� whose �bers arerank-one free (right) modules over C�(�). As a \C�(�)-vector bundle"over B�, this has a stable class [VB� ] in a K-group KO0(B�; C�(�)),and A is basically the \slant product" with [VB� ]. The assembly mapA is functorial in � (to the extent that this makes sense). Injectivity ofA, often known as the Strong Novikov Conjecture, implies the NovikovConjecture on homotopy invariance of higher signatures for manifolds withfundamental group �.The results on one direction of the the Gromov-Lawson Conjecture allcome from:Theorem 4.7 ([R2]) Let M be a closed connected spin manifold of pos-itive scalar curvature, and let f : M ! B� be the classifying map for theuniversal cover of M . Then A � per �D([M; f ]) = 0 in KOn(C�(�)). Inparticular, if the Strong Novikov Conjecture is true for � (i.e., A is injec-tive), then per �D([M; f ]) = 0 in KOn(B�).Sketch of Proof. This relies on an index theory, due to Mishchenko andFomenko, for elliptic operators with coe�cients in a C�(�)-vector bundle.If M is as in the theorem, then the (Cli�ord algebra linear) Dirac oper-ator on M , with coe�cients in the bundle VB� , has an index �(M; f) 2KOn(C�(�)), which one can show by the Kasparov calculus is just A �per �D([M; f ]). Since VB� is by construction a 
at bundle, there are nocorrection terms due to curvature of the bundle, and formula (4.1) applieswithout change. Hence if M has positive scalar curvature, the square ofthis Dirac operator is bounded away from 0, and the index vanishes. �This result seems to be about the best one can do in (in the spin case) inattacking the Gromov-Lawson Conjecture 4.5 via index theory. It indicatesthat perhaps the \reasonable" groups for purposes of the Conjecture (whichGromov and Lawson did not make precise) should be a subset of the class4A C�-algebra is a Banach algebra with involutionwhich is isometrically�-isomorphicto an algebra of operators on a Hilbert space which is closed under the adjoint operationand closed in the operator norm.



16 Jonathan Rosenberg and Stephan Stolzof those for which the assembly map A is injective.5 Many torsion-freegroups are known to lie in this class, including for example all torsion-freeamenable groups, all torsion-free subgroups of GL(n; Q), and all torsion-free hyperbolic groups in the sense of Gromov.For groups with torsion, even for �nite cyclic groups, it is easy to �ndexamples (see [R1]) where Conjecture 4.5 fails. The reason is simply thatmany classes inKOn(B�) can be represented by manifolds of positive scalarcurvature, such as lens spaces. A �rst attempt at remedying this results inthe following modi�ed conjecture (which �rst appears in [R2], [R3]):Conjecture 4.8 (\Gromov-Lawson-Rosenberg Conjecture") Sup-pose M is a connected closed spin manifold of dimension n � 5. Letf : M ! B� be the classifying map for the universal cover of M , sothat (M; f) de�nes a class [M; f ] 2 
spinn (B�). Then M admits a metricof positive scalar curvature if and only if �(M; f), the generalized index ofthe Dirac operator, vanishes in KOn(C�(�)).There are analogues of this conjecture, involving indices of \twisted Diracoperators," for manifolds which are non-spin but which have spin universalcovers. Rather than state them now, we will defer these cases to Section5. However, it is worth pointing out that one way to rephrase Conjecture4.8 is by saying that \the index of Dirac tells all." If this is the case evenin the non-spin case, then it implies:Conjecture 4.9 If M is a connected closed manifold of dimension n � 5,and if the universal cover of M does not admit a spin structure, then Madmits a metric of positive scalar curvature.Conjecture 4.9 is consistent with Theorem 4.3, but unfortunately it isknown to fail for manifolds with large fundamental group. A counterexam-ple suggested by [GL3], for which failure of the conjecture can be checkedusing the \minimal hypersurface technique" of [SY], is T 6#(CP2 � S2).This suggests that Conjecture 4.8 should be false as well, though the fol-lowing counterexample was only discovered recently.Counterexample 4.10 ([Sch]) Let M5 be the closed spin manifold ob-tained from T 5 by doing spin surgery to cut down the fundamental groupto Z4�Z=3, and let f : M ! B(Z4�Z=3) be the classifying map for itsuniversal cover. Then �(M; f) = 0 in KOn(C�(�)), but M does not admita metric of positive scalar curvature.What is most amazing about Conjectures 4.8 and 4.9 is not that there arecases where they fail, but that they indeed hold in a great number of cases.5As far as we know at the moment, this class could include all torsion-free groups.



