Metrics of positive scalar curvature
and connections with surgery

Jonathan Rosenberg*
and Stephan Stolz'

January 2, 1998

1 Introduction

This chapter discusses the connection between geometry of Riemannian
metrics of positive scalar curvature and surgery theory. While this i1s quite
a deep subject which has attracted quite a bit of recent attention, the
most surprising aspect of this whole area remains the original discovery
of Gromov-Lawson and of Schoen-Yau from about 20 years ago—namely,
that there 2s a connection between positive scalar curvature metrics and
surgery. The Surgery Theorem of Gromov-Lawson and Schoen-Yau remains
the most important result in this subject. We discuss it and its variants at
length in Section 3. Then in Section 4, we discuss the status of the so-called
Gromov-Lawson Conjecture, which relates the existence of positive scalar
curvature metrics to index theory and KO-homology. This is preparatory
to Section 5, which explains the parallels between the classification of pos-
itive scalar curvature metrics and the classification of manifolds via Wall’s
surgery theory. In the final section, Section 6, we discuss a number of open
problems.

All manifolds in this paper will be assumed to be smooth (C'*°). For
simplicity, we restrict attention to compact manifolds, although there are
also plenty of interesting questions about complete metrics of positive scalar
curvature on non-compact manifolds. At some points in the discussion,
however, 1t will be necessary to consider manifolds with boundary.

*Partially supported by NSF Grant # DMS-96-25336 and by the General Research
Board of the University of Maryland.
tPartially supported by NSF Grant # DMS-95-04418.
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2 Background and Preliminaries

One of the most important problems in global differential geometry 1s to
study how curvature relates to topology, or to phrase things differently, to
study what constraints topology places on curvature. This problem can
be asked in several different contexts. When applied to vector bundles
with a connection, it gives rise to Chern-Weil theory and the theory of
characteristic classes. Here we will instead ask about the scalar curvature
of a Riemannian manifold. The scalar curvature is the weakest curvature
invariant one can attach (pointwise) to a Riemannian n-manifold. Tts value
at any point can be described in several different ways:

1. as the trace of the Ricci tensor, evaluated at that point.

2. as twice the sum of the sectional curvatures over all 2-planes e; A e;,
¢t < j, in the tangent space to the point, where e, ..., e, 18 an
orthonormal basis.

3. up to a positive constant depending only on n, as the leading coeffi-
cient in an expansion telling how volumes of small geodesic balls dif-
fer from volumes of corresponding balls in Euclidean space. Positive
scalar curvature means balls of radius » for small r have a smaller
volume than balls of the same radius in Euclidean space; negative
scalar curvature means they have larger volume.

In the special case n = 2, the scalar curvature is just twice the Gaussian
curvature.
We can now state the basic problems we will consider in this paper:

Problems 2.1

1. If M™ is a closed n-manifold, when can M be given a Riemannian
metric for which the scalar curvature function is everywhere strictly
positive? (For simplicity, such a metric will henceforth be called a
metric of positive scalar curvature.)

2. If M™ 1s a closed manifold which admits at least one Riemannian
metric of positive scalar curvature, what is the topology of the space
RT (M) of all such metrics on M? In particular, is this space con-
nected?

3. If M™ is a compact manifold with boundary, when does M admit
a Riemannian metric of positive scalar curvature which is a product
metric on a collar neighborhood M x [0, a] of the boundary? When
this is the case, what is the topology of the space of all such metrics?
Of the space of all such metrics extending a fixed metric in R* (9M)?
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A few comments on these problems are in order. With regard to ques-
tion (1), the reader might well ask what is special about positivity. Why
not ask about metrics of negative scalar curvature, or of vanishing scalar
curvature, or of non-negative scalar curvature? More generally, we could
ask which smooth functions on a manifold M are realized as the scalar cur-
vature function of some metric on M. It is a remarkable result of Kazdan
and Warner that the answer to this question only depends on which of the
following classes the manifold M belongs to:

1. Closed manifolds admitting a Riemannian metric whose scalar cur-
vature function is non-negative and not identically 0.

2. Closed manifolds admitting a Riemannian metric with non-negative
scalar curvature, but not in class (1).

3. Closed manifolds not in classes (1) or (2).

All three classes are non-empty if n > 2. For example, it is easy to see
from the Gauss-Bonnet-Dyck Theorem?! that if n = 2, class (1) consists of
5% and RP?; class (2) consists of 77 and the Klein bottle; and class (3)
consists of surfaces with negative Euler characteristic.

Theorem 2.2 (Trichotomy Theorem, [KW1], [KW2]) Let M™ be a
closed connected manifold of dimension n > 3.

1. If M belongs to class (1), every smooth function is realized as the
scalar curvature function of some Riemannian metric on M.

2. If M belongs to class (2), then a function f is the scalar curvature of
some metric if and only if either f(x) < 0 for some point x € M, or
else f = 0. If the scalar curvature of some metric g vanishes iden-
tically, then g is Ricci flat. (Le., not only does the scalar curvature
vanish identically, but so does the Ricei tensor.)

3. If M belongs to class (3), then f € C®(M) is the scalar curvature of
some metric if and only if f(x) <0 for some point x € M.

We note that the Theorem shows that deciding whether a manifold M
belong to class (1) is equivalent to solving Problem 2.1.1. Futaki [Fu] has
shown that — at least for simply connected manifolds — class (2) consists of
very special manifolds admitting metrics with restricted holonomy groups.

As further justification for our concentrating on positive scalar curva-
ture in Problem 2.1.2, one has the following fairly recent result:

IThe point is that for any choice of Riemannian metric, the integral of the scalar
curvature with respect to the measure defined by the metric is 47 times the Euler char-
acteristic. Dyck’s role in this is explained in the interesting article by D. Gottlieb, “All
the way with Gauss-Bonnet and the sociology of mathematics,” Amer. Math. Monthly
103 (1996)7 no. 6, 457-469.
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Theorem 2.3 ([Loh]) The space R~ (M) of negative scalar curvature met-
rics on M s contractible, for any closed manifold M™ of dimension n > 3.

Finally, one might ask the reason for the Riemannian product boundary
condition in Problem 2.1.3. The first part of the answer comes from the
fact that without a boundary condition, any manifold with non-empty
boundary admits a metric of positive scalar curvature. (In fact, Gromov
[Gr], Theorem 4.5.1, even showed it admits a metric of positive sectional
curvature, a much stronger condition.) The second part of the answer is
that there are other interesting boundary conditions one could impose that
are relevant to the study of positive scalar curvature, such as positive mean
curvature on the boundary (see [GL1], Theorem 5.7, for example), but we
have tried to limit attention to the simplest such condition. Often one can
reduce to this condition anyway—see [Gajl], Theorem 5.

3 The Surgery Theorem and its Variants

The connection between positive scalar curvature metrics and surgery be-
gins with:

Theorem 3.1 (Surgery Theorem, [GL2], Theorem A and [SY])
Let N” be a closed manifold, not necessarily connected, with a Rieman-
nian metric of positive scalar curvature, and let M"™ be obtained from N by
a surgery of codimension q > 3. Then M can be given a metric of positive
scalar curvature.

Proof. We give the argument of Gromov-Lawson, just briefly sketching their
initial reduction of the problem (which is explained well in their paper), but
going over the crucial “bending argument” in detail. (The reason for this
is that it appears there is a mistake in [GL2] on page 428—in the displayed
formula on the middle of that page, there is a factor of sin? y missing, and
thus the argument at the bottom of page 428 doesn’t work as stated.)

Suppose SP is an embedded sphere in N of codimension ¢ = n—p > 3,
with trivial normal bundle. By using the exponential map on the normal
bundle of SP, we may assume that we have an embedding of SP x D4(7)
into N for some 7 > 0 (the radius of a “good tubular neighborhood of
SP”) so that the sphere on which we will do surgery is SP x {0}, the radial
coordinate r on D?(7) measures distances from SP x {0}, and such that
curves of the form {y} x £, where £ is a ray in D?(7) starting at the origin,
are geodesics. However, we know nothing about the restriction of the metric
on N to the sphere S? x {0}.

The key idea of the proof is to choose a suitable ¢ curve v (with
endpoints) in the ¢-r plane, and to consider

T=A{(y, =, 1) € (Sp X Dq(f)) xR:(t, r=]|z|]) €7}
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with the induced metric, where R is given the Euclidean metric and (Sp X
Di(r)) x R is given the metric of the Riemannian product N x R. We
choose the curve v to satisfy the following constraints:

1. v lies in the region 0 < r < 7 of the ¢-r plane.

2. 7 begins at one end with a vertical line segment ¢ = 0, r1 < r < 7.
This guarantees that near one of the two components of 97, T is
isometric to a portion of V.

3. v ends with a horizontal line segment r = 7o, > 0, with 7, very small.
This guarantees that near the other component of 7', T' is isometric
to the Riemannian product of a line segment with SP x S?=1(r.),
where the metric on SP x S9=1(ry,) (not in general a product metric)
is induced by the embedding S? x S9=1(r.,) C SP x DI(r) C N.

