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For present purposes, we shall define non-commutative harmonic analysis to
mean the decomposition of functions on a locally compact G-space X,* where G
is some (locally compact) group, into functions well-behaved with respect to the
action of G. The classical cases are of course Fourier series, when G = X =T,
the circle group, and the Fourier transform, when G = X = R, but we will
mostly be concerned with the case when G is non-commutative. Since this
subject is inextricably linked with the subject of representations of G (unitary
representations, if we specialize to the case of L?-functions), we will also consider
the general theory of representations of locally compact groups and of various
related structures, such as Lie algebras and Jordan algebras.

The subject of group representations was created by Georg Frobenius [9] in
a remarkable series of papers in the 1890’s, and continued in the first decade
of the twentieth century in the work of his student Issai Schur [19]. However,
Frobenius worked exclusively with finite groups, and his treatment was purely
algebraic. It took a while before it was realized that Frobenius’ theory had
important implications for harmonic analysis. The generalization of the theory
to compact groups was largely carried out by Hermann Weyl, and applications
to harmonic analysis on compact groups did not come until the Peter-Weyl
Theorem ([17]; reprinted in [31], pp. 387-404).

It is against this background that we shall consider the contributions of a few
great Hungarian mathematicians: Alfred Haar, John von Neumann, and Eugene
Wigner in the 1920’s, 1930’s, and 1940’s; and in somewhat later generations,
Béla Szokefalvi-Nagy and Lajos Pukédnszky. As there is room here to discuss
only a few of their contributions, we refer the reader to the scientific obituaries
[20], [25], [16], [10], [15], [33], [26], [6], and [5] for more details.

I This means that X is a locally compact space and we are given a continuous map G x X —

X, (g,x) — gz, such that (gh)xz = g(hz) and ex = z for all g,h € G and x € X, where € is
the identity element of G.




1 Haar, von Neumann, and Wigner

Alfred (Alfréd) Haar, Eugene Paul (Jend P4l) Wigner, and John (Jdnos) von
Neumann were all born in Budapest: Haar in 1885, Wigner in 1902, von Neu-
mann in 1903. All three had the good fortune to have as their secondary school
mathematics teacher Laszlé Réatz of the Evangelical Lutheran High School in
Budapest. R&tz seems to have done a remarkable job in encouraging mathe-
matical talent, and was also the founder of the Mathematics Journal for Sec-
ondary Schools, or Kdézépiskolai Matematikai Lapok. (See [25] and “Eugene
Paul Wigner: A Biographical Sketch” in [32], pp. 3-14.) These three students
of Ratz were among the most important contributors to the development of
non-commutative harmonic analysis.

1.1 Hilbert’s Fifth Problem

Hilbert’s Fifth Problem [12] asked “how far Lie’s concept of continuous groups
of transformations is approachable in our investigations without the assumption
of the differentiability of the functions.” Hilbert’s Fifth Problem can be said to
mark the beginning of the subject of non-commutative harmonic analysis.

Among the very first results in the direction of a solution was a paper of von
Neumann, “Zur Theorie der Darstellungen kontinuierlichen Gruppen” (Sitzung-
ber. der Preuss. Akad. (1927), 76-90; reprinted in [29], vol. 1, pp. 134-148). This
paper basically proves that any continuous finite-dimensional representation of
a Lie group is automatically differentiable, in fact analytic.

1.2 Invariant Measures and Analysis on Locally Compact
Groups

It was soon realized that a reasonable attack on more substantial cases of
Hilbert’s Fifth Problem requires a means of doing analysis on a locally compact
group, comparable to the sort of analysis one does with functions in Euclidean
space. Since analysis on Euclidean space is based in large part on Lebesgue in-
tegration, the “search was on” for a means of invariant integration on a general
locally compact group. In the case of an n-dimensional Lie group G, since G is
an orientable manifold, G always admits left-invariant smooth measures, which
can be identified with non-zero left-invariant differential n-forms, or in other
words with non-zero elements of the one-dimensional vector space A\"g*, where
g is the Lie algebra of G, that is, the vector space of left-invariant vector fields.
Note that one-dimensionality of A"g* implies that left-invariant measures on G
are unique up to a scalar multiple.