Metrics of positive scalar curvature 17This should be viewed as a vindication of the intuition of Gromov and Law-son, since in many cases Conjecture 4.5 is true in its original formulation.Before stating some of these results, we should �rst explain how it is thatone \narrows the gap" between the positive results of the Bordism Theo-rem, Theorem 4.2, and the results on obstructions in Theorem 4.7. Whileone could prove some of the results in greater generality, we will state themonly in the spin and oriented non-spin cases.Theorem 4.11 (Stolz, Jung) Let Mn be a connected closed manifold ofdimension n � 5, and let f : M ! B� be the classifying map for its univer-sal cover. If M is spin, then M admits a metric of positive scalar curvatureif and only if there is some spin manifold of positive scalar curvature rep-resenting the class D([M; f ]) in kon(B�). If M is oriented and if the uni-versal cover of M does not admit a spin structure, then M admits a metricof positive scalar curvature if and only if there is some oriented manifoldof positive scalar curvature representing the class f�([M ]) 2 Hn(B�; Z).Sketch of Proof. This requires a number of techniques. The 2-primary cal-culation in the spin case is based on a generalization, found in [St2], of theHP2-bundle method of the proof of Theorem 4.6. The 2-primary calcula-tion in the oriented non-spin case is easier, so we give it here. Localizedat 2, the spectrum MSO is known to be Eilenberg-MacLane (see [R4]),so 
n(B�), after localizing at 2, splits up as LjHn�j(B�; 
j), with thesummand Hn�j(B�; 
j) corresponding to bordism classes of the formNn�j � P j g�! B�;with g collapsing P to a point. But by the same calculation as in theproof of Theorem 4.3, each generator of 
j with j > 0 is representedby a manifold of positive scalar curvature. So by the Bordism Theorem,Theorem 4.2, we are reduced to looking at Hn(B�; Z).The proof at odd primes is based on the theory of homology theoriesderived from bordism, using \bordism with singularities." �Using this result, it is easy to check certain cases of Conjectures 4.8and 4.9. For example, one easily deduces:Theorem 4.12 Conjecture 4.9 is true for orientable manifolds with �nitecyclic fundamental group.Proof. The integral homology of a cyclic group is concentrated in odddegrees n, where (for n � 3) a generator is represented by a lens space(which has positive scalar curvature). �Putting together Theorem 4.7 and Theorem 4.11, we obtain the fol-lowing positive results on Conjecture 4.8:



18 Jonathan Rosenberg and Stephan StolzTheorem 4.13 Suppose the discrete group � has the following two prop-erties:1. The Strong Novikov Conjecture holds for �, i.e., the assembly mapA : KO�(B�) ! KO�(C�(�)) is injective.2. The natural map per : ko�(B�) ! KO�(B�) is injective.Then the Gromov-Lawson Conjecture, Conjecture 4.5, and the Gromov-Lawson-Rosenberg Conjecture, Conjecture 4.8, hold for spin manifolds withfundamental group �.Proof. Suppose Mn is a spin manifold, with n � 5, and f : M ! B� is theclassifying map for its universal cover. If per �D([M; f ]) = 0 in KOn(B�),then D([M; f ]) = 0 in kon(B�) by Condition (2), and so M admits a metricof positive scalar curvature by Theorem 4.11. But if per �D([M; f ]) 6= 0,condition (1) says that �(M; f) 6= 0, and thus M cannot admit a metricof positive scalar curvature, by Theorem 4.7. �Theorem 4.13 applies to quite a number of torsion-free groups, for ex-ample, free groups and free abelian groups. It is not much help in studying�nite groups, however. For �nite groups, both of the conditions in Theorem4.13 usually fail. Still, there are so far no counterexamples to the Gromov-Lawson-Rosenberg Conjecture in the case of �nite fundamental groups. Infact, the Conjecture is true for the following class of �nite groups. Re-call that a �nite group has periodic cohomology if and only if its Sylowsubgroups are all cyclic or generalized quaternion.Theorem 4.14 ([BGS]) The Gromov-Lawson-Rosenberg Conjecture,Conjecture 4.8, holds for any spin manifold with �nite fundamental groupwith periodic cohomology.One might wonder whether the restriction to dimensions n � 5 in mostof our results is truly necessary. In dimension 2, we already know the fullstory as far as positive scalar curvature is concerned, and in dimension3, the Thurston Geometrization Conjecture would basically settle every-thing. Dimension 4 is di�erent, however. Seiberg-Witten theory gives thefollowing:Theorem 4.15 (primarily due to Taubes [Tau]; see also [LeB])LetMn be a closed, connected oriented 4-manifold with b+2 (M ) > 1. If M ad-mits a symplectic structure (in particular, if M admits the structure of aK�ahler manifold of complex dimension 2 ) then M does not admit a posi-tive scalar curvature metric (even one not well-behaved with respect to thesymplectic structure).This dramatic result implies that the Gromov-Lawson-Rosenberg Conjec-ture fails badly in dimension 4, even in the simply connected case.