4. In the region ro, < 7 < 71, ¥ is the graph of a function r = f(¥)
which is decreasing and (weakly) concave upward.
r

'f

r

to

5. 7 is chosen so that the scalar curvature of T is everywhere positive.
This is the hard part. The Gauss curvature equation says that the
sectional curvature of a hypersurface, evaluated on a plane spanned
by two principal directions for the second fundamental form, is the
corresponding sectional curvature of the ambient manifold, plus the
product of the two principal curvatures. So, summing the sectional
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curvatures over all the two-planes spanned by pairs of principal di-
rections, one derives for small » > 0 the formula:

s 2
. 0
/fT:/fN—i—O(l)stH—l—(q—1)(q—2)SH;2
ki sin 6
—(q— D22 — O (g — Dkesin®d, (3.1)

where k7 and sy are the scalar curvatures of 7" and N, respectively,
where k is the curvature of 4 (as a curve in the Euclidean plane), and
where @ is the angle between v and a vertical line. (See figure above.)

Assume for the moment that we have constructed + as required. Since
the metric on 7' is 1sometric to a portion of N in a collar of one component
of 9T, we can glue T onto N ~ (SP x DI(r)), getting a manifold N’ of
positive scalar curvature with a single boundary component S? x S~ (r..),
and with a metric that is a product metric in a collar neighborhood of the
boundary.

Since ¢g—1 > 2 and 7 1s very small, there is a homotopy of the metric on
SP x S971 (ro ) through metrics of positive scalar curvature to a Riemannian
product of two standard spheres: SP(1) and S?~!(r.,). Even though SF(1)
has zero curvature if p < 1, we have large positive scalar curvature since
S%71(re) has sectional curvature r7? > 0. (See [GL2], Lemma 2.) This
homotopy can be used to construct a metric of positive scalar curvature on
a cylinder S? x S971(r..) x [0, a], which in a neighborhood of one boundary
component matches the metric on a collar neighborhood of 97" in T', and
which in a neighborhood of the other boundary component is a Riemannian
product of standard spheres SP(1) and S971(r..,) with an interval. (See
Proposition 3.3 below.) We glue this cylinder onto N/ to get N/, a manifold
of positive scalar curvature with boundary S? (1) x S?7'(rs,), and with a
product metric in a neighborhood of the boundary.

Finally, to finish off the proof, we glue onto N’ a Riemannian prod-
uct DPF x S9=1(r,.), where the disk DP*! has not the flat metric but a
metric which is a Riemannian product SP(1) x [0, 8] in a neighborhood of
the boundary. (Such metrics on the disk are easy to write down.) The
endproduct of the construction is a metric of positive scalar curvature on
M.

We're still left with the most delicate step, which is construction of a
curve v with the properties listed on page 5 above. Obviously, there 1s no
problem satisfying the first four conditions. To satisfy the last condition,
we need to choose v so that k7 > 0 in equation (3.1). Since ky is bounded
below by a positive constant, the constraint will be satisfied provided that

sin 6 r
+ Ko

r sin

(L+Cr)k < (¢-2)

7 — Crsinf, (3.2)
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where kg > 0 1s q_% times a lower bound for xy, and where the constants
C' > 0 and C' > 0 come from the O(1) term and the O(r) term in equation
(3.1), respectively. (When # = 0, the right-hand side of inequality (3.2) is
to be interpreted as +00.)

To satisfy this inequality, we begin by choosing

0 < 0y < arcsin (@ .

Then for 0 < ¢ < #g, the second term on the right in inequality (3.2)
dominates the last term, and thus we can start at the point (0,71) (where
¢ and k are required to vanish) and find a small “bump function” of compact
support for k& (as a function of arc length) satisfying (3.2), so that 4 bends
in a small region around to a line segment with small positive #. Decreasing
Oy if necessary, we may assume this “first bend” ends at & = #y. (So far
the details are just as in [GL2], except that we have made the estimates
more explicit.)
Next, we choose ro with

. /1 /1
0<r0<m1n( ¥Yok 20/).

This insures (since ¢ — 2 > 1) that for r < ry,

sin 6 3sind

(¢—2) —Crsinf >

r

and

14+ 0 <

N | Qo

so that k can be as large as % .311_119 —sind

- 5= When v crosses the line r = ro,
we start the “second bend” by quickly bringing k& up to the allowed value
of % and thereafter following the solution of the differential equation
k= %. If we write r = f(t), then

1 f//

sinf = ——— k=

I+ (1+(f)?)

So our differential equation can be rewritten

wjw

o LY
2f
This equation can be solved explicitly; the solution is
1 C
f0) = o+ =),

e 4
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for constants C7 and Cs. Suppose we start following the differential equa-
tion at t = ¢; & ry arctan fly. Then we will need to take f(t1) very close to
rg and f'(t1) very close to — cot fy. This can be accomplished by taking C5
bigger than ¢;, C1(Cs —t1) large, and Cy huge. Then we follow the solution
out until ¢ is very close to C, at which point f(¢) is approximately C%,
which is very small but positive, and f’(¢) is approximately 0, i.e., # 1s
very close to 7. Then we quickly bring & back down to 0 and finish with a
horizontal line, thereby satisfying all our requirements. O

There 1s a slight strengthening of this due to Gajer, which provides

information about manifolds with boundary.

Theorem 3.2 (Improved Surgery Theorem, [Gajl]) Let N be a
closed manifold with a metric of positive scalar curvature ds4;, not neces-
sarily connected, and let M be obtained from N by a surgery of codimension
> 3. Let W be the trace of this surgery (a cobordism from N to M). Then
W can be given a metric of positive scalar curvature dsiy, which is a prod-
uct metric ds% + dt* in a collar neighborhood of N and a product metric
ds%; + dt? in a collar neighborhood of M.

This indeed strengthens Theorem 3.1, since in a neighborhood of M, the
scalar curvature of ds3; is the same as that of ds3,, and thus we have given
M a metric of positive scalar curvature.

The study of metrics such as the one in Theorem 3.2, together with the

obvious parallels in the theory of automorphisms of manifolds, motivates
the following.
Definition. Let ds? and ds? be two Riemannian metrics on a compact
manifold M, both with positive scalar curvature. (For the moment we take
M to be closed, though later we will also consider the case where M has
a boundary.) We say these metrics are isotopic if they lie in the same
path component of the space of positive scalar curvature metrics on M,
and concordant if there is a positive scalar curvature metric on a cylinder
W = M x [0, a] which restricts to ds2 + dt? in a collar neighborhood of
M x {0} and to ds? + dit? in a collar neighborhood of M x {a}. We denote
by TR (M) the set of concordance classes of positive scalar curvature
metrics on M.

There is one important and easy result relating isotopy and concordance
of positive scalar curvature metrics.

Proposition 3.3 ([GL2], Lemma 3; [Gajl], pp. 184-185) Isolopic
metrics of positive scalar curvature are concordant.

Sketch of Proof. Suppose ds?, 0 < t < 1, is an isotopy between positive
scalar curvature metrics on M. Consider the metric dstz/a +dt?on W =
M x [0, a]. This will have positive scalar curvature for a > 0, since a
calculation shows that the scalar curvature &(x, t) at a point (z, t) will be



Metrics of positive scalar curvature 9

of the form &/ (x) + O(1/a), where /4 is the scalar curvature of M for
the metric dstz/a. (In fact, if one is careful, the O(1/a) can be improved

to O(1/a?), though this doesn’t matter to us.) Since M is compact and
all the metrics dstz/a have positive scalar curvature, we may choose kg > 0
such that k;/q(x) > ko > 0 for all « and for all ¢. For a large enough, the
error terms will be less than xq/2, so W also has positive scalar curvature.
O

It is still not known if the converse holds or not; indeed, there is no
known methodology for approaching this question, as there is no known
method for distinguishing between isotopy classes of positive scalar curva-
ture metrics which is not based on distinguishing concordance classes. How-
ever, dimension 2 is special enough so that for the two closed 2-manifolds
which admit positive scalar curvature metrics, S? and RP?, we can give a
complete classification up to isotopy, and even say a bit more.

Theorem 3.4 Any two metrics of positive scalar curvature on S? or on
RP? are isotopic. In fact, the spaces RT (S?) and RT (RP?) are contractible.

Proof. We begin with a general observation. Let M be any manifold,
say for simplicity compact, and let Diff M be its diffeomorphism group,
a topological group in the C° topology. (For M compact, there is only
one reasonable topology on Diff M.) When M is oriented, we denote the
orientation-preserving subgroup of Diff M by Diff * M. TLet C°(M) be
the smooth functions on M, viewed as a topological vector space (and, in
particular, as a topological group under addition). Then one can form the
semidirect product group C'* (M) x Diff M, with Diff M acting on C'*° (M)
by pre-composition. Note that C*° (M) x Diff M acts on Riemannian met-
rics on M on the right by the formula

g (u, ) = ¢"(e"g), ue C®(M), ¢eDiff M,

and that this action is continuous for the C'™° topologies. Any two metrics
in the same orbit for this action are said to be conformal to one another;
any two metrics in the same orbit for the action of the subgroup C'*(M)
are sald to be pointwise conformal to one another.

