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Abstract. We discuss and formulate the correct equivariant generalization of the strong Novikov 
conjecture. This will be the statement that certain G-equivariant higher signatures (living in suitable 
equivariant K-groups) are invariant under G-maps of manifolds which, nonequivariantly, are homotopy 
equivalences preserving orientation. We prove this conjecture for manifolds modeled on a complete 
Riemannian manifold of nonpositive curvature on which G (a compact Lie group) acts by isometries. 
We also use the theory of harmonic maps to construct (in some cases) G-maps into such model spaces. 
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1. Formulation of the Problem and of the Main Results 

Let M be a connected, closed, oriented manifold. (For the moment, we take our 
manifolds to be smooth, though later we shall generalize some results to the 
topological and PL categories.) The Novikov conjecture asserts that the higher 
signature of M, i.e., f ,  (0_(M)c~ [M]) ~ H,(Bn 1 (M); Q), is invariant under orienta- 
tion-preserving homotopy-equivalences h : M '  --* M. Here, f :  M --* Brq (M) is a classi- 
fying map for the universal cover of M and 0_ is the total Hirzebruch L-class. 
More precisely, the conjecture asserts that 

f,(U_(M) c~[M]) = ( f o  h) ,  (Q_(M') c~[M']). 

This conjecture is known in a large number of cases (see, for instance, [4, 10, 19, 16, 
and 44]). For purposes of the proofs, it is usually best to fix a group n and drop the 
requirement that this be the fundamental group of M. The Novikov Conjecture for 
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is then the assertion that for any diagram 

M 

commuting up to homotopy, with h an orientation-preserving homotopy equiva- 
lence, we have 

f.(g_(M) c~ [M]) = g.(~_(M') n[M']). 

Our intention in this paper is to give a suitable generalization of the above to the 
case where a compact Lie group G acts (smoothly) on M. When n and G are trivial, 
Bn is (homotopy equivalent to) a point and f.(O_(M)hiM]) is by the Hirzebruch 
signature formula just the signature of Mr, an obvious homotopy invariant. The 
equivariant generalization of this for a G-manifold is the G-signature of M, the 
virtual representation of G (in R(G), the representation ring of G) obtained from 
the action of G on middle cohomology. 

As pointed out originally by Petrie (see [29]), the G-signature of a G-manifold is 
preserved, not only under (orientation preserving) G-equivariant homotopy equiva- 
lences, but also under G-pseudoequivalences, or G-maps which nonequivariantly are 
homotopy equivalences. (Technical point: a G-pseudoequivalence as defined may 
not have a G-equivariant homotopy inverse (example: the map EG ~pt). Thus, the 
relation of existence of a G-pseudoequivalence is not symmetric. We will occasion- 
ally be interested in the equivalence relation it generates.) 

Thus, we see that an equivariant Novikov conjecture should be a statement about 
G-pseudoequivalence invariance of 'higher G-signatures'. However, there is an 
additional complication which must be taken into account. Namely, the fundamen- 
tal group of a space depends on a choice of basepoint, and if M is a G-manifold, 
there may be no G-fixed basepoint (or the fixed set M ~ may be disconnected). 
Therefore, we are forced to deal with the fundamental groupoid zffM) of M, which 
is canonically defined and carries a natural action of G. (In the notation of [24], this 
is n~(M).) In fact, for each closed subgroup H of G, we are forced to contend with 
the fundamental groupoid of the fixed set M n. In the appendix [24] to this paper, 
J. P. May constructs a G-space BrffM) which plays in the equivariant category the 
same role played by Bn in the nonequivariant case. The G-space Bn(M) has the 
property that for any closed subgroup H of G, all components of the fixed set 
(BTr(M)) H are aspherical. Furthermore, as explained in [24], there is a natural 
G-'map' f:  M ~ Bzr(M) inducing isomorphisms on % of all fixed sets and on nl of 
all components of fixed sets, and such a map is unique up to G-homotopy. A 
similar construction is given in [21], using different techniques, but there appear to 
be technical difficulties with the method of [21] when G is not discrete. 

Let D be the signature operator on M in the sense of Atiyah-Singer [1], 
computed with respect to some G-invariant Riemannian metric. Via the formalism 
of Kasparov (see, for example, [19] or [2, w and w D defines a class 
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A(M) = [D] ~ KU,(M) (living in even or odd degree, depending on the parity of  the 
dimension of M) which is independent of the choice of a Riemannian metric. When 
dim M is even, the G-index of the G-invariant Fredholm operator D (acting on 
suitable Sobolev spaces) is the G-signature of M. In other words, we have 

G-sign(M) = c,([D]) ~ K~(pt)  = R(G), 

where c collapses M to a point. If  M is G - l-connected, i.e., all fixed sets M n are 
connected and 1-connected, then Bn(M) is G-contractible, so c : M ~ p t  'is the map' 
f :  M ~ Bn(M),  up to G-homotopy. Thus, it is reasonable to make the following 
definition. 

1.1. DEFINITION. The higher G-signature of M is 

f ,  (A(M)) = f ,  ([D]) e K~ (B~(M)). 

(Here for an infinite G-CW complex such as BrffM), equivariant K-homology is 
defined to be what Kasparov calls R K ,  ~ in [19], i.e., the inductive limit lira K~,(X), 
where X runs over the directed set of finite G-subcomplexes.) 

Arguing by analogy from the nonequivariant use, one might be tempted to guess 
that the higher G-signature of M is a G-pseudoequivalence invariant, However, this 
is usually false, as one can see from the following simple examples. 

1.2. EXAMPLES. (a) Even when G is trivial, the higher signature f ,([D]) 
K , ( B n ( M ) )  is known not to be homotopy-invariant for many cases where hi(M) 
has torsion. For instance, in the case of lens spaces with fundamental group 

~ = Z p ,  KI(BZP) = lim ZPr~- 

(sometimes denoted Zp~) and f .  ([D]) is a function of the mod-p Pontryagin classes, 
which are not homotopy invariants for lens spaces (see [28, w 

(b) If  M is l-connected and G acts freely on M, then as a G-space, Bn(M)  is 
G-homotopy-equivalent to EG. Once again, the higher G-signature is not a G- 
homotopy invariant. For instance, let h : N 2 " ~  CP" be an orientation-preserving 
homotopy equivalence, where N is a fake complex projective space and h does not 
preserve rational Pontryagin classes. The canonical S~-bundle over CP ~ pulls back 
to N, yielding a G-homotopy equivalence 

h~: E2n + I ~ S2n + 1, 

where G is S ~ acting freely and Y~ is a homotopy sphere. Note that S 2"+~ is a 
G-skeleton of EG = S ~ and K~(S  z"+ ~) ~ R(G)/ I  "+ 1 injects in K~(EG) ~- 
R(G)[1/I]/R(G), where R(G) ~- 71[t, t -l] and I = (t - 1) ~ R(G) is the augmentation 
ideal. 

The classifying map f :  E ~ Bn(E) is just the composite of h" with the inclusion 
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t: s2n+t~ EG, so f,([D,~]) is determined by /~,([D~]), which rationally corre- 
sponds (under the Chern character) to 

2nh,(Se(N) n IN]) ~ H , ( C ~ ' ;  Q) 

(s is the Atiyah-Singer L-class, which differs from the Hirzebruch L-class 0_ only 
by certain powers of  2). Since one can recover all the rational Pontryagin classes of  
N from this, we clearly do not get t ,([Ds]),  even rationally. 