Metrics of positive scalar curvature 19Counterexample 4.16 In dimension 4, there exist:1. a simply connected spin manifold M4 with bA(M ) = 0 but with nopositive scalar curvature metric.2. simply connected non-spin manifolds with no positive scalar curvaturemetric.The counterexamples we have listed to Conjectures 4.8 and 4.9, as well asthe unusual behavior in dimension 4, suggest that it may be best to dividethe Gromov-Lawson-Rosenberg Conjecture into two pieces: an \unstable"part, that may fail in some cases due to low-dimensional di�culties (orother factors), and a \stable" conjecture, which stands a better chanceof being true in general. This, as well as the fact that the periodicity inKO-theory has no obvious geometric counterpart as far as positive scalarcurvature is concerned, motivates:Conjecture 4.17 (\Stable Gromov-Lawson-Rosenberg Conjec-ture") Let Bt8 be the Bott manifold, a simply connected spin manifold ofdimension 8 with bA(Bt8) = 1. (This manifold is not unique, but any choicewill do. What is essential here is that Bt8 geometrically represents Bott pe-riodicity in KO-theory.) If Mn is a spin manifold, and if f : M ! B� isthe classifying map for its universal cover, then M �Bt8�� � ��Bt8 admitsa metric of positive scalar curvature (for some su�ciently large number ofBt8 factors) if and only if �(M; f) = 0 in KOn(C�(�)).The counterpart of Theorem 4.13 as far as the Stable Conjecture is con-cerned is simply:Theorem 4.18 The Stable Gromov-Lawson-Rosenberg Conjecture, Con-jecture 4.17, holds for spin manifolds with fundamental group �, providedthat the assembly map A : KO�(B�) ! KO�(C�(�)) is injective.At the other extreme of �nite fundamental groups, we have:Theorem 4.19 ([RS2]) The Stable Gromov-Lawson-Rosenberg Conjec-ture, Conjecture 4.17, holds for spin manifolds with �nite fundamentalgroup.For groups with torsion, the assembly mapA is not expected to be injective,so Baum, Connes, and Higson [BCH] suggested replacing it by the so-calledBaum-Connes assembly map KO�� (E�) ! KO�(C�(�)). Here E� is theuniversal proper �-space and KO�� (E�) is its �-equivariant KO-homology.The space E� coincides with E�, the universal free �-space, exactly when� is torsion-free, and in this case one recovers the usual assembly map. Fora �nite group, E� is a point and the Baum-Connes assembly map is anisomorphism. The following result generalizes Theorems 4.18 and 4.19.



20 Jonathan Rosenberg and Stephan StolzTheorem 4.20 ([St5])The Stable Gromov-Lawson-Rosenberg Conjecture,Conjecture 4.17, holds for spin manifolds with fundamental group �, pro-vided that the Baum-Connes assembly map KO�� (E�) ! KO�(C�(�)) isinjective.The hypothesis of this theorem is known to be satis�ed in a great manycases, for example, whenever � can be embedded discretely in a Lie groupwith �nitely many connected components.5 Parallels with Wall's Surgery TheorySurgery theory is the main tool in the study of smoothings of Poincar�ecomplexes. As we have seen, it is also the main tool in the study of metricsof positive scalar curvature. In this section we want to discuss similaritiesand di�erences between the resulting theories.A central role in our understanding of smoothings of a Poincar�e complexX is played by Wall's surgery obstruction groups Li(�;w); these are abeliangroups, which depend on the fundamental group � = �1(X), the �rstStiefel-Whitney class w = w1(X), and an integer i. The group relevant forthe existence of a smoothing ofX is Ln(�;w), n = dimX, while Ln+1(�;w)plays a role in the classi�cation of smoothings of X.The analog of the Wall group in the study of positive scalar curvaturemetrics on a manifold M is an abelian group Ri(�;w; b�), which dependson the fundamental group � = �1(M ) and the �rst Stiefel-Whitney classw : � !Z=2, as well as an extension b� of �. Geometrically, the extensionb� � � is given by applying the fundamental group functor to the �berbundle O(M )=Z=2! M , where O(M ) is the frame bundle of M and Z=2acts on O(M ) by mapping an isometry f : Rn! TxM to the compositionf � r, where r : Rn! Rn is the re
ection in the hyperplane perpendicularto (1; 0; : : : ; 0).Up to isomorphism, the extension b� � � is determined by the secondStiefel-Whitney class w2(M ) as follows. If the universal cover of M is spin,then w2(M ) = u�(e) for a unique e 2 H2(B�;Z=2) where u : M ! B� isthe classifying map of the universal covering of M ; in this case b�! � is thecentral Z=2-extension classi�ed by e. Otherwise b� ! � is an isomorphism.Before de�ning the groups Ri(�;w; b�), we want to state and discuss thefollowing result which shows the central role of these groups for the studyof positive scalar curvature metrics.Theorem 5.1 ([St4]) Let M be a smooth, connected, compact manifoldof dimension n � 5, possibly with boundary. Let � = �1(M ) be the funda-mental group, w : � ! Z=2 the �rst Stiefel-Whitney class, and let b� ! �be the extension described above.