Now we need to recall the Uniformization Theorem for Riemann sur-
faces. When formulated in the language of differential geometry (rather
than complex analysis), it says that if M is an oriented connected closed
2-manifold, then C*° (M) x Difft M acts transitively on the space of Rie-
mannian metrics on M. Let’s apply this to S?. Then we get an identi-
fication of the (contractible) space of Riemannian metrics on S? with the
quotient of C™(S?) x Diff ' S? by the subgroup fixing the standard met-
ric go of constant Gaussian curvature 1. This subgroup is identified with
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PSL(2, C), the group of Mobius transformations,” since a famous result of
complex analysis says that all (orientation-preserving) pointwise conformal
automorphisms for the standard spherical metric come from holomorphic
automorphisms of $? = CPL. Since PSL(2, C) has the homotopy type of
its maximal compact subgroup PSU(2) = SO(3), and since

(C*°(S?) » Difft S?) /PSL(2, C)

must be contractible, it follows that DiffTS? has a deformation retraction
down to its subgroup SO(3), which in turn is the group of orientation-
preserving isometries for the standard metric. Also observe that since S?
is the double cover of RP?, taking the 7 /2-action into account shows that
C>(RP?) x Diff RP? acts transitively on the Riemannian metrics on RP?,
and that the stabilizer of the standard metric is precisely SO(3), the isom-
etry group. So Diff RP? also has a deformation retraction down to SO(3).

Let’s come back to metrics of positive scalar curvature. If go and gg
denote the standard metrics on S? or RIP? of constant Gaussian curvature
1, then a conformally related metric go - (u, @) (respectively, go - (u, ¢)) has
positive scalar curvature if and only if €% gy (resp., €% go) does (since positive
scalar curvature is preserved under the action of Diff). Since gy has scalar
curvature = 2, the formula computing the change in scalar curvature under
a conformal change in the metric (found in [KW1], for example) gives

Au) =2 — "k, (3.3)

where A is the Laplace-Beltrami operator for the metric go (with the sign
convention making this a negative semi-definite operator) and « is the
scalar curvature of the metric e*gy. We claim that the set

S ={ue C™:kin (3.3) is strictly positive}

is star-shaped about the origin.
To prove this, suppose u is such that « in (3.3) is strictly positive. Then
if x; denotes the scalar curvature of the metric e!“go, replacing u by tu in

(3.3) gives
Aftu) = 2 — e™ky.
Since A is linear and xy = 2, we obtain:

2 — Mgy = tA(u) = (2 — ¥k),

2Caution: While PSL(2, C) embeds in DiffT 52, the identification of PSL(2, C) with
the stabilizer of g is via a “diagonal embedding,” since we need to take the “conformal
factor” into account.
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or
ey = te'k + 2(1 —1).

Since, by assumption, « is everywhere positive and 0 < ¢ < 1, both terms
on the right are non-negative. Furthermore, the first term on the right only
vanishes when ¢ = 0, and the second term only vanishes when ¢ = 1. Thus
etk is everywhere positive, and so ky is everywhere positive, proving that
§ is star-shaped (and thus contractible).

Finally, we see that 9+ (5?) is identified with
(8(5?) - Diff+(5?)) /PSL(2, C) C (C™(S?) - Diff*(5?)) /PSL(2, C),
and similarly %+ (RP?) is identified with
(S(RP?) - Diff (RP?)) /SO(3) C (C*°(RP?) - Diff (RP?)) /SO(3).

As Difft(S?)/PSL(2, C), Diff(RP?)/SO(3), S(S?), and S(RP?) are all
contractible, we see that /¥ (S5?) and SRF (RP?) must be contractible. O

4 The Gromov-Lawson Conjecture and its
Variants

In the discussion so far, we have not explained (except in the case of di-
mension 2) why it is that there are closed manifolds which cannot admit a
positive scalar curvature metric. Most of the known results of this sort, at
least for manifolds of large dimension, stem from a fundamental discovery
of Lichnerowicz [Li], which is that if P is the Dirac operator on a spin
manifold M (a self-adjoint elliptic first-order differential operator, acting
on sections of the spinor bundle), then

PP=VV 4 (4.1)
Here V is the covariant derivative on the spinor bundle induced by the
Levi-Civita connection, and V* is the adjoint of V. Since the operator
V*V is obviously self-adjoint and non-negative, it follows from equation
(4.1) that the square of the Dirac operator for a metric of positive scalar
curvature is bounded away from 0, and thus that the Dirac operator cannot
have any kernel. It follows that any index-like invariant of A which can be
computed in terms of harmonic spinors (i.e., the kernel of J) has to vanish.
E.g., if M 1s a spin manifold of dimension n, there is a version of the Dirac
operator which commutes with the action of the Clifford algebra C'f,, (see
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[LaM], § I1.7). In particular, its kernel is a (graded) C¢,-module, which
represents an element (M) in the real K-theory group KO, = KO~ (pt)
(see [LaM], Def. I1.7.4).

Theorem 4.1 (Lichnerowicz [Li]; Hitchin [Hit]) If M" is a closed spin
manifold for which a(M) # 0 in KO, then M does not admit a metric of
positive scalar curvature.

We recall that KO,, = Z for n = 0 mod 4, that KO, = Z/2 for
n = 1,2 mod 8, and KO, = 0 for all other values of n. Furthermore,
for n = 0 mod 4, the invariant a(M) is essentially equal to Hirzebruch’s
g—genus g(M), namely o(M) = g(M) for n = 0 mod 8, and a(M) =
Q(M)/Q for n =4 mod 8. So this result immediately shows that there are
many manifolds, even simply connected ones, which do not lie in class (1)
of the Kazdan-Warner trichotomy (see Theorem 2.2). E.g., the Kummer
surface K*, the hyperplane in the complex projective space CP3 given by
the equation 2§ + 2z} + z3 + z3 = 0, is spin and has A(K) = 2, and hence
does not admit a metric of positive scalar curvature.

We observe that «(M) depends only on the spin bordism class [M] €
QSPIn . In fact, we can interpret a(M) as the image of [M] under a natural
transformation of generalized homology theories as follows. Let KO.(X)
and ko, (X) denote the periodic and connective real K-homology of a space
X, respectively (so KO, (X) satisfies Bott periodicity, and ko, = ko.(pt) is
obtained from KO, = KO.(pt) by killing the groups in negative degree).
Then there are natural transformations

QPin(X) 2 ko, (X) 25 KO.(X),

the first of which sends the bordism class [M, f]to fi ([M]k,), where [M]i, €
ko.(M) denotes the ko-fundamental class of M determined by the spin
structure. With this notation, a(M) = per o D([M]).

Next, we want to state an important consequence of Theorem 3.1, but
first we need a relevant definition.
Definition. Let B — BO be a fibration. A B-structure on a manifold is
defined to be a lifting of the (classifying map of the) stable normal bundle
to a map into B. Then one has bordism groups QP of manifolds with B-
structures, defined in the usual way. (For instance, if B = BSpin, mapping
as usual to BO, then Q8 = QPI")) We note that given a connected closed
manifold M, there is a choice of such a B3 for which M has a B-structure
and the map M — B is a 2-equivalence. (Example: If M is a spin
manifold, choose B = B x BSpin, where 7 = m (M), and let B — BO be
the projection onto the second factor composed with the map BSpin — BO

3We will see in Section 5 how to formalize this in a functorial way.
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induced by Spin — O. Map M to the first factor by means of the classifying
map for the universal cover, and to the second factor by means of the spin
structure.)

The simply connected cases of the following theorem were proved in
[GL2]; the general case, with this formulation, is in [RS1].

Theorem 4.2 (Bordism Theorem) Let M"™ be a B-manifold with n =
dimM > 5, and assume that the map M — B s a 2-equivalence. Then
M admaits a metric of positive scalar curvature if and only if there is some
B-manifold of positive scalar curvature in the same B-bordism class.

Sketch of Proof. Let N be a B-manifold B-bordant to M. The hypotheses
combine (via the method of proof of the s-Cobordism Theorem) to show
that M can be obtained from N by surgeries in codimension > 3. Then if
N admits a metric of positive scalar curvature, one can apply Theorem 3.1
to conclude that the same is true for M. O

Remark. Note that in the proof of Theorem 4.2, M and N do not quite
play symmetrical roles. While M can be obtained from N by surgeries in
codimension > 3, the converse may not be the case unless N — B is also
a 2-equivalence. This is useful in applications, since often the “obvious”
generators for B-bordism groups do not satisfy the 2-equivalence condition.

Theorem 4.3 (Gromov-Lawson [GL2]) If M is a simply connected
closed manifold of dimension n > 5, and if wa(M) # 0, then M admits a
metric of positive scalar curvature.