Examples 1.2a and 1.2b show that when BzffM) does not have the G-homotopy 
type of  a finite G-CW-complex, it is unreasonable to expect the higher G-signature 
to be a G-homotopy invariant, let alone a G-pseudoequivalence invariant. In fact, 
asserting the latter does not even make sense, since if h:M ~ M" is a G-pseudo- 
equivalence, the higher G-signatures of M and M '  live in K~,(BTr(M)) and 
Ka,(Brc(M')), respectively, which are usually quite different as R(G)-modules. 
Nevertheless, H induces by [24] a functorial map 

h, " K~(Bn(M)) --* K~(Brc(M')), 

so it is natural to try to compare the image of  the higher signature of  M with the 
higher signature of M'.  As we shall see later, these often agree; still more often, they 
will agree after localizing at various prime ideals of R(G). For example, in 1.2a, we 
must invert p, the order of  the torsion in the fundamental group; and 1.2b, we must 
invert the augmentation ideal L 

1.3. C O N J E C T U R E  (equivariant Novikov conjecture). Let h: M ~ M '  be an ori- 
entation-preserving G-pseudoequivalence of  connected, closed, oriented G-mani- 
folds, and consider the associated commutative diagram 

KO,(M) (su) .  K~,(Brt(M) ) 
1 ~. 1 ~. 

K~,(M, ) (TM'),> K~(Bn(M')). 

(a) If  K~(BrffM')) is finitely generated over R(G), then the higher G-signatures 
agree, i.e., 

h , o  (fM),([O~,]) = (f~r),([OM,]). 

(b) More generally, if for some collection Sg of  prime ideals of  R(G), the 
localization K~ is finitely generated over R(G)~, then the same statement 
holds after localizing. 

(c) Still more generally, assume one has a G-space X (say a G-GW complex) and 
a commutative diagram of G-maps 

M, /f, X" 



AN EQUIVARIANT NOVIKOV CONJECTURE 33 

Then if K~(Brc(X)) is finitely generated over R(G), 

( fx  ) ,  ~ q0,([DM]) = ( f x ) ,  o ~k,([DM,]) 

in K~,(Brr(X)), and similarly (if one only assumes finite generation after localizing 
as in (b)) after localizing. [] 

While it may be that the finite generation hypothesis can be weakened somewhat, 
some such restriction is needed because of the examples in 1.2. This does not seem 
serious, since the best results about the nonequivariant Novikov conjecture apply 
only to groups rc for which Br~ is rationally equivalent to a finite complex or, in fact, 
if one wants torsion information, to the case where Bn can be taken to be a finite 
complex. 

The main results of this paper are the following: 

1.4. THEOREM (see 5.1 below). Suppose X is a complete (not necessarily compact) 
Riemannian manifold of nonpositive curvature on which G acts by isometries, with 
K* (X) finitely generated, and 

M,//~o X 

is a commutative diagram of G-maps, with h an orientation-preserving G-pseudo- 
equivalence of closed oriented G-manifolds. Then q) , ([DM ]) = 0 ,  ([DM,]) in KC, ( X). 

It is important to note that Theorem 1.4 is one case of Conjecture 1.3(c). This 
follows immediately from: 

1.5. PROPOSITION ('Equivariant Car tan-Hadamard  theorem'). Suppose X is a 
complete Riemannian manifold of nonpositive curvature on which a compact group G 
acts by isometries. Then X ~ B n ( X )  is a G-equivalence, i,e., X is 'G-equivariantly 
aspherical'. 

Proof: For each subgroup H of G, X H is totally geodesic in G, since H sends 
geodesics to geodesics. Hence, X H is also geodesically complete with nonpositive 
curvature. By the nonequivariant Car tan-Hadamard  theorem, X H is thus a disjoint 
union of aspherical manifolds. This being true for all H, X is equivariantly 
aspherical. [] 

Thus, when X is as in Theorem 1.4, we may replace Brc(X) by X. However, 
Theorem 1.4 is applicable only when one can prove the existence of  G-maps into 
such a G-manifold X. Our Section 4 is devoted to such existence theorems. 

We discussed the case where G acts trivially on X in [37], Proposition 1.2, and 
derived the corresponding version of the equivariant Novikov conjecture in Theo- 
rem 3.8 of the same paper. To handle more general group actions for geometrically 
interesting fundamental groups, it is useful to invoke the machinery of harmonic 
maps, as developed in [9, 40, and 7]. Typical results include the following. 
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THEOREM (4.1 below). Suppose a compact Lie group G acts on a closed manifold 
M, and we are given an isomorphism Hi(M;  7/) -~ 7/n. 

Then there exists a smooth G-map q9 : M --* T ~, where T ~ is a flat torus on which G 
acts by isometries, such that qg* is an isomorphism on Hi (  ; 7/). 

THEOREM (4.5 below). Suppose a finite group G acts on a closed manifold M, and 
we are given an isomorphism rq (M, Xo) --* ~1 (S, Yo) for some Xo ~ M, Yo ~ S, S a 
closed surface o f  genus g > 1. (Once again, we do not require anything about Me. )  
Then there exists a smooth G-map qg : M--* S for some hyperbolic structure on S and 
action o f  G on S by isometries, such that r is conjugate to the given map of  
fundamental groups. 

2. C*-Algebras of Fundamental Groupoids 

The main technical tool in our analysis will be to extend the method of Kasparov 
[19], which heavily uses the C*-algebras of fundamental groups, to the case of  
fundamental groupoids. Though our applications will be to manifolds, for technical 
reasons, it will be useful to work with a slightly larger category of spaces. We collect 
together in this section the facts that we will need about C*-algebras of fundamen- 
tal groupoids. 

2.1. DEFINITION. Let G be a compact Lie group and X a G-space. We shall call 
X admissible if the following conditions are satisfied. 

(a) X is connected, locally compact, and second-countable. 
(b) X has a canonical G-invariant measure class of full support. 
(c) X is locally path-connected and semi-locally simply connected. 

Note that (c) is required so that standard covering space theory applies to X. 

2.2. EXAMPLES (a) The main example to keep in mind is that where X is a 
smooth connected G-manifold; the canonical measure class is, of course, the class 
of Lebesgue measure in any local coordinate chart. 

(b) More generally, one can allow X to be a Lipschitz manifold with a Lipschitz 
G-action. There is still a canonical invariant measure class, since Lipschitz home- 
omorphisms of R n preserve the class of  Lebesgue measure (by Rademacher's 
Theorem [45, p. 272]). 

(c) Alternatively, one can suppose merely that X is a connected, locally finite 
G-CW complex of  'uniform dimension' n = dim X. (Thus, we suppose that cells of 
(nonequivariant) dimension n are dense.) The canonical measure class comes 
from the equivariant cells ( G / H ) x  g~a of maximal dimension (i.e., with 
dim(G/H) + d = dim X),  where it is given by the product of  invariant measure on 
G / H  and Lebesgue measure on R d. 

(d) Note that if X is an admissible G-space and Y is a compact G-invariant 
subspace of  measure zero in X, then X / Y  (the G-space obtained by collapsing Y to 
a point) is also admissible provided 2.1(c) still holds (which is true if Y is at all 
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'reasonable'), since measure theoretically, X and X~ Y are the same. Some condition 
on Y is needed for this, as one can see from the example X = [ 0 ,  1], 
Y = {0, 1, l, �88 ~ . . . .  }, but it is enough, for instance, to assume (X, Y) has the 
relative homotopy type of a finite CW-pair. 

2.3. DEFINITION. Let X be an admissible G-space in the sense of 2.1. Recall that 
the fundamental groupoid n(X) of X is the topological groupoid with unit space X 
and with morphisms the homotopy classes (rel. boundary) of paths I --* X. If  we fix 
a universal covering X of X and let rq be the corresponding group of cove~ing 
transformations, then X --- . ~ / n  1 and n(X) ~ (Y? x "~)/~1" If we choose a measure # 
in the canonical measure class of X, we may pull it back to a rq-invariant measure 
on J? and, thus, in an obvious way get a Haar system 2 on (.Y x ~)/rq ~ n(X) in the 
sense of [33]. We define C*(n(X)) and C*(rt(X)) to be the corresponding full and 
reduced groupoid C*-algebras as defined in [33]. These do not depend (up to 
*-isomorphism) on the choice of/~ within our canonical measure class. See also [36, 
w for an exposition. 