Metrics of positive scalar curvature 21Existence. A positive scalar curvature metric h on @M extends to a posi-tive scalar curvature metric on M which is a product metric near theboundary if and only if an obstruction �(M;h) 2 Rn(�;w; b�) van-ishes.Concordance Classi�cation. If h extends to a positive scalar curvaturemetric on M , then the group Rn+1(�;w; b�) acts freely and transitivelyon the concordance classes of such metrics.The groups Ri(
) for 
 = (�; 0; � �Z=2) (corresponding to spin mani-folds) were �rst introduced by Hajduk [Haj]; he also proved the existencestatement in that case.We wish to compare Theorem 5.1 with the corresponding statementsconcerning smoothings of a Poincar�e complex X. We recall that a smooth-ing of X is a (simple) homotopy equivalence f : N ! X between a closedmanifold N and X; two such pairs (N; f), (N 0; f 0) are identi�ed if there isa di�eomorphism g : N ! N 0 such that f is homotopic to f 0 � g. A neces-sary condition for the existence of a smoothing is that the Spivak normalbundle of X is stably �ber homotopy equivalent to the sphere bundle of avector bundle. In homotopy theoretic terms this condition means that themap X ! BG classifying the Spivak normal bundle factors through thecanonical map BO ! BG. Since this map �ts into a homotopy �brationBO ! BG ! B(G=O), the condition is equivalent to the compositionX ! BG! B(G=O) being homotopic to the constant map.A �ber homotopy equivalence � between the Spivak normal bundle ofX and the sphere bundle of a vector bundle determines via the Pontryagin-Thom construction a degree one normal map f : N ! X up to bordism.The pair (N; f) is bordant to a smoothing if and only if its \surgery obstruc-tion" �(N; f) 2 Ln(�;w) vanishes. In particular, if the group [X;B(G=O)]of pointed homotopy classes of maps fromX to B(G=O) is trivial, then thevanishing of �(N; f) is su�cient for the existence of a smoothing of X; if inaddition the group [X;G=O] is trivial, then the �ber homotopy equivalence� is unique up to homotopy. It follows that the bordism class of the degreeone normal map f : N ! X and hence the surgery obstruction �(N; f) isindependent of the choices made in the construction of (N; f). Thus in thiscase, the vanishing of �(N; f) is also a necessary condition for the existenceof a smoothing of X.Concerning classi�cation, the group Ln+1(�;w) acts on the set S(X)of smoothings of X. The \surgery exact sequence" describes the orbits aswell as the isotropy groups of this action. The orbits are the �bers of a mapS(X) ! [X;G=O], and the isotropy subgroups are the images of homo-morphisms [�X;G=O]! Ln+1(�;w). In particular, if the groups [X;G=O]and [�X;G=O] are trivial, then Ln+1(�;w) acts freely and transitively onS(X).



22 Jonathan Rosenberg and Stephan StolzThe upshot of this discussion is that if the groups [X; B(G=O)], [X,G=O], and [�X; G=O] vanish, then the main result of surgery theory takesprecisely the form of Theorem 5.1, with concordance classes of positivescalar curvature metrics replaced by smoothings and Ri(�;w; b�) replacedby Li(�, w).We recall that Wall's Li-groups have an algebraic description as well asa description as bordism groups. So far, there is only a bordism descriptionof Ri.De�nition 5.2 Let 
 be a triple (�;w; b�), where w : � !Z=2 is a grouphomomorphism and b� ! � is an extension of � such that ker(b� ! �) iseither Z=2 or the trivial group. Let � : Spin(n) ! SO(n) be the non-trivialdouble covering of the special orthogonal group SO(n). We note that theconjugation action of O(n) on SO(n) lifts to an action on Spin(n). Letb� n Spin(n) be the semi direct product, where bg 2 b� acts on the normalsubgroup Spin(n) by conjugation by rw(bg). Here r 2 O(n) is the re
ectionin the hyperplane perpendicular to e1 = (1; 0; : : : ; 0) 2 Rn. Abusing nota-tion, we also use the notation w for the composition b� ! � ! Z=2. Wede�ne G(
; n) to be the quotient of b� n Spin(n) by the central subgroupgenerated by (k;�1), where k 2 b� is the (possibly trivial) generator ofker(b� ! �). Sending [a; b] 2 G(
; n) to rw(a)�(b) de�nes a homomorphism�(
; n) : G(
; n) ! O(n).A 
-structure on an n-dimensional Riemannian manifold M is a prin-cipal G(
; n)-bundle P ! M together with a G(
; n)-equivariant map� : P ! O(M ). Here O(M ) is the orthogonal frame bundle of M , a princi-pal bundle for the orthogonal group O(n), and G(
; n) acts on O(M ) viathe homomorphism �(
; n).Remark 5.3 1. If � is the trivial group, then G(
; n) = SO(n) (resp.Spin(n)) if ker(b� ! �) is trivial (resp. non-trivial). In this case a
-structure on M amounts to an orientation (resp. spin structure) onM (cf. [LaM], Def. II.1.3).2. More generally, if w = 0 and b� = � (resp. b� = � � Z=2), thenG(
; n) = � � SO(n) (resp. G(
; n) = � � Spin(n)); in this case, a
-structure amounts to an orientation (resp. spin structure) on M ,together with a principal �-bundle fM !M .3. A 
-structure determines a principal �-bundle fM def= P=G1 ! M ,where G1 is the identity component of G(
; n). We note that G1 =SO(n) if ker(b� ! �) is trivial, and G1 = Spin(n) otherwise. Hencethe principal G1-bundle P ! fM can be identi�ed with the orientedframe bundle of fM or a double cover thereof.