One of Haar’s greatest mathematical contributions was his proof, in the
paper “Der Massbegriff in der Theorie der kontinuierlichen Gruppen,” (Ann.
of Math. (2) 34 (1933), 147-169; reprinted in [11], 600-622), that every locally
compact group G admits a left-invariant measure. Haar’s paper also appeared
slightly earlier in Hungarian (Mat. Term. Ert. 49 (1932), 287-307; reprinted in
[11], 579-599). While various improved reformulations of Haar’s method have



been given, notably the elegant ones due to Weil [30] and Cartan [3], to this
author’s knowledge, no one has ever improved on his main idea, which is to
compare the relative size of two compact sets A and B with dense interiors, by
letting h(A; B) be the minimal number of translates of B required to cover A.
From this data Haar constructs his measure m by letting

where C' is fixed once and for all and where the sets B,, run over a compact
neighborhood base of the identity. Haar was well aware that his theorem made
possible harmonic analysis on non-Lie topological groups, and he remarks at
the end of his paper that it immediately follows that one can prove the Peter-
Weyl Theorem ([17]; reprinted in [31], pp. 387—404), giving a decomposition
of L?*(G) into an orthogonal direct sum of matrix coefficients of irreducible
representations, for any compact group G, not just a Lie group.

Haar and von Neumann were in close contact at the time of this work, and a
paper of von Neumann on Hilbert’s Fifth Problem, “Die Einfithrung analytischer
Parameter in topologischen Gruppen” ([29], vol. 2, pp. 366-386) was submitted
to the Annals the same day as Haar’s paper and published right next to it. In
it, von Neumann proves that every compact group which is topologically locally
Euclidean is a Lie group, i.e., admits an analytic structure. From this and the
Peter-Weyl Theorem, it follows that every compact group is an inverse limit of
Lie groups.

Two other important papers of von Neumann follow up on the theme of
Haar’s work. In “Zum Haarschen Maf} in topologischen Gruppen” (Compositio
Math. 1 (1934), 106-114; also [29], vol. 2, pp. 445-453), von Neumann gives
an easier proof of the existence of Haar measures on a compact group G, by
proving that if f is a continuous function on G, then the closed convex hull of
the translates of f contains a unique constant function (the value of the constant
being of course [ f(g)dg). This remains the easiest proof of existence of Haar
measure for compact groups. Then in “The uniqueness of Haar’s measure”
(Mat. Sb. 1 (1936), 721-734; also [29], vol. 4, pp. 91-104), von Neumann gives
a proof that a left (or right) Haar measure is unique up to scalar multiples,
just as in the case of invariant smooth measure on a Lie group. This important
result was proved independently, using different methods, by André Weil [30]
and Henri Cartan [3].

1.3 Representation Theory and Quantum Physics

Among the most important motivations for the development of non-commutative
harmonic analysis in the years between the two World Wars was the develop-
ment of quantum mechanics. Indeed, Weyl, von Neumann, and Wigner all
approached the subject of non-commutative harmonic analysis with quantum
mechanics in mind, and Wigner always considered himself more of a physicist
than a mathematician.



As early as his paper “Uber nicht kombinierende Terme in der neueren Quan-
tentheorie” of 1926 (Z. fiir Physik 40 (1926-27), 492-500 and 883-892; reprinted
in [32], pp. 34-52), Wigner realized that Frobenius’ theory of representations
of the symmetric group was relevant to the study of wave functions of multi-
particle systems. This can be regarded as an example of non-commutative har-
monic analysis in the sense of this article, with G = S;,. In his paper, Wigner
thanks von Neumann for telling him about the work of Frobenius and Schur.

The following year, 1927, Wigner spent at Gottingen as Hilbert’s assistant.
There he met several mathematicians and physicists and began to collaborate
with Pascual Jordan. In their paper “Uber das Paulische Aquivalenzverbot
of 1928 (Z. fiir Physik 47 (1928), 631-651; reprinted in [32], pp. 109-129),
Jordan and Wigner first reformulated the Pauli exclusion principle in terms
of representations of the “canonical anticommutation relations” (CAR). The
Clifford algebras defined by the CAR of course play a pivotal role in the Dirac
equation of the electron, and in fact the connection between Dirac and Wigner
was more than scientific: Dirac later married Wigner’s sister.

The work of Wigner and Jordan was the precursor of the famous paper “On
an algebraic generalization of the quantum mechanical formalism” by Jordan,
von Neumann, and Wigner (Ann. of Math. (2) 35 (1934), 29-64; reprinted
in [32], pp. 298-333 and in [29], vol. 2, pp. 408-444) that founded the study of
what are now called Jordan algebras. In their paper, Jordan, von Neumann, and
Wigner obtain the classification of the finite-dimensional simple Jordan algebras
over R, including the exceptional ones coming from the Cayley octonians. We
now know that one can trace the existence of the exceptional compact Lie groups
G, Fy, Eg, E7, and Eg to these exceptional Jordan algebras.