Sketch of Proof. TIf M is simply connected with wa(M) # 0, then the
appropriate B — BO to use in Theorem 4.2 is just BSO — BO, and
the corresponding bordism theory is oriented bordism. Gromov-Lawson
proceed to show that the generators of 2, constructed by Wall all admit
positive scalar curvature metrics. [

Of course, the restriction ws(M) # 0 in Theorem 4.3 is important,
because Theorem 4.1 shows that otherwise there can be obstructions to
positive scalar curvature. It 1s also well-known that the maps D,, : szin —
ko, (pt) are all surjective, so all potential obstructions are in fact realized.
In the simply connected spin case, Gromov and Lawson were not able to
get as sharp a result as in the non-spin case, but at least they were able to
prove:

Theorem 4.4 If M s a simply connected closed manifold of dimension
n > 5, and if wa(M) = 0 (so that, once an orientation is fired, M de-
fines a class [M] € QSP™), then a finite connected sum of copies of M
admits a melric of positive scalar curvature if and only if [M] maps to
0 € KO,(pt) @z Q under o.
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For manifolds with a non-trivial fundamental group, the situation is
more complicated, as can already be seen in the 2-dimensional case. (As we
have already observed, no closed connected 2-dimensional with an infinite
fundamental group admits a positive scalar curvature metric. Nevertheless,
oriented surfaces map trivially to KOa2(pt) = Z/2, at least for the usual
(bounding) choice of a spin structure.) Tt was shown in [GL1] and [SY] that
tori never admit positive scalar curvature metrics (in any dimension), and
that in general, there are extra obstructions to positive scalar curvature
that come from the fundamental group. Extrapolating from Theorem 4.4
and from their results in [GL3], Gromov and Lawson arrived at:

Conjecture 4.5 (“Gromov-Lawson Conjecture” [GL3]) Suppose M
15 a connected closed spin manifold of dimension n > 5 with “reasonable”
fundamental group m (in a sense to be discussed below). Let f : M — Br
be the classifying map for the universal cover of M, so that (M, f) defines
a class [M, f] € QP"(Br). Then M admits a metric of positive scalar
curvature if and only if per o D([M, f]) = 0 in KO, (Bn).

The conjecture in the simply connected case was settled by:

Theorem 4.6 (Stolz [St1]) If M is a simply connected closed manifold
of dimension n > b, and if wa(M) = 0 (this means M admits a spin
structure, which since M is simply connected is unique once we fir an
orientation), then M admits a metric of positive scalar curvature if and
only if the Lichnerowicz-Hitchin obstruction «(M) vanishes in KO, (pt).

Sketch of Proof. The first step in the proof is to reduce this to a 2-primary
problem in homotopy theory. This reduction is primarily due to Miyazaki,
who showed [Mi] by explicit construction of enough manifolds of positive
scalar curvature that the subgroup of szin generated by manifolds of pos-
itive scalar curvature is a subgroup of the kernel of a of index a power of 2.
The main part of the proof is then based on the observation that the first
non-trivial element in the kernel of « is the quaternionic projective space
HIP2 A careful transfer argument (relying on the mod 2 Adams spectral
sequence) then shows that, after localizing at 2, the kernel of « in general
is generated by the total spaces of fiber bundles over spin manifolds with
fiber HIP? and structure group PSp(3), the isometry group of HPZ. Tt is
not hard to show that all such fiber bundles admit positive scalar curva-
ture metrics (since one can rescale the metric so that the positive scalar
curvature on the projective space fibers dwarfs any contributions from the
base). So the result follows from the simply connected case of Theorem
4.2. 0

To explain progress regarding the conjecture in the non-simply con-
nected case, we need one additional ingredient.
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Definition. Let 7 be any discrete group. Then the real group ring R can
be completed in two standard ways to get a C*-algebra C*(r).* (Either one
lets R act on £%(7) on the left in the usual way, and takes the completion
in the operator norm, obtaining what is usually called C(x), or else one
lets R7 act on the Hilbert space direct sum of the spaces of all unitary
representations of 7 (suitably interpreted to avoid set-theoretic problems),
and takes the completion in the operator norm, obtaining what is usually
called C% . (7).) The two completions coincide if and only if 7 is amenable,
but for present purposes it will not matter which one we use, so we won’t
distinguish in the notation.

There is an assembly map A : KO, (Bw) — KO,(C*(r)) defined as
follows. Form the bundle Vg, = En x, C*(r) over B whose fibers are
rank-one free (right) modules over C”(w). As a “C*(m)-vector bundle”
over Bm, this has a stable class [Vp,] in a K-group KO°(Brm; C*(r)),
and A is basically the “slant product” with [Vgr]. The assembly map
A is functorial in 7 (to the extent that this makes sense). Injectivity of
A, often known as the Strong Novikov Conjecture, implies the Novikov
Conjecture on homotopy invariance of higher signatures for manifolds with
fundamental group =.

The results on one direction of the the Gromov-Lawson Conjecture all
come from:

Theorem 4.7 ([R2]) Let M be a closed connected spin manifold of pos-
wtwe scalar curvature, and let f : M — B be the classifying map for the
universal cover of M. Then A opero D([M, f]) =0 in KO, (C*(x)). In
particular, if the Strong Novikov Conjecture is true for w (i.e., A is injec-

tive), then per o D([M, f]) = 0 in KO, (Bn).

Sketch of Proof. This relies on an index theory, due to Mishchenko and
Fomenko, for elliptic operators with coefficients in a C*(7)-vector bundle.
If M is as in the theorem, then the (Clifford algebra linear) Dirac oper-
ator on M, with coefficients in the bundle Vg, has an index a(M, f) €
KOy, (C*(m)), which one can show by the Kasparov calculus is just A o
per o D([M, f]). Since Vpr is by construction a flat bundle, there are no
correction terms due to curvature of the bundle, and formula (4.1) applies
without change. Hence if M has positive scalar curvature, the square of
this Dirac operator is bounded away from 0, and the index vanishes. O
This result seems to be about the best one can do in (in the spin case) in
attacking the Gromov-Lawson Conjecture 4.5 via index theory. It indicates
that perhaps the “reasonable” groups for purposes of the Conjecture (which
Gromov and Lawson did not make precise) should be a subset of the class

4A C*-algebrais a Banach algebra with involution which is isometrically *-isomorphic
to an algebra of operators on a Hilbert space which is closed under the adjoint operation
and closed in the operator norm.
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of those for which the assembly map A is injective.® Many torsion-free

groups are known to lie in this class, including for example all torsion-free
amenable groups, all torsion-free subgroups of GL(n, Q), and all torsion-
free hyperbolic groups in the sense of Gromov.

For groups with torsion, even for finite cyclic groups, it is easy to find
examples (see [R1]) where Conjecture 4.5 fails. The reason is simply that
many classes in KO,, (B) can be represented by manifolds of positive scalar
curvature, such as lens spaces. A first attempt at remedying this results in
the following modified conjecture (which first appears in [R2], [R3]):

Conjecture 4.8 (“Gromov-Lawson-Rosenberg Conjecture”) Sup-
pose M is a connecled closed spin manifold of dimension n > 5. Let
f M — Br be the classifying map for the universal cover of M, so
that (M, f) defines a class [M, f] € QP (Br). Then M admits a metric
of positive scalar curvature if and only if «(M, f), the generalized index of
the Dirac operator, vanishes in KO, (C*(r)).

There are analogues of this conjecture, involving indices of “twisted Dirac
operators,” for manifolds which are non-spin but which have spin universal
covers. Rather than state them now, we will defer these cases to Section
5. However, it is worth pointing out that one way to rephrase Conjecture
4.8 1s by saying that “the index of Dirac tells all.” If this is the case even
in the non-spin case, then it implies:

Conjecture 4.9 If M is a connected closed manifold of dimension n > 5,
and if the unwersal cover of M does not admit a spin structure, then M
admits a metric of positive scalar curvature.

Conjecture 4.9 is consistent with Theorem 4.3, but unfortunately it is
known to fail for manifolds with large fundamental group. A counterexam-
ple suggested by [GL3], for which failure of the conjecture can be checked
using the “minimal hypersurface technique” of [SY], is TO#(CP? x S?).
This suggests that Conjecture 4.8 should be false as well, though the fol-
lowing counterexample was only discovered recently.

Counterexample 4.10 ([Sch]) Let M5 be the closed spin manifold ob-
tained from T® by doing spin surgery to cut down the fundamental group
to ZAx Z/3, and let f : M — B(Z* x Z/3) be the classifying map for its
universal cover. Then a(M, f) = 0 in KO, (C*(r)), but M does not admit
a metric of positive scalar curvature.

What is most amazing about Conjectures 4.8 and 4.9 is not that there are
cases where they fail, but that they indeed hold in a great number of cases.