Metrics of positive scalar curvature 23De�nition 5.4 Given a triple 
 as above, Rn(
) is the bordism group ofpairs (N; h), where N is a n-dimensional manifold with 
-structure and his a positive scalar curvature metric on the boundary @N (possibly empty).The obstruction �(M;h) 2 Rn(
(M )) to extending the positive scalar cur-vature metric h on @M to a positive scalar curvature metric onM is just thebordism class [M;h] (every manifold M has a canonical 
(M )-structure).Sketch of Proof of Theorem 5.1. Both the existence and the classi�cationstatement are fairly direct consequences of the surgery results discussed inSection 3. Concerning existence, it is easy to see that if h extends to apositive scalar curvature metric on M , then (M;h) represents zero in thebordism group Rn(
), 
 = 
(M ) = (�;w; b�). (The manifoldM�[0; 1] withsome corners suitably rounded represents a zero bordism.) Conversely, azero bordism for (M;h) provides us with a manifold M 0 with boundary@M 0 = @M over which h extends to a positive scalar curvature metric(which is a product metric near the boundary), and a manifold W of di-mension n + 1 whose boundary is @W = M [@M M 0. Moreover, the 
-structure on M extends to a 
-structure on W . Doing some surgery on Wif necessary, we may assume that the map W ! BG(n+ 1; 
) provided bythe 
-structure on W is a 3-equivalence (i.e., it induces an isomorphismon homotopy groups �i for i < 3, and a surjection for i = 3). The re-striction of this map to M is a 2-equivalence (this is a property of the\canonical" 
(M )-structure of M ). It follows that the inclusion M � W isa 2-equivalence; this implies that W can be built by attaching handles ofdimension � 3 to M � [0; 1]. Reversing the roles of M and M 0, it followsthat W can be constructed from M 0 by attaching handles of codimension� 3; in particular, M is obtained from M 0 by a sequence of surgeries in theinterior of M 0 of codimension � 3. Hence the Surgery Theorem 3.1 showsthat h extends to a positive scalar curvature metric on M .We turn to the classi�cation up to concordance. Our �rst goal is tode�ne the action of Rn+1(
) on e�0R+(M rel h). We do so by describingfor each [g] 2 e�0R+(M rel h) the mapm[g] : Rn+1(
) ! e�0R+(M rel h) r 7! r � [g]:We note that our claim that the action is free and transitive translates intothe statement that for each [g] 2 e�0R+(M rel h) the map m[g] is bijective.It seems di�cult to describe the map m[g] directly. Instead we construct amap i[g] : e�0R+(M rel h) ! Rn+1(
);show that it is a bijection, and de�ne m[g] to be the inverse of i[g] . Tode�ne i[g]([g0]), consider the positive scalar curvature metricg [ (h� s) [ g0 on @(M � I) = (M � f0g) [ (@M � I) [ (M � f1g);



24 Jonathan Rosenberg and Stephan Stolzwhere s is the standard metric on I, and h � s is the product metric on@M � I. We de�ne i[g]([g0]) to be the bordism class of M � I (furnishedwith its canonical 
-structure) together with the metric g [ (h� s)[ g0 onits boundary.Injectivity of i[g] follows immediately from the existence statementproved above. Surjectivity of i[g] is proved in two steps. First we showthat every element of Rn+1(
) has a representative of the form (T; q) withq 2 R+(@T ), where T is an (n+ 1)-thickening of the 2-skeleton of M (i.e.,T � M�I is a codimension zero submanifold with boundary simply homo-topy equivalent to a 2-skeleton of M ). To prove this, let (N; k) be a repre-sentative of a given element of Rn+1(
). After modifyingN if necessary bysurgeries in the interior, we may assume that the map N ! BG(
; n + 1)given by the 
-structure on N is a 3-equivalence. Then using Wall's classi-�cation of thickenings in the stable range [Wa], Prop. 5.1, it can be shownthat T embeds into the interior of N . Another application of the ImprovedSurgery Theorem 3.2 then shows that k extends to a positive scalar curva-ture metric K on N n intT , which implies [N; k] = [T;Kj@T ].In a second step, the Improved Surgery Theorem 3.2 is used again toargue that the positive scalar curvature metric g [ (h � s) [ Hj@T whichlives on a part of the boundary of (M � I) n T can always be extended toa positive scalar curvature metric G on (M � I) n T . This shows that i[g]maps [GjM�f1g] 2 e�0R+(M rel h) to [T;Hj@T ]. �As mentioned above, there is so far no algebraic description of the Rn-groups. Worse yet, there is no pair (n; 
), with n � 5, for which Rn(
) isknown. However, in many cases, we can obtain a lower bound for the sizeof Rn(
) by means of an \index homomorphism"� : Rn(
) ! KOn(C�r 
):Here C�
 is a Z=2-graded C�-algebra associated to 
 = (�;w; b�).6 It isde�ned as an ideal in the group C�-algebra C�b�; namely multiplication bythe generator k of ker(b� ! �) is an involution on C�b� whose �1-eigenspaceis C�
. The Z=2-grading is given by the f�1g-eigenspaces of the involutionC�
 ! C�
 which is the restriction of the involution C�b� ! C�b� givenby ĝ 7! (�1)ŵ(ĝ) for ĝ 2 b� � C�b�, where ŵ is the composition of theprojection map b� ! � and w : � !Z=2. In particular, C�
 = 0 if b� = �and C�
 = C�� if w = 0 and b� = � �Z=2.Remark 5.5 The index homomorphism � is a generalization of the index�(N; f) 2 KOn(C��) for n-dimensional closed spin manifolds N equippedwith a map f : M ! B�. By remark 5.3, the spin structure and the map6For the meaning of the subscript r , which we henceforth suppress, see the discussionon page 15.