Note that though G may not act on .~, G acts naturally on n(X). Furthermore, 
by assumption, G is compact and preserves the class of #. Thus (by averaging over 
Haar measure on G) we may  choose # to be G-invariant, and then G acts on the 
convolution algebra (Cc(n(X)), 2), hence on C*(n(X)) and on C*(zffX)). 

2.4. Remark. For all future purposes in this paper, it will not matter whether we 
use C*(rffX)) or C*(n(X)), though the latter is probably slightly more natural. 
(This is because its K-theory is likely to be closer to that of BrffX).) For this reason, 
we shall generally write only C~*, with the understanding that C* is an acceptable 
alternative. 

Since our objective will be to use the C*-algebra of the fundamental groupoid of 
a manifold M as an equivariant substitute for the C*-algebra of  the fundamental 
group in Kasparov's work [19], we want to show that when M has a G-fixed 
basepoint, the theory we get is identical to that which we discussed in [37, Theorem 
3.8 and Remark 3.9]. This motivates the following discussion. 

2.5. THEOREM. Let X be an admissible G-space with a G-fixed point Xo. Then 
C*(rffX)) and C*(Tq (X, Xo)) (similarly for the full C*-algebras) are G-equivariantly 
strongly Morita equivalent, and there is a natural isomorphism (of R(G)-modules) 
K~,(C.Qt(X))) o , K ,  (Cr (rq (X, Xo)))~. 

Proof. An imprimitivity bimodule E between these two algebras was constructed 
in [27, Theorem 2.8] by completing Cc(Y~) in a suitable norm, where ~ = n(X) xo. It 
is obvious that if the measure # is chosen G-invariant as in 2.3, then G acts 
naturally on E. Now we need a fact which is familiar to anyone who has thought 
about the equivariant Kasparov functor KK ~. For convenience, we record the easy 
proof, though this lemma also appears in [19, Theorem 2.18] and in [8]. 

2.6. LEMMA. Let G be a compact Lie group and let A and B be separable 
C*-algebras equipped with actions of G. Suppose there exists an imprimitivity A-B 
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bimodule E (in the sense of [34]) equipped with an action of  G compatible with the 
actions of G on A and B. Then E defines a KK6-equivalence between A and B and, 
in particular, induces an isomorphism of  equivariant K-groups KG, (A) -~ K~ (B). 

Proof Since ~ ( E ) = A ,  the graded Hilbert B-module E ~)0, together with 
0 e ~~ defines an equivariant Kasparov A-B-bimodule, and thus an dement 
[E] ~ KK~(A, B). Similarly, the dual module J~ (defined in [34, w defines 
[E] e KKC(B, A). Since, by [34, Lemma 6.22], E |  E ~ B and E | -~ A, we 
have [/~] | [E] = ls  e KK6(B, B), [E] |  [El = la ~ KKG( A, A). [] 

Using Theorem 2.5, we can now prove a seemingly much more powerful result 
(Theorem 2.8) below. First we need a lemma. 

2.7. LEMMA. Let Y be a manifold, X c Y a 1-connected compact subcomplex 
of  positive codimension. Then the map Y ~  Y /X  induces an isomorphism 
C*(rt(Y/X)) ~ C*(rffY)). I f  a compact Lie group G acts on Y and leaves X invariant, 
then this isomorphism is G-equivariant. 

Proof The projection Y ~  Y/X  obviously induces a continuous function 
y x ~  ( y / x ) z  (here YX denotes the space of  continuous maps I = [0, 1] --* Y). Since 
X is 1-connected, there results (say, by Van Kampen) a continuous surjection 
rc(Y)--rn(Y/X) and, thus, an injection Cc(rc(Y/X))--*Cc(n(Y)). Since X is of 
positive codimension in Y, Y ~ Y / X  and n ( Y ) ~ r f f Y / X )  are measure-theoretic 
isomorphisms and, thus, this map preserves convolution multiplication and, thus, 
induces a map of C*-algebras. That this is an isomorphism for the reduced 
C*-algebras is easy to see, since Y ~ Y /X  gives an isometry of the Hilbert spaces on 
which the regular representations act. To prove the corresponding result in the case 
of the full C*-algebras, it is easiest to use [27, Theorem 3.1 and Remark on p. 
19]. Fix Y0 e X, let )7 o be its image in Y/X, and choose a Borel cross-section 
b: Y / X ~ 1 t ( Y / X )  ~~ By lifting paths, we get a corresponding Borel map 
~: Y/X--* rr(Y)yo. Since X has measure 0 in Y, [27] gives compatible isomorphisms 

C*(n(Y/X)) ~- C*(n,(Y/X, Yo)) | J{'(L2(y/x))  

and 

c*(n(r)) ~ c*(=, (r, yo)) | ~(L2(Y/X)), 

from which we see that our map of  C*-algebras is actually an isomorphism. 
The equivariance of C * ( n ( Y / X ) ) ~  C*(nl(Y)) (or of the corresponding map of 

full C*-algebras) is evident from the equivariance of Y-~ Y/X and of n(Y) 
~(r/x). [] 

Remark. The above result can easily be generalized to admissible spaces in the 
sense of Definition 2.1, assuming a condition as in 2.2(d). 

2.8. THEOREM. Let Y and Y" be connected G-manifolds (or more generally, 
admissible G-spaces), and suppose f :  Y ~ Y' is a G-map which (nonequivariantly) 
induces an isomorphism of  fundamental groups. (In other words, f is a G-pseudo-l- 
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equivalence, but not necessarily an equivariant 1-equivalence.) Then f induces an 
isomorphism K~, ( C* (n( Y))) ~ K~. ( C* (n( Y') )). 

Proof. If  Y has a fixed point Y0, this follows from Theorem 2.5, since f induces 
a G -equivariant group isomorphism 7~ 1 ( Y, Yo) ~ n i (Y', f (Yo)). 

Next observe that the result holds if Y ' - - Y  x Z, where Z is a 1-connected 
G-manifold with a G-fixed point z0, and f ( y ) = ( y ,  zo). The reason is that 
7z(Y') = n ( r )  x Z • Z, and thus that C*(n(Y')) ~- C*(n(Y)) | ~g(LE(Z)) (canoni- 
cally and G-equivariantly); in particular, Lemma 2.6 applies. Similarly, the result 
holds if Y = Y' x Z, where Z is a 1-connected G-manifold and f is the projection 
onto the first factor, since in this case C*(rr(Y))~-C*(n(Y'))|  ~r(L2(Z)) G- 
equivariantly. 

Now we get the result in general by combining several special cases. First of all, 
by the result about products we may replace f by 

f x i d : Y x R  3 ~ Y ' x R  3, 

where ~3 has trivial action. Choose any y ~ Y; then the suspension E(G .y) is 
0-connected and the double suspension E2(G.y) is 1-connected and embeds in 
Y x R  3. Crush E2(G.y)  and E2(G. f (y ) )  to points in Y x R  3 and in Y ' x R  3, 
respectively. Now by applying Lemma 2.7, we reduce to the case where there are 
G-fixed basepoints, which we have already handled. [] 

For technical convenience later (since C*-algebras of discrete groups have units, 
but C*-algebras of fundamental groupoids do not), it will be useful to relate 
K~(C* (n(X))), for X an admissible G-space, to the K-theory of the (reduced) group 
C*-algebra of another transformation group. 