5As far as we know at the moment, this class could include all torsion-free groups.
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This should be viewed as a vindication of the intuition of Gromov and Law-
son, since in many cases Conjecture 4.5 is true in its original formulation.
Before stating some of these results, we should first explain how it is that
one “narrows the gap” between the positive results of the Bordism Theo-
rem, Theorem 4.2, and the results on obstructions in Theorem 4.7. While
one could prove some of the results in greater generality, we will state them
only in the spin and oriented non-spin cases.

Theorem 4.11 (Stolz, Jung) Let M™ be a connected closed manifold of
dimensionn > 5, and let f : M — Br be the classifying map for its univer-
sal cover. If M s spin, then M admits a metric of positive scalar curvature
of and only if there is some spin manifold of positive scalar curvature rep-
resenting the class D([M, f]) in ko (Br). If M is oriented and if the uni-
versal cover of M does not admit a spin structure, then M admits a metric
of positive scalar curvature if and only if there is some oriented manifold
of positive scalar curvature representing the class f.([M]) € Hp(Bm; Z).

Sketch of Proof. This requires a number of techniques. The 2-primary cal-
culation in the spin case is based on a generalization, found in [St2], of the
HP %-bundle method of the proof of Theorem 4.6. The 2-primary calcula-
tion in the oriented non-spin case is easier, so we give it here. Localized
at 2, the spectrum M SO is known to be Eilenberg-MacLane (see [R4]),
so 2, (Bm), after localizing at 2, splits up as @j H,_;(Bm; Q;), with the
summand H,_;(Bmw; Q;) corresponding to bordism classes of the form

NI x PI 25 Br,

with ¢ collapsing P to a point. But by the same calculation as in the
proof of Theorem 4.3, each generator of €; with j > 0 is represented
by a manifold of positive scalar curvature. So by the Bordism Theorem,
Theorem 4.2, we are reduced to looking at H,(Bm; Z).

The proof at odd primes is based on the theory of homology theories
derived from bordism, using “bordism with singularities.” O

Using this result, it 1s easy to check certain cases of Conjectures 4.8
and 4.9. For example, one easily deduces:

Theorem 4.12 Congecture 4.9 is true for orientable manifolds with finite
cyclic fundamental group.

Proof. The integral homology of a cyclic group is concentrated in odd
degrees n, where (for n > 3) a generator is represented by a lens space
(which has positive scalar curvature). O

Putting together Theorem 4.7 and Theorem 4.11, we obtain the fol-
lowing positive results on Conjecture 4.8:
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Theorem 4.13 Suppose the discrete group © has the following two prop-
erties:

1. The Strong Nouvikov Conjecture holds for w, i.e., the assembly map
A: KO, (Br) = KO.(C*(m)) is injective.

2. The natural map per : ko, (Bm) = KO.(Br) is injective.

Then the Gromouv-Lawson Conjecture, Conjecture 4.5, and the Gromouv-
Lawson-Rosenberg Conjecture, Conjecture 4.8, hold for spin manifolds with
fundamental group .

Proof. Suppose M™ is a spin manifold, with n > 5 and f : M — B is the
classifying map for its universal cover. If pero D([M, f]) = 0 in KO, (Bm),
then D([M, f]) = 0in ko, (Bn) by Condition (2), and so M admits a metric
of positive scalar curvature by Theorem 4.11. But if per o D([M, f]) # 0,
condition (1) says that «(M, f) # 0, and thus M cannot admit a metric
of positive scalar curvature, by Theorem 4.7. O

Theorem 4.13 applies to quite a number of torsion-free groups, for ex-
ample, free groups and free abelian groups. It is not much help in studying
finite groups, however. For finite groups, both of the conditions in Theorem
4.13 usually fail. Still, there are so far no counterexamples to the Gromov-
Lawson-Rosenberg Conjecture in the case of finite fundamental groups. In
fact, the Conjecture is true for the following class of finite groups. Re-
call that a finite group has periodic cohomology if and only if its Sylow
subgroups are all cyclic or generalized quaternion.

Theorem 4.14 ([BGS]) The Gromov-Lawson-Rosenberg Conjecture,
Conjecture 4.8, holds for any spin manifold with finite fundamental group
with periodic cohomology.

One might wonder whether the restriction to dimensions n > 5 in most
of our results is truly necessary. In dimension 2, we already know the full
story as far as positive scalar curvature is concerned, and in dimension
3, the Thurston Geometrization Conjecture would basically settle every-
thing. Dimension 4 is different, however. Seiberg-Witten theory gives the
following:

Theorem 4.15 (primarily due to Taubes [Tau]; see also [LeB]) Let
M™ be a closed, connected oriented j-manifold with b3 (M) > 1. If M ad-
mits a symplectic structure (in particular, if M admits the structure of a
Kdhler manifold of complex dimension 2) then M does not admit a posi-
tive scalar curvature metric (even one not well-behaved with respect to the
symplectic structure).

This dramatic result implies that the Gromov-Lawson-Rosenberg Conjec-
ture fails badly in dimension 4, even in the simply connected case.
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Counterexample 4.16 [In dimension 4, there exist:

1. a simply connected spin manifold M* with g(M) = 0 but with no
positive scalar curvature metric.

2. sumply connected non-spin manifolds with no positive scalar curvature
metric.

The counterexamples we have listed to Conjectures 4.8 and 4.9, as well as
the unusual behavior in dimension 4, suggest that it may be best to divide
the Gromov-Lawson-Rosenberg Conjecture into two pieces: an “unstable”
part, that may fail in some cases due to low-dimensional difficulties (or
other factors), and a “stable” conjecture, which stands a better chance
of being true in general. This, as well as the fact that the periodicity in
K O-theory has no obvious geometric counterpart as far as positive scalar
curvature 1s concerned, motivates:

Conjecture 4.17 (“Stable Gromov-Lawson-Rosenberg Conjec-
ture”) Let Bt® be the Bott manifold, a simply connected spin manifold of
dimension 8 with ﬁ(BtS) = 1. (This manifold is not unique, but any choice
will do. What is essential here is that Bt® geometrically represents Bott pe-
riodicity in KO-theory.) If M™ is a spin manifold, and if f : M — Bm is
the classifying map for its universal cover, then M x Bt® x - - - x Bt® admits
a metric of positive scalar curvature (for some sufficiently large number of

Bt® factors) if and only if a(M, f) =0 in KO, (C*(x)).

The counterpart of Theorem 4.13 as far as the Stable Conjecture is con-
cerned 1is simply:

Theorem 4.18 The Stable Gromov-Lawson-Rosenberg Conjecture, Con-
jecture 4.17, holds for spin manifolds with fundamental group ©, provided
that the assembly map A : KO, (Br) = KO,(C*(7)) is injective.

At the other extreme of finite fundamental groups, we have:

Theorem 4.19 ([RS2]) The Stable Gromov-Lawson-Rosenberg Conjec-
ture, Conjgecture 4.17, holds for spin manifolds with finite fundamental

group.

For groups with torsion, the assembly map A is not expected to be injective,
so Baum, Connes, and Higson [BCH] suggested replacing it by the so-called
Baum-Connes assembly map KOI (Ex) = KO.(C*(r)). Here Ex is the
universal proper m-space and KOJ (Er) is its m-equivariant K O-homology.
The space Ex coincides with Ew, the universal free w-space, exactly when
7 18 torsion-free, and in this case one recovers the usual assembly map. For

a finite group, Ex is a point and the Baum-Connes assembly map is an
isomorphism. The following result generalizes Theorems 4.18 and 4.19.
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Theorem 4.20 ([St5]) The Stable Gromov-Lawson-Rosenberg Conjecture,
Conjgecture 4.17, holds for spin manifolds with fundamental group w, pro-
vided that the Baum-Connes assembly map KOJ(Ern) — KO.(C*(m)) is
mjective.

The hypothesis of this theorem is known to be satisfied in a great many
cases, for example, whenever m can be embedded discretely in a Lie group
with finitely many connected components.

5 Parallels with Wall’s Surgery Theory

Surgery theory is the main tool in the study of smoothings of Poincaré
complexes. As we have seen, it is also the main tool in the study of metrics
of positive scalar curvature. In this section we want to discuss similarities
and differences between the resulting theories.

A central role in our understanding of smoothings of a Poincaré complex
X is played by Wall’s surgery obstruction groups L; (7, w); these are abelian
groups, which depend on the fundamental group # = m(X), the first
Stiefel-Whitney class w = w1 (X), and an integer 7. The group relevant for
the existence of a smoothing of X is L, (7, w), n = dim X, while L, 11 (7, w)
plays a role in the classification of smoothings of X.

The analog of the Wall group in the study of positive scalar curvature
metrics on a manifold M is an abelian group R;(m, w, ), which depends
on the fundamental group m = 71 (M) and the first Stiefel-Whitney class
w:m — Z/2, as well as an extension 7 of . Geometrically, the extension
7 —» m Is given by applying the fundamental group functor to the fiber
bundle O(M)/7Z/2 — M, where O(M) is the frame bundle of M and Z /2
acts on O(M) by mapping an isometry f: R" — Ty M to the composition
for, where r: R® — R™ 18 the reflection in the hyperplane perpendicular
to (1,0,...,0).