Metrics of positive scalar curvature 25f amount to a 
-structure on N , 
 = (�; 0; ��Z=2), and hence the closedmanifold N represents an element [N ] in the bordism group Rn(
). Then�(N; f) = �([N ]) 2 KOn(C��) = KOn(C�
):In particular, � generalizes � to non-spin manifolds, and to manifolds withboundary (whose boundary is equipped with a positive scalar curvaturemetric).De�nition 5.6 To de�ne the index homomorphism �, it is convenient todescribe its range KOn(C�
) as equivalence classes of \Kasparov modules"(H;F ). Here H is a Hilbert module over the real C�-algebraA = C�

C`n[Bla], x13; i.e., H is a right A-module equipped with a compatible A-valuedinner product, which is complete with respect to a norm derived from thisinner product. (When A = R or C , a Hilbert A-module is just a realor complex Hilbert space.) Here F is an A-linear bounded operator onH satisfying certain properties generalizing the main features of ellipticpseudodi�erential operators of order 0. (If A = R or C , these propertiesimply in particular that F is Fredholm.)Hence to de�ne �, we need to describe the pair (H;F ) that represents�([N; h]), where N is manifold with 
-structure and h is a positive scalarcurvature metric on @N . The Hilbert module H is the space of L2-sectionsof a bundle S over the complete manifold without boundary bN = N [@N@N � [0;1) obtained by attaching a cylindrical end to N .The key fact for the construction of S is the existence of a homomor-phism from G(
; n) to Oev(A), the group of even orthogonal elements ofthe C�-algebra A = C�
 
 C`n. (An element x of a real C�-algebra isorthogonal if x�x = xx� = 1.) This homomorphism is given by� : G(
; n) = b� nZ=2 Spin(n) ! Oev(A) [a; b] 7! ea 
 ew(a)1 b:Here e = (1 � k)=2 2 C�b� is the unit of the ideal C�
 � C�b�, and e1 =(1; 0; : : : ; 0) 2 Rn. We remark that e1 has order four in C`n (its squareis �1); to make the above map well-de�ned, we decree w(b) 2 f0; 1g � Z(this gives in fact a homomorphism!).If P ! bN is the principal G(
; n)-bundle given by the 
-structure onN extended to bN , then we de�ne the \spinor" bundle S bN byS bN def= P �G(
;n) A;where g 2 G(
; n) acts on A by left multiplication by �(g).We note that the �bers of S bN are right A-modules and are furnishedwith an A-valued inner product h ; i given by h[p; a]; [p; b]i = a�b 2 A(we note that two elements in the same �ber of S bN can be written in the



26 Jonathan Rosenberg and Stephan Stolzform [p; a]; [p; b] with p 2 P , a; b 2 A). Upon integration over bN , this givesthe space L2(S bN ) of L2-sections of S bN the structure of a Hilbert A-module.To construct a \Dirac operator" D bN : L2(S bN ) ! L2(S bN ) it su�ces tonote that the Levi-Civita connection on bN induces a connection on S bN ,and that the 
-structure can be used to make the �ber of S bN over a pointx 2 bN a left-module over the Cli�ord algebra generated by the tangentspace TxM . Then D bN is de�ned by the usual formula (cf. [LaM], Ch. II,formula 5.0).The operator D bN is A-linear, but it is not a bounded operator on theHilbert A-module H = L2(S bN ) (not even in the classical case A = C ). Oneneeds to replace D bN by a bounded operator f(D bN ), where f is a suitablereal valued function on R, and f(D bN ) is de�ned by \functional calculus"[Lan]. On a compact manifold the usual choice is f(x) = x(x2 + 1)�1=2.This doesn't work on the non-compact manifold bN , since f(D bN )2�1 is notcompact, which is one of the requirements for a Kasparov module. However,it is shown in [St4] that if 4c2 is a lower bound for the scalar curvature ofthe metric f on @N (and hence a lower bound for the scalar curvatureof bN outside a compact set), and if f : R ! R is an odd function withf(x) = 1 for x � c and f(x) = �1 for x � �c, then (L2(S bN ); f(D bN )) is infact a Kasparov module. Moreover, its K-theory class [L2(S bN ); f(D bN )] 2KO(A) = KOn(C�
) is independent of the choice of f and the Riemannianmetric on N extending h 2 R+(@N ).Bunke's relative index theorem for K-valued indices [Bun], Theorem1.2, shows furthermore that the K-theory class [L2(S bN ); f(D bN )] dependsonly on the bordism class of (N; h) in Rn(
); this shows that� : Rn(
) ! KOn(C�
) [N; h] 7! [L2(S bN ); f(D bN )]is a well-de�ned homomorphism.We have seen in Section 4 that there are closed spin manifolds withtrivial �-invariant, which do not admit a metric of positive scalar curvature.In view of Theorem 5.1 and Remark 5.5 this implies that� : Rn(
) ! KOn(C�
)is not in general injective.We observe that the target of � is 8-periodic and that the isomorphismKOn(C�
) �= KOn+8(C�
) is given by multiplication with the Bott ele-ment, the generator of KO8(R)�= Z. Under �, this correponds to the mapRn(
) ! Rn+8(
) given by Cartesian product with the Bott manifold Bt8.However, this map is not an isomorphism in general; in fact, the aboveexamples represent non-trivial elements of Rn(
), whose product with asuitable power of Bt is trivial.