Therefore fix a universal cover )~ ~ X of X and let rq be the group of covering 
transformations of .~ p X. Recall that if we fix a basepoint Xo ~ X, then we may 
choose for )? the space of homotopy classes of paths in X beginning at Xo, i.e., 
s-l(x0) c n(X), and then nl may be identified with nl (X, xo). We assume that a 
compact Lie group G acts on X. Since G may not fix any basepoint, we try to avoid 
the latter point of view as much as possible. Instead, we may identify rffX) (once 
/ 7 ~  X is given) with the quotient space 0 ? x .~)/nl, where n, acts by the product 
action. The maps r, s: (.~ x . ~ ) / n l ~ X  are given by projection onto the first and 
second factors, respectively. 

Now let ~ : G ~ Homeo (X) be the action of G. For each g e G, at(g) : X ~ X can 
be lifted to a homeomorphism of ,V, which is not unique but is determined up to an 
element of rq. Thus we obtain a locally compact transformation group F on ,Y 
which is a group extension 

1 ~ n l ~ F ~ G  ~ 1. (2 .9)  

(Note F is closed in Homeo(X) since ~(G) is closed in Homeo(X), G being compact. 
Thus, F is a Hausdorff topological group and (2.9) is a topological group extension; 
then F is locally compact, being an extension of a compact group by a discrete 
group.) 
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The extension (2.9) will split as F ~ nl(Y, Xo) >~ G if X has a G-fixed basepoint 
x0, but not in general. 

2.10. PROPOSITION. C*(rffX)) >~ G is strongly Morita equivalent to C*(F).  Thus 
~;,~(c* (~(x) ) )  ~ K ,  ( c *  ( r ) )  . 

Proof Form a new topological groupoid E, with object space X, and where the 
morphisms x--*y are given by pairs (g,v) with g e G, 7 e n(X), and 
r ( j  = y, s ( j  = a(g)(x). We write such a morphism for short as 

g 7 
x - -~  s ( j  - - ,  y. 

Composition of morphisms is then defined by the formula 

g2 72 g l  71 g2gl  ~2Qg2"T1 
(y----~s(72)---~z) o(x---~s(h)----~y) = ( x  , g2 �9 S0~l) ,2);  

note that 
g ~ g - I  g - l . 7 - 1  

(x --~ s(7 ) __._~ y ) -  l = (y  ~ g - t  . y  > x). 

It is easily checked that the axioms for a locally compact groupoid are satisfied and 
that E deserves to be called the semidirect product 7t(X) >~ G. Furthermore, the 
same proof  that for groups shows that C*r(H) >~, G ~ C*(H >~ G) (when a group 
G acts on a group H)  shows that C*r(n(X)) >~ ~ G ~ C*(E). (It is not necessary to 
take the reduced crossed product by ~ since G is amenable.) Hence we need only 
show that C*r(E) and C*(F)  are strongly Morita equivalent. This now follows 
immediately from Theorem 3.1 of  [27], since E is a second-countable, transitive 
groupoid, with unit space X, and we may identify F with the group EXo o for some 

x0 eX.  
The last statement about equivariant K-theory follows from a theorem of  Green 

and Julg (see [17] or [2, Theorem 11.7.1]). [] 

3. The Equivariant Kaminker-Miller and Kasparov Theorems 

We come now to the main technical tools of  this paper, which are the generaliza- 
tions to the equivariant setting of  the results of  [18] and [19]. We begin by defining 
an equivariant version of the symmetric signature of Ranicki [31] and Mi~enko  
[25], and by noting its invariance properties. 

3.1. DEFINITION.  Let M 2n be a closed, connected, oriented, smooth manifold of  
even dimension, and suppose a finite group G acts smoothly on M. Let h~r be a 
universal cover of  M and let F be the group acting on M generated as in (2.9) by 
lifts of  the action of  G and by the group n I of  covering transformations. Choose a 
finite cell decomposition of  M, with respect to which G acts cellularly. This gives a 
cell decomposition of  M, usually infinite, with respect to which F acts cellularly, 
and the associated cellular chain complex may be viewed as a finite complex 
C.(M; C[I-]) of  C[I]-modules.  
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3.2. LEMMA. The C[F]-modules Cj(M; C[1-]) are finitely generated and projective. 
Proof. Note F acts properly discontinuously on/~t, so all its isotropy groups are 

finite. Thus Cj(M; C[F]) is a finite direct sum of modules of  the form C[F\F] with 
F ~ _ F  a finite subgroup. But C[F\I-] =pC[F] ,  where p eC[F]  ~ C[1-'] is the 
idempotent corresponding to the trivial representation of F, and so is projective, in 
fact a direct summand of  a rank-one free module. (This works even with • in place 
of C, but not with 2~, since we need to invert IFI. cf .  Proof  of  Theorem 3.1 in [37].) 

[] 

Now the Poincar6 duality pairing produces as usual a symmetric signature 
1 a(M, G)~ L2"(C[F]) (=Lo(C[F]) ,  since we are working over C, which contains 

and i = v / ~ ) .  A basic observation is Proposition 3.3. 

3.3. PROPOSITION. The symmetric signature a(M, G) is invariant under orienta- 
tion-preserving pseudoequivalences. 

Proof. Let M ~ M'  (M and M'  as in Definition 3.1 above) be a G-map and 
(forgetting the G) an orientation-preserving homotopy equivalence. Then M and 
M '  have the same fundamental group, and lifting h to the universal covers, we see 
the corresponding F's are the same and we have a F-map h~t ~ ~t ' .  This gives a 
chain map 

h 

C(M; C[1-]) --~ C.(M'; C[1-]). 
h 

Let C(h.) be the algebraic mapping cone. Since M ~ M'  is a homotopy equivalence 
(forgetting the G), C(h.) is acyclic as a complex of  C[nl]-modules, hence acyclic as 
a complex of C[F]-modules (a C[I]-module which is zero as a C[nl]-module is zero, 
period!). Thus h is a chain equivalence and tr(M, G) = a(M', G). [] 

Next, we have to relate the invariant a(M, G) to G-equivariant analysis on M. 
This is where the C*-algebra of the fundamental groupoid comes in. But first note 
that the inclusion C[F] ~ C*(F)  sends a(M, G) to an invariant in 

L0(Cr*(F)) ~- Ko(C*(F)) ~ Ko(C*(G v< n(M))) ~-:K~(C*(rffM))) 

which we call O(M, G). The equivariant Kaminker-Mil ler  theorem will identify this 
with a suitable index of an equivariant signature operator on M. First we need a 
suitable fiat bundle on M on whose sections this operator will act. 

Recall that if A is a C*-algebra, an A-bundle over a topological space X is 
defined the same way as a vector bundle, except that the fibers of the bundle are 
right A-modules and the transition functions are A-linear. When A has a unit and 
X is compact, K~ A) denotes the Grothendieck group of  such bundles with fibers 
that are finitely generated and projective over A. This group is isomorphic to 
Ko(C(X) | A). When A does not have a unit, the definition is adjusted so that one 
still has K~ A ) ~  Ko(C(X)| A). Everything can be made equivariant for a 
compact group G in the usual way. 

3.4. PROPOSITION. Let M be a compact G-manifold, where G is a compact Lie 
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group, and let A = C* 0r(M)) (which carries an obvious action of G). Define a bundle 
qg of Hilbert A-modules over M by 

~/y = completion of  C~(r - l(y), f~l/2) 

as in [15]. Note that G operates on ~ in an obvious fashion compatible with the 
actions on M and on A. They ~1 is a flat A-bundle over M and defines a canon&al 
class in K~ (M; A), hence (by Kasparov product) a map ]~: K,a(M) ~ KG,(A). 

eroof. As in [15], we want to prove that ~(~r = C*(rq(M, y)). Since this has 
an identity and the bundle of  such algebras is obviously flat over M, this will prove 
the result, since ~r is G-equivariant. 