We have mentioned the CAR, the anticommutation relations that govern
the behavior of fermions. Of equal importance are the “canonical commutation
relations” (CCR) for bosons, that the position operators Q) and momentum
operators P; should satisfy

QrPj — PjQy = ihdy;, Qk = Qk, P =P, (1)

where £ is Planck’s constant. These simple relations, familiar to every physics
student, hide a serious mathematical difficulty: the equations (1) have no finite-
dimensional solutions,? in fact no solutions in bounded operators! And for
unbounded operators which are not everywhere defined, what is the meaning of
the commutator? The problem of making rigorous sense of (1), and of showing
that there is essentially only one irreducible solution (satisfying certain nice reg-
ularity properties), was solved by Hermann Weyl, Marshall Stone, and von Neu-
mann. The final result, in von Neumann’s important paper “Die Eindeutigkeit
der Schrodingerschen Operatoren” (Math. Ann. 104 (1931), 570-578; also [29],
vol. 2, pp. 221-229), turned out to be important not only for theoretical physics
but also for the future development of unitary representation theory.

2The reason is that for any finite-size matrices Q and P, Tr (QP — PQ) = 0, so QP — PQ
cannot be a non-zero multiple of the identity.



The idea is to note that (1) amounts to looking for a representation through
skew-adjoint operators of what is now called the Heisenberg Lie algebra g of
dimension 2n + 1, with a basis X1,..., X,,Y1,...,Y,, Z satisfying

(X5, Y] = 6k, Z, Z,X;] =0, [Z,Y:y] = 0. (2)

Now to the Lie algebra g we can attach a simply connected nilpotent Lie
group G. Topologically it looks like R?"*!, but the multiplication is slightly
twisted. We can impose a regularity condition on our Lie algebra representa-
tions by requiring that they come from unitary representations m of G, that
is, strongly continuous homomorphisms from G to the unitary group of some
Hilbert space, for which the corresponding “infinitesimal representation” is
drn(Z) = ih, dn(X;) = iP;j, dn(Yy) = iQk. Von Neumann’s Theorem says
that up to unitary equivalence, there is one and only one irreducible such repre-
sentation, and every unitary representation 7w of G with dm(Z) = ih is a multiple
of this irreducible representation.

1.4 Invariant Means and Almost Periodic Functions and
Groups

In von Neumann’s paper “Zum Haarschen Maf in topologischen Gruppen,” cited
above, there appears an interesting “Zusatz wahrend der Korrektur,” in which
von Neumann mentions that he had noticed that his argument for constructing
the Haar measure on a compact group can be extended to some non-compact
groups as well, but that in this case it gives rise not to Haar measure but to an
invariant “mean” f — [ f for which the constant function 1 has “mean value”
1. (On the other hand, Haar measure on a non-compact group is never a finite
measure, so on a non-compact group, constant functions are never integrable
with respect to Haar measure.) The study of such means was to lead to a whole
other direction in non-commutative harmonic analysis. Von Neumann’s Zusatz
asserts that “die Ausfiihrung erscheint demnéchst in den Annals of Mathemat-
ics.” Evidently he misspoke; the paper von Neumann refers to, “Almost periodic
functions in a group, I” was to come out in the Transactions of the Amer. Math.
Soc. (36 (1934), 445-492; also [29], vol. 2, 454-501), not the Annals.

To explain von Neumann’s discovery, we have to back up a bit and review
Harald Bohr’s theory of almost periodic functions [2]. In its simplest version,
this refers to bounded uniformly continuous functions f on the line with a
“Fourier series” expansion f(z) ~ >, cjei® (convergent in a suitable sense),
where the frequencies A; are not necessarily rationally related to one another,
and thus f is not necessarily periodic. Of course we cannot expect expect the
Fourier series of f to converge uniformly to f, since this is not always true
even when f is literally periodic. Instead, Bohr found that a natural notion
of convergence in this context is convergence in mean over bigger and bigger
intervals, i.e., that

1 (T N oal?
dm_im o | \f(x)—;cjw d =0,
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and that there is a well-defined notion of mean for such functions, namely

_ _ 1 (T
fZTll_Igoﬁ/_Tf(m)d$~

Existence of the limit here is Bohr’s “Mittelwertsatz” in [2]. What von Neumann
noticed is that for almost periodic functions f on R, the closed convex hull of
the translates of f contains a unique constant function, and the value of this
constant is the Bohr mean value of f.