Metrics of positive scalar curvature 27We note that the groups Rn(
) can be made 8-periodic by \inverting"the Bott manifold; i.e., by de�ning a \periodic" or \stable" version of theRn-groups byRn(
)[Bt�1] def= lim�! �Rn(
) �Bt�! Rn+8(
) �Bt�! : : :� :Then � factors through a \stable" homomorphism�st : Rn(
)[Bt�1] ! KOn(C�
):Conjecture 5.7 ([St4]) The homomorphism �st is an isomorphism.The rest of this section is devoted to discussing the status of this con-jecture. First, we look at the case ker(b� ! �) = 0, which corresponds tomanifolds whose universal covering is not spin. In this case C�
 and hencealso KOn(C�
) are trivial. It is a simple observation that also Rn(
)[Bt�1]vanishes. The argument is the following: Cartesian product gives R�(
)the structure of a module over the spin bordism ring 
spin� ; if ker(b� ! �)is trivial, it is in fact a module over the oriented bordism ring 
SO� . In thelatter, the Bott manifold is bordant to a linear combination of the quater-nionic plane HP2 and the complex projective space CP4, which generate
SO8 �= Z�Z. Both of these manifolds admit metrics of positive scalarcurvature, and hence the product of any element in Rn(
) with Bt8 is thetrivial element in Rn+8(
).Injectivity of �st is closely related to the Stable Conjecture 4.17. Infact, having the index homomorphism � at our disposal, we can formulatethe following more general conjecture, which agrees with Conjecture 4.17for spin manifolds.Conjecture 5.8 A closed manifold M admits stably a positive scalar cur-vature metric if and only if �([M ]) vanishes in KOn(
(M )) (here M isequipped with its canonical 
(M )-structure).We note that injectivity of the homomorphism �st implies Conjecture5.8, but not vice versa; in fact, Conjecture 5.8 is equivalent to the statementthat �st is injective when restricted to the image of 
n(
) ! Rn(
)[Bt�1],where 
n(
) is the bordism group of n-dimensional closed manifolds with
-structure. We note that this map factors in the form
n(
) ! KOn(
) def= (
n(
)=Tn(
)) [Bt�1] F�! Rn(
)[Bt�1]; (5.1)where Tn(
) � 
n(
) consists of the bordism classes represented by totalspaces of HP2-bundles. In the spin case 
 = (�; 0; � �Z=2), a (homotopytheoretic) result of Kreck and the second author [KS], Theorem C, implies
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) can be identi�ed with the KO-homology of B�. Composingthe forgetful map F and the index map � we obtain a homomorphismA : KOn(
) F�! Rn(
)[Bt�1] �st�! KOn(C�
)which agrees with the assembly map in the spin case 
 = (�; 0; ��Z=2).In the authors' opinion, Conjecture 5.8 (assuming as in Theorem 4.20that a Baum-Connes type map is injective) seems to be within reach; animportant ingredient in the proof will be a homotopy theoretic interpreta-tion of KOn(
) as a `twisted' KO-homology group of B�. This is work inprogress by Michael Joachim based on his thesis [Joa].Proving injectivity of �st seems hard due to an apparent lack of tools;proving injectivity in the simplest case 
 = (0; 0;Z=2) is equivalent to givingan a�rmative solution to Problem 6.1 discussed in the next section.Surjectivity of �st is closely related to the Baum-Connes Conjectureof [BCH]. We recall that for torsion-free groups � this Conjecture claimsthat the assembly map A : KOn(B�) ! KOn(C�r�) is an isomorphism.The factorization (5.1) of A shows that surjectivity of A implies that �st issurjective.If � is a �nite group, then A is in general far from being surjective.Still, Laszlo Feher shows in his thesis [Feh] that �st is surjective in the\spin case" 
 = (�; 0; ��Z=2), provided � is a �nite p-group (i.e., a �nitegroup whose order is a power of p for some prime p).6 Future DirectionsIn this �nal section, we mention just a few of the most important openproblems concerning positive scalar curvature metrics. These problemsappear to be quite hard, but they play such fundamental roles that it seemswe will never fully understand the subject of positive scalar curvature untilsome progress is made on them.Problem 6.1 Suppose g is a positive scalar curvature metric on Sn. Thenthere is an index theoretic obstruction with values in KOn+1, studied in[Hit], [GL3], and in Section 5 above, to extending g to a positive scalarcurvature metric on Dn+1 which is a product metric on a neighborhood ofthe boundary. Is this the only obstruction? In other words, if the indexobstruction vanishes in KOn+1, does g extend to a positive scalar curva-ture metric on Dn+1? If not, is this at least true \stably" (after takinga Riemannian product with enough copies of the Bott manifold Bt8 ,7 or7It is worth noting here that it is now known that there is a model for the Bottmanifold which admits a Ricci-
at metric [J]. If we use this particular choice, thentaking a Riemannian product with Bt8 does not change the scalar curvature.