First, C*(nl(M,y))  acts on ~Jy on the left, since if V e r q ( M , y )  and 
~C~(r-I(y), f~l/2),  so is 7 "~, defined by 7 "~(t/) =~(V-lt/),  and this action 

obviously commutes with the A-action on the right and preserves the A-valued 
inner product. The fact that C*(n,(M, y)) thereby injects in La(~Cy) is as in [15]. If  
~, ~ ,  ~2 ~ C~(r-~(Y),  f~m), then 

(r �9 (r r = f~(~)=~ 

~-"~" fr(? t) = y 

for suitable f ,  where 

f0 / )  = .lrf~rr* 

s(~2) = r(~ F t) 
r(72) = y  

f(r/)r 
n~nl(M,Y) 

r162 

This shows ~ff(~y)~_ C* (zq (M, y)) and in particular that ~(~r has a unit. The 
equality is verified as in [ 15]. [] 

Next, we want to view the invariant 8(M, G) as coming from the bundle ~d and 
the ring C*(n(M)). To this end, observe that since the group G acts on C*(rr(M))), 
it makes sense to talk about an equivariant L-group Lg(C*Or(M))) constructed 
from Hermitian forms over C*(rr(M)) which are invariant under the G-action. (If 
lack of  a unit in the ring makes the reader nervous, note that we can adjoin an 
identity and work with the ring A + = C*Or(M))+, then take the reduced group 

ker(Lg(A +) --, Lff(C)) .) 

Note further that by Proposition 3.4, the fibers of  ~ are Hilbert A-modules for 
which ~Y(~y) is unital, and are thus finitely generated projective A +-modules. 

3.5. PROPOSITION.  The invariant 8 (M,G)~K~(C*( z (M) ) )  agress with the 
equivariant symmetric signature of  the chain complex of  twisted cellular chains of M 
with coefficients in the A-bundle ~. 
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Proof. If we forget the G for the moment, note that 0 is defined using the 
canonical C*(rq)-bundle C =/14 x ~1 C~(~1) over M. The sections of this bundle 
are obtained by completing Cc(~I) for a suitable C ( M ) |  C* (nl )-valued inner 
product defined by 

F.((~,  ~)~(M~| = Y~ ((rh)~(~ �9 r~), 
p(~) = m 

~, t leC~(~I) ,  m e M .  

Here 

"] e g l  f-~ C | Cr$(/I:l) c-..4. C ( M )  | C*~(lh) 

and 

E(Y) = ~ f(Y~)~(~2). 
Y ~ I Y 2  

r(y2) = s(7 l) = Xo 

Note that the map is C[zl (M, x0)]-balanced, so does indeed give a map 

Co(j~/~) | 1] Cc(r -- l (x0))  ~ Cc(n(M)) 

with dense image, which on completion yields the desired isomorphism of 
C(M) | C*(n(M))-modules. 

The upshot of all this is that the map fl : K,  (M) --, K ,  (A) defined by ~J agrees 
(modulo the Morita equivalence of Theorem 2.5) with the map ]~ :K , (M)  
K,(C* (n~)) of [19], and similarly the cellular symmetric signature invariant defined 
using V and C*(n~) agrees with that defined using ~ and A. So we have only to 
match up the G-actions. That this can be done will be another consequence of 
Proposition 2.10, for the same considerations as above will show that 
#(M, G ) e  K0(C*(F)) corresponds under the Morita equivalence to a symmetric 
signature for the ring C*(G ~< rt(M)). This in turn evidently corresponds to the 
G-equivariant symmetric signature defined using ~ and A. [] 

3.6. THEOREM (Equivariant Kaminker-Miller). Let the manifold M ~ and the 
finite group G be as in Definition 3.1. Choose a G-invariant Riemannian structure on 

and E:  C(M) | Cr$(7~1)~C(M) is the conditional expectation coming from the 
canonical trace on C*(Th). 

On the other hand, the sections F(M, ~r are obtained by completing Cc(n(M)) 
for a suitable C(M) | C*0z(M))-valued inner product. We claim that 

F(M, ~ )  | X ~- F(M, ~), 

where X is the (Cr*(nl), Cr*(rffM)))-equivalence bimodule qJxo defined by a choice 
of basepoint Xo in M, as constructed in the proof of Proposition 3.4, together with 
the corresponding identification of nl with nl(M, Xo). This can be seen by looking 
at the map sending f | ~ ~ E, where 

f e Cc(~l) ~ Cr ~ ~ Cc(r-l(Xo)), 
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M and a G-invariant flat connection on the ,4-vector bundle ~l, and let D be the 
,4tiyah-Singer signature operator, D~ the operator with coefficients in ~t, as defined 
by the connection. Then 

G-Ind(D~/) = if(M, G) in K~(C*(zffM))).  

Proof  We use the interpretation of if(M, G) given by Proposition 3.5, and then 
observe that the argument of Kaminker and Miller in [ 18] can be made equivariant 
for a finite group of isometries. The only difficulty comes from the fact that the ring 
A does not have an identity, so it is not immediately clear that the equivariant 
,4-index of D~ is well-defined. Therefore we appeal to w of [18], which shows that 
everything will work provided the complex f~'(M, ~), completed in suitable Sobolev 
norms, gives a quasi-regular Hermitian Fredholm ,4-complex or, in other words, 
that we can go up to the unitalization ,4 +. This again follows from the proof of 
Proposition 3.4, which showed that the fibers of ~ may be regarded as finitely 
generated projective A +-modules. [] 

3.7 THEOREM (Equivariant Kasparov). Let W be a complete Riemannian mani- 
fold o f  non-positive curvature on which a compact Lie group G acts by isometries, and 
let ,4 = C*(~(W)).  Then the map [3 :KG, (W)~K~( ,4 )  o f  Proposition 3.4 is split 
injeetive. 

Proof  Let if" be the universal cover of W and let F as in (2.9) be the group of 
isometries of if" generated by the group ~1 of covering transformations and by lifts 
of the elements of G. As we saw in Proposition 2.10, there is a natural isomorphism 
K~(,4) ~K, (C*(F) ) .  As Kasparov points out in [19], fl really comes from an 
element 

I 

Ida] e KKi~o~(ft)(C,(ff" ), C), 

where C~(I~) is the algebra of sections vanishing at infinity of the Clifford algebra 
bundle of the cotangent bundle of if'. The main results of [19], Theorems 5.3 and 
6.7, say there is also an element 

r/ft ~ KKIsom(ft)(C, C~(I~)), 

with 

[dft] |  r/ft = lc,(ft). 

Clearly, we may restrict attention from Isom(l~) down to F. Then we obtain classes 

[aft] e KKF(C(ff), C), r/ft ~/~K~(C, C~(~)), 

and applying the induction functor j of [19] gives 

j([dw]) ~ KK(C,(I~/) ~ F, C~*(F)), j(r/ft) ~ KK(C*r (F), C~(I~) ~ r),  

with 

j([dft]) | = Ic,(~ ) >~ r. 
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Now we are done, since as Kasparov shows, fl is the composite 

Poincar6 duality 
KG,(W) , K ,~(Cr 

Green-Julg 
= K~,(Cr , K,(Cr >0 G) 

Morita equivlence 
, K , (C*(F) ) ,  

and Kasparov product with j(r/~) followed by Poincar6 duality will provide a 
splitting map. [] 

4. Construction of Equivariant Maps 

In this section, we shall construct equivariant maps from a given manifold with a 
group action to certain equivariant aspherical manifolds. Our method is similar to 
that in [40] and is based on the theory of  harmonic maps. We begin with the most 
elementary case, a theorem for which we know no short comprehensible purely 
topological proof, and which is, in fact, a little trickier than the more exotic cases. 
A standard cubical n-torus will just mean T n realized as Rn/Z ~. 