Up to isomorphism, the extension @ — 7 is determined by the second
Stiefel-Whitney class wa (M) as follows. If the universal cover of M is spin,
then ws(M) = u*(e) for a unique e € H*(Bn;Z/2) where u: M — Br is
the classifying map of the universal covering of M; in this case 7 — 7 is the
central Z /2-extension classified by e. Otherwise 7 — 7 is an isomorphism.

Before defining the groups R;(m, w, T), we want to state and discuss the
following result which shows the central role of these groups for the study
of positive scalar curvature metrics.

Theorem 5.1 ([St4]) Let M be a smooth, connected, compact manifold
of dimension n > b, possibly with boundary. Let m = w1 (M) be the funda-
mental group, w: ™ — Z/2 the first Stiefel-Whitney class, and let 7 — =«
be the extension described above.
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Existence. A positive scalar curvature metric h on OM extends to a posi-
tive scalar curvature metric on M which is a product metric near the
boundary if and only if an obstruction o(M,h) € Ry(m,w,T) van-
1shes.

Concordance Classification. If h extends to a positive scalar curvature
metric on M, then the group Rpy1(m,w,T) acts freely and transitively
on the concordance classes of such metrics.

The groups R;(7y) for v = (7,0, 7 x Z/2) (corresponding to spin mani-
folds) were first introduced by Hajduk [Haj]; he also proved the existence
statement in that case.

We wish to compare Theorem 5.1 with the corresponding statements
concerning smoothings of a Poincaré complex X. We recall that a smooth-
ing of X is a (simple) homotopy equivalence f: N — X between a closed
manifold N and X; two such pairs (N, f), (N, f') are identified if there is
a diffeomorphism ¢: N — N’ such that f is homotopic to f’ o g. A neces-
sary condition for the existence of a smoothing is that the Spivak normal
bundle of X is stably fiber homotopy equivalent to the sphere bundle of a
vector bundle. In homotopy theoretic terms this condition means that the
map X — BG classifying the Spivak normal bundle factors through the
canonical map BO — B(. Since this map fits into a homotopy fibration
BO — BG — B(G/0), the condition is equivalent to the composition
X — BG — B(G/0) being homotopic to the constant map.

A fiber homotopy equivalence ® between the Spivak normal bundle of
X and the sphere bundle of a vector bundle determines via the Pontryagin-
Thom construction a degree one normal map f: N — X up to bordism.
The pair (N, f) is bordant to a smoothing if and only if its “surgery obstruc-
tion” o(N, f) € L, (m, w) vanishes. In particular, if the group [X, B(G/O)]
of pointed homotopy classes of maps from X to B(G/O) is trivial, then the
vanishing of o (N, f) is sufficient for the existence of a smoothing of X; if in
addition the group [X, G/O] is trivial, then the fiber homotopy equivalence
® 1s unique up to homotopy. It follows that the bordism class of the degree
one normal map f: N — X and hence the surgery obstruction o (N, f) is
independent of the choices made in the construction of (N, f). Thus in this
case, the vanishing of o(N, f) is also a necessary condition for the existence
of a smoothing of X.

Concerning classification, the group L, 41(m, w) acts on the set &(X)
of smoothings of X. The “surgery exact sequence” describes the orbits as
well as the 1sotropy groups of this action. The orbits are the fibers of a map
S(X) — [X,G/0], and the isotropy subgroups are the images of homo-
morphisms [EX, G/O] = Lpy1(m, w). In particular, if the groups [X, G//O]
and [XX,G/O] are trivial, then L,11(m, w) acts freely and transitively on
S(X).
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The upshot of this discussion is that if the groups [X, B(G/O)], [X,
(G/0], and [2X, GG/O] vanish, then the main result of surgery theory takes
precisely the form of Theorem 5.1, with concordance classes of positive
scalar curvature metrics replaced by smoothings and R;(m,w, ) replaced
by L;(m, w).

We recall that Wall’s L;-groups have an algebraic description as well as
a description as bordism groups. So far, there is only a bordism description

of Rz

Definition 5.2 Let v be a triple (7, w,7), where w: 7 = 7Z/2 is a group
homomorphism and © — 7 is an extension of 7 such that ker(7 — =) is
either Z /2 or the trivial group. Let ¢: Spin(n) — SO(n) be the non-trivial
double covering of the special orthogonal group SO(n). We note that the
conjugation action of O(n) on SO(n) lifts to an action on Spin(n). Let
7 x Spin(n) be the semi direct product, where § € 7 acts on the normal
subgroup Spin(n) by conjugation by (@) . Here r € O(n) is the reflection
in the hyperplane perpendicular to e; = (1,0,...,0) € R”. Abusing nota-
tion, we also use the notation w for the composition 7 — 7 — Z/2. We
define G(7,n) to be the quotient of 7 x Spin(n) by the central subgroup
generated by (k,—1), where k € 7 is the (possibly trivial) generator of
ker(7 — 7). Sending [a,b] € G(v,n) to r*(Da(b) defines a homomorphism
p(y,n): G(y,n) = O(n).

A y-structure on an n-dimensional Riemannian manifold M is a prin-
cipal G(v,n)-bundle P — M together with a G(v,n)-equivariant map
p: P = O(M). Here O(M) is the orthogonal frame bundle of M, a princi-
pal bundle for the orthogonal group O(n), and G(v,n) acts on O(M) via
the homomorphism p(y, n).

Remark 5.3 1. If x is the trivial group, then G(y,n) = SO(n) (resp.
Spin(n)) if ker(m — ) is trivial (resp. non-trivial). In this case a
y-structure on M amounts to an orientation (resp. spin structure) on

M (cf. [LaM], Def. I1.1.3).

2. More generally, if w = 0 and # = 7 (resp. @ = 7w X Z/2), then
G(y,n) = m x SO(n) (resp. G(y,n) = m x Spin(n)); in this case, a
y-structure amounts to an orientation (resp. spin structure) on M,
together with a principal m-bundle M — M.

3. A v-structure determines a principal m-bundle MY P/Gy — M,
where (G is the identity component of G(v,n). We note that G =
SO(n) if ker(7m — =) is trivial, and G; = Spin(n) otherwise. Hence
the principal G1-bundle P — M can be identified with the oriented
frame bundle of M or a double cover thereof.
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Definition 5.4 Given a triple v as above, R, (y) is the bordism group of
pairs (N, h), where N is a n-dimensional manifold with y-structure and h
is a positive scalar curvature metric on the boundary 0N (possibly empty).
The obstruction o(M, h) € R, (y(M)) to extending the positive scalar cur-
vature metric h on M to a positive scalar curvature metric on M is just the
bordism class [M, h] (every manifold M has a canonical (M )-structure).

Sketch of Proof of Theorem 5.1. Both the existence and the classification
statement are fairly direct consequences of the surgery results discussed in
Section 3. Concerning existence, it is easy to see that if h extends to a
positive scalar curvature metric on M, then (M, h) represents zero in the
bordism group R, (7v), v = v(M) = (7, w, 7). (The manifold M x [0, 1] with
some corners suitably rounded represents a zero bordism.) Conversely, a
zero bordism for (M, h) provides us with a manifold M’ with boundary
OM' = OM over which h extends to a positive scalar curvature metric
(which is a product metric near the boundary), and a manifold W of di-
mension n + 1 whose boundary is W = M Ugpy M'. Moreover, the ~-
structure on M extends to a y-structure on W. Doing some surgery on W
if necessary, we may assume that the map W — BG(n + 1, ) provided by
the y-structure on W is a 3-equivalence (i.e., it induces an isomorphism
on homotopy groups m; for ¢ < 3, and a surjection for ¢ = 3). The re-
striction of this map to M is a 2-equivalence (this is a property of the
“canonical” y(M)-structure of M). Tt follows that the inclusion M C W is
a 2-equivalence; this implies that W can be built by attaching handles of
dimension > 3 to M x [0, 1]. Reversing the roles of M and M’ it follows
that W can be constructed from M’ by attaching handles of codimension
> 3; in particular, M is obtained from M’ by a sequence of surgeries in the
interior of M’ of codimension > 3. Hence the Surgery Theorem 3.1 shows
that h extends to a positive scalar curvature metric on M.

We turn to the classification up to concordance. Our first goal is to
define the action of R,41(7y) on ToRT (M rel h). We do so by describing
for each [g] € ToRT (M rel h) the map

mgp: Rogi(y) = 7oRY (Mrel ) r—r-[g].

We note that our claim that the action is free and transitive translates into
the statement that for each [g] € To9RT (M rel h) the map myg) is bijective.
It seems difficult to describe the map myy directly. Instead we construct a
map

ifg] : ToRT (M rel h) = Rnpi(7),

show that it is a bijection, and define mpy to be the inverse of ig. To
define if4)([¢']), consider the positive scalar curvature metric

gU(hxs)Ug on (M xT)=(Mx{0})U(@M x I)U(M x {1}),
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where s is the standard metric on I, and h X s is the product metric on
OM x I. We define i[,([¢g']) to be the bordism class of M x I (furnished
with its canonical y-structure) together with the metric ¢ U (h x s) Ug’ on
its boundary.