Now in the earlier paper “Zur allgemeinen Theorie des Masses” (Fund. Math.
13 (1929), 76-116 and 333; reprinted in [29], vol. 1, pp. 599-643), von Neumann
had studied the similar subject of means on discrete groups, and had defined a
group G to be “messbar” (literally measurable, but we will instead use the now-
standard terminology amenable) if it admits a left-invariant mean. Such a mean
can be viewed as an “integration” process f — [f on bounded functions, for
which the constant function 1 has “mean value” 1, and for which [ f = [A(z)f, if
A(z)f denotes the left translate of f by z € G, i.e., (A\(z)f)(y) = f(z'y). Von
Neumann proved that finite and abelian (discrete) groups are amenable, and
that the class of amenable groups is closed under extensions and direct limits.
It follows that there is a fairly large class of “obviously” amenable groups, what
are now called elementary amenable groups: the smallest class containing the
solvable and finite groups and closed under extensions and direct limits. On the
other hand, von Neumann exhibited countable groups that are not amenable,
for example, the free group on two generators. It is important to note that on
infinite amenable groups, invariant means are not at all unique. For example, a
bounded function f on the group G = Z is simply a two-sided bounded infinite
sequence f = {fn}nez, and the possible means of f are all the various limit
points of the sequence of approximating averages

1
2N +1

(f-n+-+fot -+ fn)

as N — oc.

Let us come back to von Neumann’s work on almost periodic functions,
continued in two later papers (the first with Salomon Bochner, “Almost periodic
functions in a group, II,” Trans. Amer. Math. Soc. (37 (1935), no. 1, 21-50;
also [29], vol. 2, 528-557; and the second with E. Wigner, “Minimally almost
periodic groups,” Ann. of Math. (2) 41 (1940), 746-750; in [29], vol. 4, 220-224
and in [32], pp. 390-394). To make a long story short, von Neumann defines two
classes of groups, which are in some sense opposite extremes. Minimally almost
periodic groups admit no non-constant almost periodic functions (in a natural
sense extending Bohr’s). Mazimally almost periodic groups admit enough almost
periodic functions to separate points. André Weil [30] eventually cleaned up
the theory and showed that, for every maximally almost periodic group G,
there exists a compact group G* which contains G as a dense subgroup and
such that every continuous real-valued almost periodic function on G can be
uniquely extended to a continuous (and hence almost periodic) function on G*.



In fact, a locally compact group is maximally almost periodic if and only if
it has a continuous embedding into a compact group. Thus as von Neumann
pointed out, the Bohr mean on almost periodic functions really comes from the
construction of Haar measure on compact groups, and in the case of an abelian
locally compact group, it coincides with the restriction of an invariant mean on
all bounded uniformly continuous functions. However, residually finite discrete
groups® are always maximally almost periodic, but not always amenable, so
even in the case of discrete groups, the Bohr mean on almost periodic functions
does not always extend to a mean on all bounded functions.

1.5 Von Neumann Algebras

Among von Neumann’s greatest contributions was the development of the theory
of what he called rings of operators, and what are now called von Neumann
algebras. A von Neumann algebra is simply a subalgebra of B(H), the algebra of
all bounded operators on a Hilbert space H, which is stable under the involution
T +— T* and closed under the strong (or equivalently, weak) operator topology.
The massive papers of von Neumann on this subject, almost all of them joint
with Francis Joseph Murray, fill all of volume III of [29]. It would be impossible
to do justice to them here, so we refer the reader to [10] for more information,
but we just briefly point out what this huge body of work has to do with non-
commutative harmonic analysis.

Suppose G is a locally compact group. A wunitary representation m of G on
a Hilbert space H means a homomorphism 7 from G to the group of unitary
operators on H, which is continuous with respect to the strong operator topology
(or the weak operator topology—it gives exactly the same notion). Note that
we do not require continuity in the norm topology for operators, since this fails
for the standard example of a unitary representation, namely the left regular
representation A of G on L?(G) (L? being defined with respect to Haar measure).
Then the possible decompositions of 7 into subrepresentations are governed by
the structure of the commutant of the representation,

n(G) ={T € B(H) : Tn(g9) = 7(g)T for all g € G}.