4.1. THEOREM.  Let  M be a smooth manifold and suppose a compact Lie group G 

acts smoothly on M. There is then an affine G-action on a (standard cubical) torus T, 

and an equivariant map c~ : M ~ T inducing an isomorphism on H1( ; Z). 

Remark.  Of course, the theorem implies the PL version, or even the version 
where the manifold is homotopy equivalent to a G-CW complex. Nonetheless, the 
proof  is decidedly smooth. 

Proof. Give M a G-invariant Riemannian metric. Let b e M be a basepoint 
picked arbitrarily from M. We define T = Horn(HI(M; Z), R/Z). We define an 
affine action on T as follows. If  ~ e T and c is a cohomology class with harmonic 
representative to, let 

(g �9 e)(c) = e(g*c) + to rood ~. 

One readily checks that this defines a group action. 
The map r  ~ T is defined by analogy to the Jacobi map in the classical 

theory of algebraic curves and is given in terms of harmonic forms. For  a 
cohomology class c with harmonic representative m, one defines 

r = to e ~/7/. 

The integral is taken over any path, and is well defined because the ambiguity is the 
integral of to over a closed loop, which is in integer, as c is an integral class. (Note 
this map is canonically given by a Riemannian manifold with a choice of base 
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point.) One readily checks that q~ is equivariant, and the theorems of Hodge and 
DeRham easily combine to yield the isomorphism on Hi(  ; Z). [] 

4.2. (Well Known) COROLLARY. Every f lat  manifold has a f lat  metric whose 
toral cover is cubical. 

Proof  From Bieberbach's theorem, the fiat manifold can be described as the 
quotient of a torus under some affine group of transformations. The associated 
action constructed above has cubical cover. 

4.3. COROLLARY. Suppose 7rl(M ) = lrl(F), where F is a closed f lat  manifold. I f  G 

acts smoothly on M, then there is another f lat  Riemannian manifold F', diffeomorphic 

to F, on which G acts affinely, and for  which one can construct an equivariant map 

c~ : M ~ F' inducing an isomorphism on rq. F" can be taken with cubical cover. 

Proof  One considers the cover of M with a characteristic free Abelian funda- 
mental group, and considers the group of all lifts of all group elements, and applies 
the previous theorem to this larger group action. Then one takes the quotient under 
the group of covering translates. 

We conjecture (but can scarcely believe) that a similar result might be true for 
closed manifolds of nonpositive curvature. In general, the above shows that it is 
necessary to deform metrics. In cases where the moduli space is a point, no 
deformations should be necessary. In general, it seems more delicate to construct 
the group action on the 'model manifold' than to construct the equivariant map. 
Where we succeed, the problem is either trivial or a consequence of a rigidity 
theorem.* In the 'rigid' cases below, the group G is to be finite. 

4.4. THEOREM. Let W n be a locally symmetric space o f  finite volume, o f  noncom- 

pact type and with no local one- or two-dimensional factors. Suppose G acts on M and 

one has homorphisms lr I M ~ zr I W, with noncentral image, and G -~ Out rh W that are 

compatible (e.g., one has an isomorphism ~1M ~ zq W). Then there is an action o f  G 

on W by isometrics, and an equivariant map ~ : M ~ W realizing all the above data. 

Proof  The action is constructed by a direct application of Mostow rigidity [26], 
since each self-homotopy-equivalence of W is realized by an isometry. Because W 
has nonpositive curvature, according to [9] there is a harmonic map in any free 
homotopy class of maps M ~ W. According to [40], the harmonic map is unique in 
our case. Since the compositions of harmonic maps with isometries are harmonic, 
uniqueness implies equivariance. [] 

In the hyperbolic case, one can also handle dimension 2. 

4.5. THEOREM. Let W 2 be a surface o f  genus >>.2. Suppose G acts on M and one 

has homomorphisms r h M ~ ~ W, with noncentral image, and G --* Out nl W that are 

compatible (e.g., one has an isomorphism ~1M ~ rh W). Then there is an action o f  G 

* To get a feeling for what is involved in an incredibly special case, we propose the following question: 
Suppose that a torsion-free group contains as a normal  subgroup of  finite index the fundamental  group 
of  a nonpositively curved closed manifold. Is the group such itself?. 
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on W by isometrics for some hyperbolic metric, and an equivariant map (a : M ~ W, 
realizing all the above data. 

Proof. The construction of the metric and action on W is produced by Kerck- 
hoff's proof of the Nielsen realization conjecture [20]. The remainder of the 
argument is identical. [] 

Finally, we point out that if the map G ~ Out na W is trivial, then the action on 
W can be trivially found. In this case, the existence of a harmonic map implies that 
~b : M ~ W factors through M/G. This condition is very useful, and the equivariant 
Novikov conjecture in this case was already studied in [37]. 

4.6. THEOREM. Let IV" be a closed manifold of nonpositive curvature or a 
complete locally symmetric space of noncompact type, perhaps with infinite volume. 
Suppose G acts on M and one has a homomorphism n l M ~ n l  W, with noncentral 
image, or in the second case, Zariski dense image. Assume that the map G ~ Out nl M 
induced by the action is trivial. Then there is a map (a : M/G ~ W whose composition 
with the projection induces the given homomorphism on nl. 

Proof The harmonic maps are constructed by [9] and [7] in the two cases 
respectively. [] 

4.7. Remark. This statement should be true in much greater generality. For 
instance, it should apply to any K(n, 1) for n a hyperbolic group in the sense of [13]. 
By consideration of free actions, this would have interesting group-theoretic 
implications. 

5. Applications 

This section combines the results of the previous four sections to yield some 
topological and differential geometric conclusions. For more information on the 
geometrical topological aspects of the problem, we refer the reader to the second 
author's survey of the Novikov conjecture [44]. 

5.1. THEOREM. Suppose W is a complete manifold of nonpositive curvature, and a 
compact Lie group G acts by isometries on W. I f  G is not finite, also assume that W 
has the proper G-homotopy type of a finite G-CW complex, or more generally, that 
K * ( W )  is finitely generated over R(G). Let M and M'  be any closed oriented 
n-manifolds with G-actions, and suppose M" h M f W are G-equivariant maps for 
which the first map h is orientation-preserving and a(n unequivariant) homotopy 
equivalence. Then f .  (A(M)) = ( f  o h) ,(A(M'))  in K~ ( W ). Equivariant maps f to W 
exist in the situations described in Section 4. 

Proof. Because of technical difficulties in proving the analogue of the Kaminker-  
Miller theorem for general compact Lie groups, we reduce part of the proof to the 
case where G is finite. For this we need a slight variant of a theorem of J. McClure. 

5.2. PROPOSITION. Let X be a (possibly noncompact) smooth G-manifold, and let 
6 E KG,(X) or KOc,(X). (Recall this is lira K~,(Xn) or lim KO~ where {X, } is a 
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sequence of finite G-CW-complexes exhausting X.) Assume X has the proper G-homo- 
topy type of  a finite G-CW-complex, or more generally, that K*(X) is finitely 
generated over R(G) (or in the real case, that KO*(X) is finitely generated over 
KO*(pt)). Then 6 = 0 if and only if  the restriction of ~ to K~(X) or KOn,(X) 
vanishes for each finite subgroup H of G. 