Injectivity of ig follows immediately from the existence statement
proved above. Surjectivity of i, is proved in two steps. First we show
that every element of R,,41(7y) has a representative of the form (7, ¢) with
q € RT(9T), where T is an (n + 1)-thickening of the 2-skeleton of M (i.e.,
T C M x I is a codimension zero submanifold with boundary simply homo-
topy equivalent to a 2-skeleton of M). To prove this, let (N, k) be a repre-
sentative of a given element of Ry, 1(y). After modifying NV if necessary by
surgeries in the interior, we may assume that the map N — BG(vy,n + 1)
given by the y-structure on N is a 3-equivalence. Then using Wall’s classi-
fication of thickenings in the stable range [Wa], Prop. 5.1, it can be shown
that T" embeds into the interior of N. Another application of the Improved
Surgery Theorem 3.2 then shows that k& extends to a positive scalar curva-
ture metric K on N \ int 7', which implies [N, k] = [T’ K|s7].

In a second step, the Improved Surgery Theorem 3.2 is used again to
argue that the positive scalar curvature metric g U (h x s) U H|pp which
lives on a part of the boundary of (M x I) \ T can always be extended to
a positive scalar curvature metric G on (M x I) \T'. This shows that [y
maps [Gax{1}] € ToRT (M rel h) to [T, Hjr]. O

As mentioned above, there 1s so far no algebraic description of the R,,-
groups. Worse yet, there is no pair (n,v), with n > 5, for which R,(y) is
known. However, in many cases, we can obtain a lower bound for the size
of Ry(7y) by means of an “index homomorphism”

0: Ro(y) = KO, (C).

Here C*v is a Z/2-graded C*-algebra associated to v = (m,w,7).5 It is
defined as an ideal in the group C*-algebra C*7; namely multiplication by
the generator k of ker(m — 7) is an involution on C*7 whose —1-eigenspace
is C*y. The Z/2-grading is given by the {£1}-eigenspaces of the involution
C*y — C*v which is the restriction of the involution C*7 — C*7 given
by § — (=1)%@) for g € # C C*%, where w is the composition of the
projection map # — 7 and w: # — Z/2. In particular, C*y = 0if 7 = =
and C*y=C*rifw=0and 7 =7 x Z/2.

Remark 5.5 The index homomorphism # is a generalization of the index
a(N, f) € KO, (C*r) for n-dimensional closed spin manifolds N equipped
with a map f: M — Bw. By remark 5.3, the spin structure and the map

8For the meaning of the subscript ,, which we henceforth suppress, see the discussion
on page 15.
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f amount to a y-structure on N,y = (7,0, 7 x Z/2), and hence the closed
manifold N represents an element [N] in the bordism group R, (7). Then

a(N, f) = 0([N]) € KO, (C*7) = KO, (C™).

In particular, # generalizes a to non-spin manifolds, and to manifolds with
boundary (whose boundary is equipped with a positive scalar curvature
metric).

Definition 5.6 To define the index homomorphism 8, it is convenient to
describe its range KO, (C*~) as equivalence classes of “Kasparov modules”
(H, F). Here H is a Hilbert module over the real C*-algebra A = C*y&C',,
[Bla], §13; i.e., H is a right A-module equipped with a compatible A-valued
inner product, which is complete with respect to a norm derived from this
inner product. (When A = R or C, a Hilbert A-module is just a real
or complex Hilbert space.) Here F is an A-linear bounded operator on
H satisfying certain properties generalizing the main features of elliptic
pseudodifferential operators of order 0. (If A = R or C, these properties
imply in particular that 7 is Fredholm.)

Hence to define 8, we need to describe the pair (H, F) that represents
G([N, h]), where N is manifold with y-structure and h is a positive scalar
curvature metric on 9N . The Hilbert module H is the space ofALZ—sections
of a bundle S over the complete manifold without boundary N = N Uy
IN x [0,00) obtained by attaching a cylindrical end to N.

The key fact for the construction of S is the existence of a homomor-
phism from G(y,n) to O°V(A), the group of even orthogonal elements of
the C*-algebra A = C*y ® Cl,. (An element z of a real C*-algebra is

orthogonal if #*z = z&* = 1.) This homomorphism is given by
p: G(y,n) =7 Ky Spin(n) = O°(4) [a,b] — ea @ 6710((1)19.

Here e = (1 — k)/2 € C*7 is the unit of the ideal C*y C C*7, and e; =
(1,0,...,0) € R”. We remark that e; has order four in C'¢, (its square
is —1); to make the above map well-defined, we decree w(b) € {0,1} C Z
(this gives in fact a homomorphism!).

If P — N is the principal G(v,n)-bundle given by the y-structure on
N extended to N, then we define the “spinor” bundle Sg by

Sy =P XG(yn) A,

where g € G(v,n) acts on A by left multiplication by p(g).

We note that the fibers of Sg are right A-modules and are furnished
with an A-valued inner product { |, ) given by ([p,al,[p,b]) = a™b € A
(we note that two elements in the same fiber of S can be written in the
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form [p, al, [p, b] with p € P, a,b € A). Upon integration over N, this gives
the space LZ(SJ\A,) of L?-sections of Sg the structure of a Hilbert A-module.
To construct a “Dirac operator” Dg: L?(Sg) — L*(Sg) it suffices to

note that the Levi-Civita connection on N induces a connection on S,
and that the y-structure can be used to make the fiber of Sg over a point

2 € N a left-module over the Clifford algebra generated by the tangent
space Ty M. Then Dy is defined by the usual formula (cf. [LaM], Ch. 1I,
formula 5.0).

The operator Dg is A-linear, but it is nof a bounded operator on the
Hilbert A-module H = L*(Sg) (not even in the classical case A = C). One
needs to replace Dg by a bounded operator f(Dyg), where f is a suitable
real valued function on R, and f(Dyg) is defined by “functional calculus”
[Lan]. On a compact manifold the usual choice is f(z) = x(2? + 1)~1/2
This doesn’t work on the non-compact manifold N, since f(DJ\A,)2 —1isnot
compact, which is one of the requirements for a Kasparov module. However,
it is shown in [St4] that if 4¢? is a lower bound for the scalar curvature of
the metric f on N (and hence a lower bound for the scalar curvature
of N outside a compact set), and if f: R — R is an odd function with
f(z) =1for # > cand f(x) = —1 for & < —¢, then (L*(Sg), f(Dg)) is in
fact a Kasparov module. Moreover, its K-theory class [L*(Sg), f(Dg)] €
KO(A) = KO, (C™y) is independent of the choice of f and the Riemannian
metric on N extending h € RT(IN).

Bunke’s relative index theorem for K-valued indices [Bun], Theorem
1.2, shows furthermore that the K-theory class [LZ(SK,), J(Dg)] depends
only on the bordism class of (N, h) in R,(7); this shows that

0: Ru(y) = KOu(C™y) [N, A+ [L*(Sg), f(Dg)]
1s a well-defined homomorphism.

We have seen in Section 4 that there are closed spin manifolds with
trivial a-invariant, which do not admit a metric of positive scalar curvature.
In view of Theorem 5.1 and Remark 5.5 this implies that

0: Ro(y) = KO, (C*)

is not in general injective.

We observe that the target of 8 is 8-periodic and that the isomorphism
KOp(C*y) 2 KOpys(C*y) is given by multiplication with the Bott ele-
ment, the generator of KOg(IR) = Z. Under @, this correponds to the map
Rn(7) = Rays(y) given by Cartesian product with the Bott manifold Bt®.
However, this map is not an isomorphism in general; in fact, the above
examples represent non-trivial elements of R, (y), whose product with a
suitable power of Bt is trivial.
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We note that the groups R, () can be made 8-periodic by “inverting”
the Bott manifold; i.e., by defining a “periodic” or “stable” version of the
R,,-groups by

Ra()[BE™] Ehing (Ra(7) 25 Rugs(n) )

Then 8 factors through a “stable” homomorphism
050 Ro(7)[Bt™] = KO, (C*7).
Conjecture 5.7 ([St4]) The homomorphism 04 is an isomorphism.

The rest of this section is devoted to discussing the status of this con-
jecture. First, we look at the case ker(® — m) = 0, which corresponds to
manifolds whose universal covering is not spin. In this case C*~ and hence
also KO, (C*y) are trivial. It is a simple observation that also R, (y)[Bt™']
vanishes. The argument is the following: Cartesian product gives R.(7)
the structure of a module over the spin bordism ring Q""; if ker(7 — )
is trivial, it is in fact a module over the oriented bordism ring 27¢. In the
latter, the Bott manifold is bordant to a linear combination of the quater-
nionic plane HIP? and the complex projective space CP*, which generate
Q59 = Z @ 7Z. Both of these manifolds admit metrics of positive scalar
curvature, and hence the product of any element in R,,(y) with Bt® is the
trivial element in R,1s(7).