For example, Schur’s Lemma says that 7 is irreducible if and only if 7(G)’ = C.
But 7(G)’ is a von Neumann algebra, so the classification theory of von Neu-
mann algebras comes into play at this point. For example, we call m multiplicity-
free if 7(G)' is abelian and a factor representation if 7(G)' is a factor, that is,
a von Neumann algebra with one-dimensional center. The Murray-von Neu-
mann papers classify factors into three types. If 7(G)’ is a type I factor, then
7 is simply a multiple of a single irreducible representation. But if 7(G)’ is a
type II or type III factor, then there is no canonical way to decompose 7 into
irreducible representations, so that type II or type III factor representations
should themselves be regarded as basic building blocks of representation the-
ory. Some groups (for example, abelian or compact groups, or the Heisenberg

3This means groups like SL(n,Z), the n X n matrices with integer entries and determinant
1, with enough homomorphisms to finite groups to separate points.



group defined by (2)) are type I, in the sense that the commutants of their uni-
tary representations are always type I. For such groups, at least if G is second
countable, von Neumann’s theory of direct integral decompositions (“On rings
of operators. Reduction theory,” Ann. of Math. (2) 50 (1949), 401-485; [29],
vol. 3, pp. 400-484) provides a canonical way of decomposing all unitary rep-
resentations (on separable Hilbert spaces) into irreducible pieces, and there is
a hope to copy many features of the Frobenius-Schur theory for finite groups.
But for non-type I groups, one is forced to contend with non-type I factor rep-
resentations. For example, Murray-von Neumann proved that the commutant
of the regular representation of a discrete group G is a finite type II factor if
and only if G is an ICC-group,* that is, if the identity of G is the only element
whose conjugacy class is finite.

One of the other great contributions of Murray and von Neumann was the
theory of the trace on a type II factor. If w is a finite-dimensional unitary
representation, then one can define its character y,, a class function on G, by
X=(g9) = Trm(g). (This definition was introduced by Frobenius.) Furthermore,
all one needs to know about 7 can be recovered from the character y,. It would
be nice to do something similar for certain other factor representations. If 7 is a
finite type II factor representation, then there is a continuous linear functional
Tr on the von Neumann algebra generated® by 7(G), satisfying Tr (1) = 1 and
the usual trace property Tr (ab) = Tr (ba), and so it is again possible to develop
a theory of group characters similar to the one for finite groups. If 7 is an
infinite-dimensional irreducible representation or a Il factor representation,
then 7(G)"” admits a trace, but it is only partially defined, and in particular
Tr (u) is undefined for w unitary. So in this case, while it is possible that
X=(9) = Trm(g) might make sense as an equality of distributions, provided
there are enough functions ¢ on G for which 7(¢) = [¢(g)7(g) dg is trace-class,
X~ = Tr o7 does not make sense directly as a function on the group G.%

1.6 Development of Unitary Representation Theory
of Non-Compact Lie Groups

The modern development of the unitary representation theory of non-compact
Lie groups, which today is now a large subject, grew out of the work of Gelfand-
Naimark, Bargmann, Mackey, and Harish-Chandra in the late 1940’s and the
1950’s. One of the key papers that prompted this development was Wigner’s
paper “On unitary representations of the inhomogeneous Lorentz group” (Ann.
of Math. (2) 40 (1939), 149-204; reprinted in [32], pp. 334-389). Curiously,
this paper was first submitted to the American Journal of Mathematics, usually

4This stands for “infinite conjugacy classes.”

5By von Neumann’s Double Commutant Theorem, found in §IT of “Zur Algebra der Funk-
tionaloperationen und Theorie der normalen Operatoren” (Math. Ann. 102 (1929), 370-427;
[29], vol. 2, pp. 86-143), this is just the commutant 7(G)" of 7(G)’. The Double Commutant
Theorem implies that a *-subalgebra A of B(H) is a von Neumann algebra if and only if it is
equal to its double commutant A”.