Proof. Recall [22] that McClure proved the dual statement for K-cohomology of 
finite G-CW-complexes. We may choose the X,'s to be compact submanifolds of X 
(with boundary). Assuming for simplicity that X is spin c in the complex case, spin 
in the real case (otherwise one merely needs to twist appropriately), we can choose 
the X,'s to be spin < or spin as well. Then by Poincar6 duality (see [Kasparov, 
Theorem 4.10]), K~,(X~)=Ka(X~, 3X~), and these converge to K*(X) (K-theory 
with compact support). Since the latter is assumed finitely generated and R(G) is 
Noetherian, the sequence stabilizes and we may replace X by X~ with n sufficiently 
large. Now fi = 0 if and only if the Poincar6 dual D6 of fi is stably trivial on Xn. 
Since X~ is a finite G-CW-complex, we can apply McClure's Theorem. [] 

Remark. One can easily extend this from smooth G-manifolds to arbitrary 
G-CW-complexes satisfying the finite generation condition. 

Proof of  5.1. (contd): Let 6 be the difference of the images of A(M) and of A(M') 
in K~(W). We must show fi = 0, so by Proposition 5.2, it is enough to assume 
G is finite. By the equivariant Kasparov theorem (Theorem 3.7 above), 
fl:K~ ~Ka,(C*(rffW))) is injective, so we need only show that/7(6) = 0. Now 
this follows from Proposition 3.3, from the equivariant Kaminker-Miller  theorem 
(Theorem 3.6 above), and from the KK-index theorem that says that G- 
Ind(Dr.~) ) = fl(A) (cf. [19] or [2, w [] 

Following [29] we call an equivariant map which is an unequivariant homotopy 
equivalence a pseudoequivalence. Unhappily, pseudoequivalence is not an equiva- 
lence relation, and the classification of manifolds pseudo-equivalent to a given one 
(up to concordance) is in terrible shape. (Petrie gives some sufficient conditions for 
constructing pseudoequivalences under very restrictive fundamental group hypothe- 
ses, and brilliantly applies this machinery to construct many rather exotic actions 
on familiar manifolds like the sphere.) It is a challenging problem to understand 
even all 'signature' type invariants. We find the following examples interesting: 

5.3. EXAMPLE. Let M be a simply connected manifold. Consider a semifree 
group action on a sphere with a circle as fixed set. Manifolds pseudo-equivalent to 
the product of M and this sphere have as fixed set manifolds 71~p)-homology 
equivalent to M • S 1. (This is because of P. A. Smith theory; see [3].) In addition 
to just the ordinary signature of the fixed set, many of the invariants of knot theory 
are defined in this generality. (See [5].) (If  M is a sphere, one performs surgery on 
the generating circle, and obtains a knot in a rational homology sphere.) It is well 
known that there are many signature-related invariants of knots. (See, for a 
textbook reference, [35].) 
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Another peculiar feature of the equivariant setting is that unlike the manifold 
case, we do not know whether the smooth and topological versions of the Novikov 
conjecture are equivalent. Unequivariantly, one knows that Top/O has finite 
homotopy groups and the Novikov conjecture is a rational statement. Equivari- 
antly, however, the classifying spaces for bundle theories are radically different (see 
[6, 23, 32]) and one cannot argue that way. However, our theorem is true topolog- 
ically (for locally linear G-actions), i.e. we have the following theorem. 

5.4. THEOREM.  The result of Theorem 5.1 still holds if M and M' are only 
topological manifolds with locally linear G-actions. (W is ~ still as before.) 

Proof. We can sketch two rather different arguments. The first makes use of the 
theorem of [39] that produces equivariant Lipschitz structures for topological 
locally linear G-manifolds. At that point, the analysis from [38] (based on earlier 
work of [41] and [14]) takes over and allows one to redo all the above arguments 
in the Lipschitz category. 

The second argument is more indirect and makes use of the results of [ 11] and 
[12] on equivariant topological rigidity. We shall sketch it below. 

For manifolds, it is well known that the Novikov conjecture is equivalent to the 
injectivity of a certain 'assembly map' from group (K-)homology to (localized) 
L-theory. We have the following proposition. 

5.5. PROPOSITION. For a finite group G and a G-aspherical G-space 141, the 
following are equivalent: 

(a) the equivariant Novikov conjecture for pseudoequivalences between topological 
locally linear G-manifolds*, i.e. the conclusion of Theorem 5.1, but with M and 
M' only topological manifolds with locally linear G-actions; 

(b) the equivariant Novikov conjecture for equivariant homotopy equivalences 
between topological locally linear G-manifolds*, i.e. the same statement, but 
with h required to be an equivariant homotopy equivalence; 

(c) the rational injectivity of an assembly map 

K,~(w)-,L*(r) | ~, 

where F is the 'orbifold' fundamental group of W/G, which equals the funda- 
mental group of the quot&nt of the principal orbits (assuming each fixed set has 
codimension at least three). 

Clearly (a) implies (b). The method of proof of (a) in this paper is basically that 
(c) implies (a). The fact that (b) implies (c) follows from equivariant surgery due to 
Madsen-Rothenberg [23] for the odd-order case (assuming gap hypotheses) and the 
second author in general. In short, if the assembly map were not injective and one 
had an element in the kernel, then surgery would enable one to construct an 
equivariant homotopy equivalence, which is a homeomorphism on the lower strata, 

* Or more generally, 'weakly stratified actions' in the sense of [30]. 
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for which the difference between equivariant signature classes (the normal invari- 
ant) is, when pushed into K~.(W), the given element. [] 

Proof o f  5.4. (contd). The second proof of pseudoequivalence invariance uses 
the implication (b) :~ (a) in Proposition 5.5. It stems from the result of [12] (see 
also [11]) that any manifold equivariantly homotopy equivalent reloo to an 
equivariant nonpositively curved manifold is homeomorphic to it after crossing 
with Euclidean space. (As with ordinary surgery, a sufficiently good understanding 
of any particular G-manifold implies an understanding of all manifolds of the same 
stratified dimension of the same isovariant 2-type. In particular, the equivariant 
Borel conjecture (which is false, as noted in [11]), which asserts the topological 
rigidity of equivariant aspherical manifolds, would imply all the necessary facts for 
classification of G-manifolds of the given 2-types.) [] 

5.6. Remark. Another application of the current results concerns maps that are 
even less than pseudoequivalences. The idea is this. Any equivariant map between 
G-spaces induces an RQ(G)-module map between their homology groups. If the 
quotient map splits on rq, the induced map on twisted homology also is a map of 
RQ(G)-modules. (See Section 4 and [37] for cases where this is automatic.) For 
pseudoequivalence, one asks that the map be an isomorphism, but it is possible to 
ask what happens with the assumption that the map on homology be an isomor- 
phism only at certain irreducible representations. For instance, if one asks for a 
map to a point which is an equivalence with respect to the augmentation ideal, then 
one is studying the type of homologically trivial action studied in [42, 43]. One can 
break up K~(Brr) and K,  (C* (F)) similarly, and a little thought shows that localized 
pesudoequivalences preserve the pieces corresponding to the relevant representa- 
tions. Finally, it is possible to apply the K-theory localization formula to the 
situation to get information about fixed sets and the like. We shall not formulate 
the most general theorem of this sort, but just point out: 

5.7. COROLLARY (of the discussion). I f  7_ n acts homologieally trivially on a 
manifold M with fundamental group re which is the fundamental group o f  a manifold 
o f  nonpositive curvature, then there is a characteristic class D(~) o f  the equivariant 

normal bundle o f  the f ixed set F, such that 

f ,  (I_(M) c~ [M]) = ( f i ) ,  (0(4)" ~_(F) c~ IF]) e H ,  (Bre; O), 

where f :  M ~ B~z and i: F ~ M. 

If the action were semifree, this would be true under the weaker condition that 
the unequivariant Novikov conjecture is true for 7r. For this, and a discussion of D, 
see [43, II]. 

