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1. Introduction

T , , marks the th anniversary of the birth of Stefan
Banach, the father of modern functional analysis. I do not need to

remind the reader about his many contributions – just think of the concepts
and theorems that bear his name: Banach spaces, the Hahn–Banach e-
orem, the Banach–Steinhaus eorem, the Banach–Alaoglu eorem, and
the Banach–Tarski paradox, just to name a few. (I have deliberately omied
Banach algebras since, while they are named aer Banach, the basic theory
of them was really invented by Gelfand and Naimark.)

Banach is important for the history of analysis not just because of what
he did, but because of how he wrote it up. Banach’s works [4–6] are all models
of clarity and conciseness. Unlike much of early th century mathematics,
Banach’s work has never really gone out of date, either in content or in style.
It is still a pleasure to pick up almost any of his papers and to read it as if it
were just composed recently.

e editors of this volume askedme to take on the daunting task to “focus
on some results of Banach.” So it seemed to me that an interesting exercise
would be to take some of Banach’s lesser-known papers, not the ones that
have become household names, and to see what modern mathematics grew
out of them. For this purpose I have chosen three of Banach’s papers, one
on measurable additive maps [1, 4], to be discussed in Section 2, one on
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metric groups [2, 5], to be discussed in Section 3, and one on continuous
selection [3, 4], to be discussed in Section 4.

2. Measurable Homomorphisms and Cocycles

One of Banach’s earliest papers, [1], reprinted in [4], deals with mea-
surable solutions to the functional equation f (x + y) = f (x) + f (y) for
f : R→ R.
eorem 2.1 (Banach). If f : R→ R is measurable and satisfies the functional
equation f (x + y) = f (x) + f (y), then f is a continuous homomorphism (for
the additive group structure).

Banach’s proof takes only about a page and is based on Lusin’s eorem;
the basic idea is that since (on an interval (a, b)) f agrees except on a set
of small measure with a continuous function, one can use this fact together
with the functional equation to show that f is continuous.

A generalization of this theorem appears in Banach’s classic functional
analysis book [6, éorème 3, p. 23]. Translated into more modern terminol-
ogy, this says the following:

eorem 2.2 (Banach). If G1 and G2 are Polish groups (complete separable
metrizable groups – see [12, Proposition 1, p. 3]) and f : G1 → G2 is a Borel-
measurable homomorphism, then f is continuous.

is “automatic continuity” theorem can easily be extended (see [11,
p. 45]) from homomorphisms to “crossed homomorphisms” or 1-cocycles, in
the situation where G2 is a Polish G1-module as in [12, 13].

eorem 2.2 has led to many important developments in representation
theory. First of all, it suggests the development of a theory of “Borel groups”
as worked out later by Mackey [10]. is proved to be crucial for certain
approaches to the decomposition theory of representations [8, 9]. Secondly,
it suggests the development of a cohomology theory for locally compact
groups, in which the cochains are only required to be Borel-measurable, not
continuous. (In general, there are not enough continuous cochains to give
a useful theory.) Such a theory was developed by Moore [11–13], and was
shown byWigner and Tu [16,17] to coincide with other cohomology theories
constructed by methods of homological algebra. It is now recognized that
Moore’s theory is the “right” cohomology theory for problems involving
locally compact groups.
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3. Metric Groups

e paper [2] of Banach proves another automatic continuity theorem
about Polish groups, of a somewhat different nature than eorem 2.2.

eorem 3.1 (Banach). If G1 and G2 are Polish groups and f : G1 → G2 is
a bijective continuous homomorphism, then f−1 is also continuous (i.e., f is an
isomorphism of topological groups).

As Banach points out, the separability hypothesis is crucial here, since for
example the identity map from R with the discrete topology to R with the
usual topology is a bijective continuous homomorphism, but it is certainly
not a homeomorphism. eorem 3.1 is closely related to the more familiar
“Open Mapping eorem” for Banach spaces, also proved by Banach. Other
variants of this theorem are possible. For example, suppose a topological
group G acts simply transitively on a topological space X, if one fixes
a basepoint x0 ∈ X, then g 7→ g · x0 defines a continuous bijection of G onto
X, and one oen wants to know if the inverse map g · x0 7→ g is continuous.
For the same reasons as before, the answer is “not always”. However, by
a variant of the proof of eorem 3.1, the answer is “yes” if G is a Polish
group and X is a complete separable metric space. is is a forerunner of
a huge literature on “slices” for group actions, exemplified by [14].