6Note that 7(¢) as we have just defined it can be viewed as a sort of operator-valued Fourier
coefficient of ¢. Its trace xx(¢), when defined, is a sort of scalar-valued Fourier coefficient.



regarded as being somewhat less prestigious than the Annals, and was rejected
there with the remark that “this work is not interesting for mathematics” ([32],
p- 9). In any event, this paper is important for two reasons: it promoted
interest in the unitary representations of the actual Lorentz groups SOq(2,1)
and SO(3,1), classified soon afterwards by Bargmann [1], and it amounted
to the working out of an important special case of what was later formulated
as the Mackey Imprimitivity Theorem [14], and thus motivated the modern
point of view on the decomposition of representations of group extensions.”
More precisely, Wigner’s paper studies unitary representations of the semidirect
product G = V x H, where V = R*! is Minkowski space and H = SO(3,1)
is the Lorentz group acting on V' the usual way. Wigner proves that each
irreducible unitary representation of G is supported on a single H-orbit in V' &
V. Wigner only studies the cases where this orbit is either one of the light cones
or else half of a two-sheeted hyperboloid. (The representations supported on
the trivial H-orbit {0} factor through H, and were only classified later in [1].)
In either case, if one thinks of an elementary particle corresponding to such
an irreducible representation, and views its wave function ¢ as a vector-valued
L2-function on Minkowski space V, then this analysis shows that the Fourier
transform of ¢ is supported on one of the two components of the variety where
3 — 3% — 22 — 22 = m?, where m is a constant corresponding to the mass of
the particle and the Z; are the Fourier transform variables, and thus ¢ itself
satisfies the Klein-Gordon equation

9 0? 02 0? 0?
O¢ = m*¢, where O = 922 + 922 922 9a2

We have already discussed (in section 1.5) the work of von Neumann on uni-
tary representations of discrete groups, and the application of von Neumann’s
theory of direct integral decompositions to the decomposition of unitary repre-
sentations of arbitrary second countable locally compact groups. However, Haar
also worked on representation theory. A little-known paper of Haar, “Uber die
Gruppencharaktere gewisser unendlichen Gruppen” (Acta Sci. Math. (Szeged) 5
(1932), 172-186; reprinted in [11], pp. 172-186) extended the Frobenius theory of
group characters from finite groups to what are now usually called FC-groups,®
groups in which every conjugacy class is finite. What Haar called characters
in this case turn out to be the same thing as characters in the more modern
sense of traces of finite factor representations, as later studied by Elmar Thoma
[27]. An interesting fact about FC-groups is that if they are finitely generated,
then they are virtually abelian groups, that is, have an abelian subgroup of
finite index. It was eventually shown by Thoma [28] that the virtually abelian
groups are precisely the class of type I groups, discrete groups whose unitary
representations always generate type I von Neumann algebras, and in fact the

"The other key case of the Imprimitivity Theorem that was known before was von Neu-
mann’s theorem on uniqueness of representations of the Heisenberg commutation relations,
discussed above in Section 1.3.

84“PC” stands for “finite conjugacy classes.”



dimensions of their irreducible representations are bounded. Hence for finitely
generated FC-groups, non-commutative harmonic analysis in the sense of Haar
is precisely the decomposition of functions into matrix coefficients of irreducible
representations, as in the situation of the Peter-Weyl Theorem.

2 Sz.-Nagy and Pukanszky

2.1 Béla Sz.-Nagy

Béla Sz.-Nagy, one of the great operator theorists of the twentieth century,
made a few interesting contributions to non-commutative harmonic analysis,
even though this was not his primary mathematical interest. Here we will just
mention four of them. The first is a strengthening of von Neumann’s automatic
analyticity theorem for homomorphisms of Lie groups (see Section 1.1): Nagy
[21] proves that measurability is enough to guarantee analyticity; one does not
need to assume continuity from the start.

The second contribution, on its face, only deals with commutative harmonic
analysis. In [22], Nagy proved that a one-parameter group {T"},cz or {Ts}scr
of invertible linear operators on a Hilbert space H is similar to a unitary rep-
resentation (of Z or R) if and only if it is uniformly bounded, i.e., there is a
constant K > 0 such that [|T"|| < K for all n € Z or ||Ts|| < K for all s € R.
The connection with unitary representation theory is that essentially the same
theorem, with almost the same proof, holds for uniformly bounded representa-
tions 7 of arbitrary amenable locally compact groups G, as was pointed out by
Jacques Dixmier [4]. In other words, if 7 is a strongly continuous homomor-
phism from G to the invertible linear operators on H, and if ||7(g)|| < K for all
g € G, then

€y = /G (n(9), (g)n) dg,

with f ¢ denoting an invariant mean on G, defines a new inner product on the
Hilbert space, equivalent to the original one, with respect to which the represen-
tation 7 is unitary. Incidentally, the requirement of amenability is essential here;
the group SL(2,R) was shown in [7] to have uniformly bounded representations
that are not unitarizable.