Injectivity of 8y is closely related to the Stable Conjecture 4.17. In
fact, having the index homomorphism 6 at our disposal, we can formulate
the following more general conjecture, which agrees with Conjecture 4.17
for spin manifolds.

Conjecture 5.8 A closed manifold M admits stably a positive scalar cur-
vature metric if and only if 6([M]) vanishes in KOp(y(M)) (here M is
equipped with its canonical (M )-structure).

We note that injectivity of the homomorphism é;; 1implies Conjecture
5.8, but not vice versa; in fact, Conjecture 5.8 is equivalent to the statement
that @5 is injective when restricted to the image of Q, (v) — Rn('y)[Bt_l],
where () is the bordism group of n-dimensional closed manifolds with
~-structure. We note that this map factors in the form

(7)) = KOu(7) € (2(7)/Tn () Bt™'] 5 Ra(9)[Bt™Y,  (5.1)

where T, (%) C Qn(y) consists of the bordism classes represented by total
spaces of HP Zbundles. In the spin case v = (m, 0,7 x Z/2), a (homotopy
theoretic) result of Kreck and the second author [KS], Theorem C, implies
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that KO, (y) can be identified with the K O-homology of Bnr. Composing
the forgetful map F' and the index map 6 we obtain a homomorphism

A KOn(7) =5 Ra(7)[Bt™Y] L5 K0, (C*)

which agrees with the assembly map in the spin case v = (7,0, 7 x Z/2).

In the authors’ opinion, Conjecture 5.8 (assuming as in Theorem 4.20
that a Baum-Connes type map is injective) seems to be within reach; an
important ingredient in the proof will be a homotopy theoretic interpreta-
tion of KO, (y) as a ‘twisted” KO-homology group of Br. This is work in
progress by Michael Joachim based on his thesis [Joa].

Proving injectivity of 8, seems hard due to an apparent lack of tools;
proving injectivity in the simplest case v = (0, 0, Z/2) is equivalent to giving
an affirmative solution to Problem 6.1 discussed in the next section.

Surjectivity of 8, is closely related to the Baum-Connes Conjecture
of [BCH]. We recall that for torsion-free groups m this Conjecture claims
that the assembly map A: KO, (Bn) —» KO,(Cfr) is an isomorphism.
The factorization (5.1) of A shows that surjectivity of A implies that 65, is
surjective.

If 7 is a finite group, then A is in general far from being surjective.
Still, Laszlo Feher shows in his thesis [Feh] that 0, is surjective in the
“spin case” v = (m,0, 7 x Z/2), provided = is a finite p-group (i.e., a finite
group whose order is a power of p for some prime p).

6 Future Directions

In this final section, we mention just a few of the most important open
problems concerning positive scalar curvature metrics. These problems
appear to be quite hard, but they play such fundamental roles that it seems
we will never fully understand the subject of positive scalar curvature until
some progress is made on them.

Problem 6.1 Suppose g is a positive scalar curvature metric on S™. Then
there is an index theoretic obstruction with values in KOpi1, studied in
[Hit], [GL3], and in Section § above, to extending g lo a posilive scalar
curvature metric on DT which is a product metric on a neighborhood of
the boundary. Is this the only obstruction? In other words, if the index
obstruction vanishes in KOpy1, does g extend to a positwe scalar curva-
ture metric on D"*12 [f not, is this at least true “stably” (after taking
a Riemannian product with enough copies of the Bott manifold Bt®,7 or

"It is worth noting here that it is now known that there is a model for the Bott
manifold which admits a Ricci-flat metric [J]. If we use this particular choice, then
taking a Riemannian product with Bt® does not change the scalar curvature.
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after taking a Riemannian product with a flat torus of sufficiently high
dimension) ?

Discussion. This problem is absolutely fundamental, since without its so-
lution, there is no hope for computing the R-groups described in Section
5 above, and thus no hope for a complete concordance classification of
positive scalar curvature metrics, even on the very simplest manifolds. At
the moment, we know the answer to this question only in the case n = 2,
where it is easy to see from Theorem 3.4 that every positive scalar curvature
metric extends (and the index obstruction always vanishes).

A case which may be exceptional (because of the peculiarities of 4-
dimensional smooth topology) is n = 3. For this case, Seiberg-Witten
theory could conceivably be of use; though it is more likely that Seiberg-
Witten theory is only useful in studying the extension problem for more
complicated pairs (M*, M) where b (M) > 0. At the moment, we also
do not know anything about the image of the index obstruction in K04 =
Z when n = 3. However, it is proved in [GL3], pp. 130-131, that the
obstruction takes all values in KOg = Z when n = 7.

One possible method of attack in this problem (which could potentially
be used in any dimension > 2) is the following. We may as well assume
that the scalar curvature of ¢ is a positive constant, say 1. If we extend
¢ any way we like to a metric § on D*T! which is a product metric in
a neighborhood of 5™ = §(D"*!) then we can try to make a pointwise
conformal change in the metric g, supported away from the boundary, to
a metric of positive scalar curvature of the special form efq, f supported
on the interior of D. This leads to the study of the “Yamabe equation
with Dirichlet boundary conditions.” Rewriting the conformal factor e/ as
v*¥("=2) e obtain the boundary value problem

[5V)

_ n=2rk, _ n=2r, "5 n i n+1
Av+4 2= 8y = B=2 Blyn=2 in int D?TH (6.1)

v>0 in intD*T! v =1 near 9(D"T).

Here « is the scalar curvature of the original metric §, which is 1 on a
neighborhood of §(D"*!) and has unknown behavior in the interior, A is
the Laplace-Beltrami operator with respect to g (with the sign convention
for which this operator is non-positive), and & is the scalar curvature for
the new metric (which we want to be everywhere positive).

Note from equation (6.1) that if the “conformal Laplacian,” the linear
operator

n—2k

Lo=—-A —
0 Lo oiT

has positive spectrum (with Dirichlet boundary conditions, in other words
on functions vanishing at the boundary), then it follows that the metric
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g has an extension with positive scalar curvature. The reasoning, copied
in part from [KWI1] and [KW2], is as follows. We may assume that the
minimum value of & is —kg, some non-positive number. (Otherwise we’re
already done.) The eigenfunction ¢ of Ly corresponding to the lowest eigen-
value A cannot change sign, by an application of the maximum principle,
so we may assume ¢ > 0 in int D" ! and clearly there must be some ¢ > 0
such that ¢ > € on the compact set where x < 0. Then if v = 1 4 pyp,
v>0on D" v =1o0nd(D"H), and

n—2k
Lov = —— 7+ Aug,
which we can arrange to be everywhere positive by taking u large enough
to have Aue > %%‘J So v satisfies equation (6.1) except for the condition
that v be constant near the boundary. We can achieve this by making
a small perturbation in ¢ near the boundary. (This destroys its being
an eigenfunction for Ly, but doesn’t change the condition we really need,
which is that Lo(1 + p¢) should be everywhere positive.)

A curious feature of equation (6.1), which suggests that the answer to
our “stable” question is “yes,” is that the operator Lj bears a remarkable
similarity to equation (4.1) for the square of the Dirac operator. (In fact,
the lower-order terms %% and 4 become the same in the stable limit as
n — o0.) A challenge before us is therefore to figure out how to apply
information about the Dirac operator, which acts on spinors, to the study

of the scalar equation (6.1). O

Problem 6.2 Are we missing additional “unstable” obstructions to posi-
tive scalar curvature (in the closed manifold case, and in dimensions other
than 4) which do not come from the theory of minimal hypersurfaces?

Discussion. The existence of counterexamples to Conjectures 4.8 and 4.9,
as well as the fact that there are many classes in H,,(B) or ko, (B) for fi-
nite groups 7 (see Theorem 4.11) which no one has been able to represent by
manifolds of positive scalar curvature, suggests that this may be the case.
(The minimal hypersurface method of [SY] can only be applied to mani-
folds which have a covering space with positive first Betti number, clearly
a very restrictive condition not applying when the fundamental group is
finite.) Conceivably, additional obstructions to positive scalar curvature
might come from the study of certain non-linear partial differential equa-
tions, for example, from higher-dimensional analogues of Seiberg-Witten
theory, that involve coupling of the Dirac operator to something else; or
from the study of moduli spaces of solutions to variants of the Yamabe
problem. O
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Problem 6.3 Are concordant positive scalar curvature metrics necessarily
1sotopic?

Discusston. This question is still wide open. See the comments following
Proposition 3.3. In the analogous problem for automorphisms of mani-
folds, it is known that invariants from algebraic K-theory (especially K
and Waldhausen’s K-theory of spaces) play a role here. It would be very
interesting to see if any similar phenomena occur in the theory of positive
scalar curvature metrics. O
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