4. Multivalued Functions

e paper [3] of Banach and Mazur deals with k-fold multivalued func-
tions, and the question of when they “split into branches.” In more modern
language, we can express the problem as follows. Let Y be a topological space,
Yk the k-fold product of Y with itself, and Yk q−−→ SkY the quotient map from
Yk to SkY, the k-th symmetric product of Y with itself. e space SkY is
simply the quotient of Yk by the action of the symmetric group Σk, acting by
permutations of the factors. Inside SkY is the open subset Sk

genY of “generic”
points, the image under q of the points in Yk with yi , y j for all i , j, or in
other words the set of points where all k coordinates are distinct. We can also
identify Sk

genY with the set of all subsets of Y with cardinality precisely k. Let
X be another topological space. A (continuous) k-fold multivalued function
from X to Y is a continuous map f : X→ Sk

genY; it is said to admit a branch
(Zweig in the language of [3]) if there is a continuous map b : X → Y with
b(x) ∈ f (x) for all x, and to split into branches (zerfallen in stetige Zweige in
the language of [3]) if it factors through a continuous map f̃ : X→ Yk. is is
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not always possible. In fact, the map q, restricted to the inverse image S̃k
genY

of Sk
genY, is a Galois covering map with covering group Σk, so if the spaces

X and Y are reasonable, the question of when f will admit a spliing into
branches is reduced to covering space theory. For example, if Y = S2 � CP1,

SkY � CPk, and if k = 2, then S̃k
genY is the complement of the diagonal copy

∆ of S2 in S2 × S2. In terms of homogeneous coordinates, when k = 2, the
map q can be identified with

([z0, z1], [w0,w1]) 7→ [z0w1 + z1w0, z0w0, z1w1] : (CP1)2 → CP2.

Note that the restriction of q to ∆ is of degree 2, i.e., sends the generator of
H2(S2) to twice the generator of H2(CP2). From this it follows by duality
thatH3(CP2\q(∆)) � Z/2, and by Poincaré duality,H1(CP2\q(∆)) � Z/2.
Since the normal bundle of ∆ in CP1 × CP1 is trivial, the complement of ∆

is homeomorphic to S2×R2, while Sk
genY is the complement of q(∆) � CP1

in CP2, which has fundamental groupZ/2 and is homeomorphic to a vector

bundle over RP2. us the covering map S̃k
genY → Sk

genY is non-trivial in
this case.

Now let us state the theorem of Banach and Mazur.

eorem 4.1 (Banach and Mazur). Suppose X and Y are metric spaces and

f : X→ SkY

is a k-fold multivalued function. Assume that X satisfies:
1◦ X is locally arcwise connected;
2◦ X is simply connected.
en f splits into branches.

From the analysis of the problem above, this theorem is clearly an early
version of the theory of path liing in covering spaces. Indeed, if X is simply

connected, then pulling the covering S̃k
genY→ Sk

genY back to X via f, we get
a trivial covering X ⨿X ⨿ · · ·⨿X→ X, so the fact that f splits into branches
is obvious. So the modern reader might wonder why this theorem needed
to be stated at all; but remember (see [7, Chapter on Fundamental Group and
Covering Spaces, pp. 293–310]) that the modern theory of covering spaces
really only dates from the publication of [15], which was not available at
the time Banach and Mazur did their work. And Seifert and relfall only
dealt with the case of locally finite simplicial complexes, whereas the work
of Banach and Mazur is more general. us while we tend to think of Banach
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as the father of functional analysis, this paper proves that Banach was also
one of the pioneers of topology and its applications.

Conclusion

e examples we have cited illustrate only a few of the ways in which
Banach’s work connects with modern mathematics, not only in functional
analysis, but also in representation theory, topology, and geometry. What
makes this even more remarkable is the short length of Banach’s career –
his first paper was only published in , and he was unable to do much
mathematics past  because of the Nazi occupation of Lwów. He still
serves as an inspiration to mathematicians everywhere.
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