The third concerns the following problem. Suppose H is a Hilbert space
and 0 : G — B(H) is a map from a discrete group to bounded operators on
H. What is the necessary and sufficient condition for o to be the compression
of a unitary representation, or in other words, for there to be a Hilbert space
‘H' © H and a unitary representation = of G on H’ such that if P : H — H
is the orthogonal projection, then o(g) = Px(g)P for all ¢ € G? Nagy solved
this problem in [23]. This can be viewed as an operator-valued analogue of the
characterization of matrix coefficients g — (w(g)¢, &) of unitary representations
as the positive-definite functions, which follows from the Gelfand-Naimark-Segal
construction.
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The fourth problem studied by Nagy (in joint work with Ciprian Foiag and
Lész16 Gehér [8] and in [24]) can be viewed as a postscript to von Neumann’s
work (cited above in Section 1.3) on uniqueness of representations of the canon-
ical commutation relations (1). Recall that the method of Weyl and von Neu-
mann was to study unitary representations of the Heisenberg Lie group, not
representations by unbounded operators of original relations, which are more
numerous and which pose difficult analytic questions. However, Nagy was able
to give necessary and sufficient conditions for a representation of the CCR to
come from a representation of the group: an irreducible pair of closed symmetric
operators (Q and P on a Hilbert space H is a “Schrodinger couple” if and only if
QP — PQ = il holds on a subspace D C Dgp_pg which is large enough so that
the restrictions of @ and P to D are essentially selfadjoint and that at least one
of the eight sets (Q £4I)(P £4I)D, (P £4I)(Q £ —iI)D is dense in H.

2.2 Lajos Pukanszky

Lajos Pukanszky, who was born in Budapest in 1928, studied with Sz.-Nagy
in Szeged. His earliest papers (dating from 1951 through 1960) deal with von
Neumann algebras; all his subsequent publications were on the unitary repre-
sentation theory of Lie groups. While it was von Neumann who first anticipated
the importance of the theory of rings of operators (i.e., von Neumann algebras)
to non-commutative harmonic analysis, it was Pukanszky who finally achieved
a deep synthesis of these two subjects. Again, we have no room here to go into
details, some of which may be found in [6] and [5]. The reader interested in
Pukédnszky’s work could also see his posthumous monograph [18]. The subject
of this book, indeed of much of Pukdnszky’s work, concerns the following ques-
tion. For a type I Lie group G, there is a bijective correspondence between G,
the set of unitary equivalence classes of irreducible unitary representations m,
and the set of “characters” of G, the generalized functions g — Trx(g). What
is the substitute for this bijection in the case of non-type I Lie groups?

The answer, which is quite remarkable, is that for non-type I Lie groups, one

needs to replace G by 8’ , the set of quasi-equivalence classes? of “normal” repre-
sentations. These are factor representations m of G of types I or II, for which the
(usually unbounded) trace Tr on the factor 7(G)” is finite and non-zero on some
ideal in C*(G), the C*-completion of the convolution algebra L*(G). On a type

~ N
I group, there is no difference between G and . But on non-type I connected

Lie groups, Pukanszky showed that 8 is big enough to support the canonical
(i.e., central) direct integral decomposition of the left regular representation of
G on L?*(G). Thus harmonic analysis of L? functions on the group sometimes
forces one to consider normal representations that are not irreducible, and the
left regular representation of G' on L?(() generates a von Neumann algebra

9Two factor representations 71 and my of G are called quasi-equivalent if there is an iso-
morphism ® : 71(G)” — m2(G)” such that mo = ® o m. This is the natural equivalence
relation on factor representations. The difference between this and unitary equivalence is that
@ need not be given by conjugation by a unitary operator.
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with no type IIT summand. (This last fact was proved through the joint efforts
of Pukénszky and Dixmier.) Not only this, but every primitive ideal of C*(G)
(that is, the kernel of an irreducible representation of this algebra) is the kernel
of a unique quasi-equivalence class of normal representations, so that there is a

natural bijection between 8 and Prim C*(G). Finally, in a stunning generaliza-
tion of Alexander Kirillov’s character formula [13], Pukdnszky [18] was able to
give a geometric parametrization of the normal representations and a formula
for their characters, at least for connected solvable Lie groups.
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