Metrics of positive scalar curvature 29after taking a Riemannian product with a 
at torus of su�ciently highdimension)?Discussion. This problem is absolutely fundamental, since without its so-lution, there is no hope for computing the R-groups described in Section5 above, and thus no hope for a complete concordance classi�cation ofpositive scalar curvature metrics, even on the very simplest manifolds. Atthe moment, we know the answer to this question only in the case n = 2,where it is easy to see from Theorem 3.4 that every positive scalar curvaturemetric extends (and the index obstruction always vanishes).A case which may be exceptional (because of the peculiarities of 4-dimensional smooth topology) is n = 3. For this case, Seiberg-Wittentheory could conceivably be of use; though it is more likely that Seiberg-Witten theory is only useful in studying the extension problem for morecomplicated pairs (M4; @M ) where b+2 (M ) > 0. At the moment, we alsodo not know anything about the image of the index obstruction in KO4 �=Zwhen n = 3. However, it is proved in [GL3], pp. 130{131, that theobstruction takes all values in KO8 �= Zwhen n = 7.One possible method of attack in this problem (which could potentiallybe used in any dimension > 2) is the following. We may as well assumethat the scalar curvature of g is a positive constant, say 1. If we extendg any way we like to a metric g on Dn+1 which is a product metric ina neighborhood of Sn = @(Dn+1), then we can try to make a pointwiseconformal change in the metric g, supported away from the boundary, toa metric of positive scalar curvature of the special form efg, f supportedon the interior of D. This leads to the study of the \Yamabe equationwith Dirichlet boundary conditions." Rewriting the conformal factor ef asv4=(n�2), we obtain the boundary value problem��v + n�2n�1 �4 v = n�2n�1 �14 v n+2n�2 in intDn+1; (6.1)v > 0 in intDn+1; v � 1 near @(Dn+1):Here � is the scalar curvature of the original metric g, which is 1 on aneighborhood of @(Dn+1) and has unknown behavior in the interior, � isthe Laplace-Beltrami operator with respect to g (with the sign conventionfor which this operator is non-positive), and �1 is the scalar curvature forthe new metric (which we want to be everywhere positive).Note from equation (6.1) that if the \conformal Laplacian," the linearoperator L0 = �� + n� 2n� 1 �4 ;has positive spectrum (with Dirichlet boundary conditions, in other wordson functions vanishing at the boundary), then it follows that the metric



30 Jonathan Rosenberg and Stephan Stolzg has an extension with positive scalar curvature. The reasoning, copiedin part from [KW1] and [KW2], is as follows. We may assume that theminimum value of � is ��0, some non-positive number. (Otherwise we'realready done.) The eigenfunction ' of L0 corresponding to the lowest eigen-value � cannot change sign, by an application of the maximum principle,so we may assume ' � 0 in intDn+1, and clearly there must be some " > 0such that ' > " on the compact set where � � 0. Then if v = 1 + �',v > 0 on Dn+1, v � 1 on @(Dn+1), andL0v = n� 2n� 1 �4 + ��';which we can arrange to be everywhere positive by taking � large enoughto have ��" > n�2n�1 �04 . So v satis�es equation (6.1) except for the conditionthat v be constant near the boundary. We can achieve this by makinga small perturbation in ' near the boundary. (This destroys its beingan eigenfunction for L0, but doesn't change the condition we really need,which is that L0(1 + �') should be everywhere positive.)A curious feature of equation (6.1), which suggests that the answer toour \stable" question is \yes," is that the operator L0 bears a remarkablesimilarity to equation (4.1) for the square of the Dirac operator. (In fact,the lower-order terms n�2n�1 �4 and �4 become the same in the stable limit asn ! 1.) A challenge before us is therefore to �gure out how to applyinformation about the Dirac operator, which acts on spinors, to the studyof the scalar equation (6.1). �Problem 6.2 Are we missing additional \unstable" obstructions to posi-tive scalar curvature (in the closed manifold case, and in dimensions otherthan 4) which do not come from the theory of minimal hypersurfaces?Discussion. The existence of counterexamples to Conjectures 4.8 and 4.9,as well as the fact that there are many classes in Hn(B�) or kon(B�) for �-nite groups � (see Theorem 4.11) which no one has been able to represent bymanifolds of positive scalar curvature, suggests that this may be the case.(The minimal hypersurface method of [SY] can only be applied to mani-folds which have a covering space with positive �rst Betti number, clearlya very restrictive condition not applying when the fundamental group is�nite.) Conceivably, additional obstructions to positive scalar curvaturemight come from the study of certain non-linear partial di�erential equa-tions, for example, from higher-dimensional analogues of Seiberg-Wittentheory, that involve coupling of the Dirac operator to something else, orfrom the study of moduli spaces of solutions to variants of the Yamabeproblem. �
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