We close the paper with the observation that as in [37] we can deduce the 
following from our method: 

5.8. THEOREM. I f  G acts smoothly by spin-preserving isometries on a closed spin 
manifold M ~ o f  positive scalar curvature, and f :  M --* W is an equivariant map to a 
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complete G-manifold of nonpositive sectional curvature (satisfying the finiteness 
condition of  Theorem 5.1 if  G is not finite), then f , [ D ]  = 0 e KOa~(W), where D 
denotes the Dirac operator on M. 
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Appendix: G-Spaces and Fundamental Groupoids by J. P. May* 

For purposes of equivariant generalization of the Novikov conjecture, Rosenberg 
and Weinberger want a functorial map of G-spaces f: X ~ Bn(X), where Brc(X) is 
a G-space which encodes the structure of the fundamental groupoids of all the fixed 
point spaces X H while discarding all higher homotopy groups and wherefpreserves 
components of fixed point spaces and their fundamental groups. We use work of 
Fiedorowicz [2] and Elmendorf [1] to produce such gadgets. 

As usual in this kind of work, we allow functoriality to include natural arrows 
which point the wrong way but are homotopy equivalences. This is weaker than 
space level functoriality but much stronger than mere functoriality up to homotopy. 
When we work on the fixed-point-data level, this kind of functoriality is good 
enough to allow us to apply Elmendorf's coalescence functor to get the same kind 
of functoriality on the equivariant, G-space, level. 

* Department of Mathematics, University of Chicago, Chicago, IL 60637, U.S.A. 
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We shall need to define the fundamental groupoid of a space in terms of Moore 
loops. For a space X, let I-IX denote the set of paths (/~, s),/~ : [0, s] ~ X. We can set 
~(t) = ~(s) for t ~> s and so regard (fl, s) as a point of Map([0, ~] ,  X) • [0, oo]; we 
give 1-IX the resulting subspace topology. We regard f iX  as a topological category 
with object space X and morphism space HX. The structural maps source, target, 
identity, and composition are specified by S(~,s )=f i (0) ,  T([3,s)=[J(s), 
I(x) = (c(x), 0), where c(?) denotes the constant function at ?, and 

C((a, r), (fi, s)) = (~. fi, r + s), if ct(0) =/~(s), 

where 

{ (0~-fl)(t) = fl(t), 
and 

(~ /~)(t) ~ ( t  - s ) ,  

if0~<t~<s 

if s<<.t<<.r + s .  

We abbreviate (fl, s) = fl henceforward. 
Regard X itself as a topological category with object and morphism space X and 

S, T, I and C all the identity map of X. We have an obvious continuous functor 
: X ~ 1-IX given by the identity maps of 1-IX. The resulting map from X to the 

space of q-tuples of composable arrows of I-IX is clearly a homotopy equivalence 
for each q, and it follows that t induces a homotopy equivalence X = B X ~  B r l X  

on passage to classifying spaces. 
Define an equivalence relation on FIX as follows: two paths ~t and/~ from x to y 

are equivalent if there is a path h : I ~ 1-IX such that h(0) = ct, h(1) = fl, and each 
h(t) is a path from x to y. Let rex (small n) denote the quotient set 1-IX~g, and 
regard rex as a discrete category with object set X in the evident way. This is the 
usual fundamental groupoid, defined in terms of Moore paths. Let n 'X  denote 
F I X / ~  with the quotient space topology, and regard ~ ~X as a quotient topological 
category of FIX, with object space X. (Aside to point-set topology worriers: the 
possibly lousy nature of this topology should not cause problems.) We then have 
a continuous quotient functor d~:FIX-- ,n 'X .  We also have a continuous func- 
tor v : ~ X ~ r t ~ X  given by the set-theoretic identity functions on objects and 
morphisms. 

PROPOSITION. The functor v induces a homotopy equivalence on passage to 

classifying spaces. 
Proof. For a topological category c~, let ~z denote the topological category 

obtained by applying Map(/, ?) to the object and morphism spaces of ~ and to the 
structural maps, S, T, I and C. Let J :  cg ~cg i  be the functor which sends objects 
and morphisms to the corresponding constant functions and let K: c g ~  cg be the 
functor obtained by evaluation at zero. According to [2, 1.4], it suffices to construct 
a continuous natural transformation ~/: J K  ~ Id of functors (n ~X) ~ ~ (rc~X) ~. For 
an object f :  IK  ~ X of (It~X) I, define a morphism t / (f  ) : I ~ IIX of (g~X) 1 by letting 
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q ( f ) ( t )  = ( f  I [0, t], t). The source of q ( f )  is c( f (O))  = J K ( f ) ;  the target isf.  To see 
the naturality of t/, consider a morphism co : f ~ g  in (n~X) z. Then 

[co. q(f)](t) = co(t) �9 ( f l [0 ,  t]) and [r/(g). JK(co)](t) = (g }[0, t]). co(0). 

These are not equal, but they are equivalent; this is one reason why we had to 
introduce the topologized version rc~X of the fundamental groupoid. To see the 
equivalence, consider the path h(t) : [0, t] ~ 1-IX specified by 

h(t)(s) = (g I [s, t]). co(s) �9 ( f  110, s]), for 0 ~< s ~< t. 

Summarizing, for a space X we have the chain of functors 

l q~ v 
X --~ HX ~ n~X +-- nX 

in which t and v induce homotopy equivalences on passage to classify spaces. The 
discrete category IIX has as skeleton the groupoid Iln~ (X, x), where one point x is 
chosen from each path component of X, hence B I I X  ~ _ I I K ( n l ( X ,  x), 1). The 
following is obvious from the constructions. 

LEMMA. The map B4) : B I I X  ~ BronX induces a bUection on components and in- 

duces isomorphisms o f  their fundamenta l  groups. 

We now turn to the equivariant world. Let G be any topological group; 
subgroups are to be closed. Let ~ be the category of  orbit spaces G / H  and G-maps 
between them. A ff-space is a continuous contravariant functor fr spaces. Pas- 
sage to fixed point subspaces gives a forgetful functor �9 from G-spaces to fr 
The work of  [1] gives a functor tF from fr to G-spaces together with a 
natural spacewise equivalence e : ~WF --, F for fr F. In particular, e restricts 
on the orbit G/e to give a G-equivalence ( : tFq~X ~ X for G-spaces X, When G is 
discrete, the following chain gives the natural 'map' f sought by Rosenberg and 
Weinberger, where continuous functors and natural maps on spaces are extended 
spacewise to functors and natural maps on f~-spaces: 

WBt *FBck ~FBv 

X t F ~ X  tFBdOX q2BI-I~X q2Blr'@X ~BnOOX , - -  = , ~ ~ =- l t m x  ~. N I 

For general topological groups G, there is a catch. The functor 
B n ~ X :  fr ~Spaces is continuous trivially if G is discrete, but it fails to be 
continuous in general. To see this, note that any subset of X r is a closed subspace 
of the subspace of vertices of Brr(X x) and consider a typical evaluation function 

(G /K)  ~I • BTr(X 14) ~ B ~ ( X  ~) 

determined by the functor B~z~X: clearly this function need not be continuous. The 
remedy is built into our definitions. The functor Brc~OX: f9 ~ Spaces is continuous, 
and we define B~z(X)=  tFBrr~OX. The desired natural map f :  X ~ Brf fX)  is ob- 
tained by deleting the undefined last arrow from the chain above. We have that 
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Bn(X) n is equivalent to Bn~(X n) and thus to BrffXH). Thus, for general topological 
groups G, it is only the less intuitive, and nonstandard, topologized fundamental 
groupoid that leads to a correct construction of the fundamental groupoid G-space 
desired by Rosenberg and Weinberger. 
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