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Abstract: It is known that the T-dual of a circle bundle with H-flux (given by a Neveu-
Schwarz 3-form) is the T-dual circle bundle with dual H-flux. However, it is also known
that torus bundles with H-flux do not necessarily have a T-dual which is a torus bundle.
A big puzzle has been to explain these mysterious “missing T-duals.” Here we show that
this problem is resolved using noncommutative topology. It turns out that every principal
T 2-bundle with H-flux does indeed have a T-dual, but in the missing cases (which we
characterize), the T-dual is non-classical and is a bundle of noncommutative tori. The
duality comes with an isomorphism of twisted K-theories, just as in the classical case.
The isomorphism of twisted cohomology which one gets in the classical case is replaced
by an isomorphism of twisted cyclic homology.

1. Introduction

An important symmetry of string theories is T-duality, which exchanges wrapping of
fields over a torus with wrapping over the dual torus [8, 9, 1, 2]. (The exact math-
ematical meaning of “dual torus” is that if � is a lattice in R

n and �∗ is the dual
lattice in the dual vector space (Rn)∗, then (Rn)∗/�∗ is the dual torus to R

n/�.) Many
authors have tried to understand this duality from various points of view. Since Ramond-
Ramond (RR) charges are expected to be represented by classes in K-theory (see, e.g.,
[39, 40, 27, 24]), T-duality should come with an isomorphism of K-theories (usually
with a degree shift) between a theory and its dual. The type of K-theory appropriate
for the situation (e.g., K , KO, or KSp) depends on the type of string theory being
considered; here we deal with the type II situation, which leads to complex K-theory.
(For a few comments on type I theories, see Sect. 6.)
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As pointed out in many contexts (e.g., [37, 17]), T-duality can apply not only to the-
ories over spaces of the form X × T n, but also to non-trivial torus bundles, and even
to spaces which are only “approximately” of this form, for example, spaces admitting a
torus action which is generically free. (However, in this paper we only consider the case
of free torus actions.) In addition, it should apply as well to situations with a non-trivial
Neveu-Schwarz (NS) 3-form H . In these situations, the H-flux gives rise to a twisting
of K-theory, so that one expects an isomorphism of twisted K-theories. In its general
form, T-duality often involves a change of topology (see, e.g., [5, 6 and 7]).

Our initial interest was in trying to explain the T-duality of torus bundles, in the
presence of twisting by an H-flux, from the perspective of noncommutative topology.
An unexpected byproduct, which we will discuss in Sect. 5, is that we have found that
several known cases of torus bundles with “missing” T-duals are in fact naturally T-dual
to noncommutative torus bundles, in a sense we will make precise below. This sug-
gests an unexpected link between classical string theories and the “noncommutative”
ones, obtained by “compactifying” along noncommutative tori, as in [13] (cf. also [36,
§§6–7]).

Just as a complete characterization of T-duality on circle bundles with H-flux is given
in [5 and 6], in this paper, we give a complete characterization of T-duality on principal
T

2-bundles with H-flux, Theorem 4.13. We also describe partial results for T-duality on
general principal torus bundles with H-flux. The main mathematical result is a detailed
analysis of the equivariant Brauer group for principal T

2-bundles, Theorem 4.10, which
refines earlier results in [14 and 28]. This depends on some explicit calculations of
Moore’s “Borel cochain” cohomology groups.

2. Preliminaries on Noncommutative Tori

Here the definition of a (2-dimensional) noncommutative torus is recalled, cf. [34]. This
algebra (stabilized by tensoring with the compact operators K) occurs geometrically
as the foliation algebra associated to Kronecker foliations on the torus [10]. It also
occurs naturally in the matrix formulation of M-theory as the components ofYang-Mills
connections in the classification of BPS states [13].

For each θ ∈ [0, 1], the noncommutative torus Aθ is defined abstractly as the C∗-
algebra generated by two unitaries U and V in an infinite dimensional Hilbert space
satisfying the relation UV = exp(2πiθ)V U . Elements in Aθ can be represented by
infinite power series

f =
∑

(m,n)∈Z2

a(n,m) UmV n, (1)

where the coefficients a(m,n) ∈ C satisfy a decay condition (very hard to make precise)
as (m, n) → ∞ in Z

2. There is a natural smooth subalgebra A∞
θ called the smooth non-

commutative torus, which is defined as those elements in Aθ that can be represented by
infinite power series (1) with (a(m,n)) ∈ S(Z2), the Schwartz space of rapidly decreasing
sequences on Z

2.
Aθ can also be realized as the crossed product C(T) �θ Z, where the generator of

Z acts on T by rotation by the angle 2πθ . When θ is rational, Aθ is type I, and is even
Morita equivalent to C(T2). However, when θ is irrational, Aθ is a simple non-type I
C∗-algebra. Because of the realization of Aθ as a crossed product by rotation by 2πθ ,
the algebra in this case is often called an irrational rotation algebra.
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Consider the 2 dimensional torus T
2 = R

2/Z
2. For each θ ∈ [0, 1], the noncommu-

tative torus Aθ is Morita equivalent to the foliation algebra associated to the foliation on
T

2 defined by the differential equation dx = θ dy on T
2.

3. Mathematical Framework

We begin by explaining the precise mathematical framework in which we are working.
We assume X (which will be the spacetime of a string theory) is a (second-countable)
locally compact Hausdorff space. In practice it will usually be a compact manifold,
though we do not need to assume this. However it is convenient to assume that X is
finite-dimensional and has the homotopy type of a finite CW-complex. (This assumption
can be weakened but some finiteness assumption is necessary to avoid some patholo-
gies. This is not a problem as far as the physics is concerned.) We assume X comes with
a free action of a torus T ; thus (by the Gleason slice theorem [21]) the quotient map
p : X → Z is a principal T -bundle.

A continuous-trace algebra A over X is a particular type of type I C∗-algebra with
spectrum X and good local structure (the “Fell condition” [20]).1 We will always assume
A is separable; then a basic structure theorem of Dixmier and Douady [16] says that
after stabilization (i.e., tensoring by K, the algebra of compact operators on an infinite-
dimensional separable Hilbert space H), A becomes locally isomorphic to C0(X, K),
the continuous K-valued functions on X vanishing at infinity. However, A need not be
globally isomorphic to C0(X, K), even after stabilization. The reason is that a stable
continuous-trace algebra is the algebra of sections (vanishing at infinity) of a bundle of
algebras over X, with fibers all isomorphic to K. The structure group of the bundle is
Aut K ∼= PU(H), the projective unitary group U(H)/T. Since U(H) is contractible and
the circle group T acts freely on it, PU(H) is an Eilenberg-MacLane K(Z, 2)-space, and
thus bundles of this type are classified by homotopy classes of continuous maps from X

to BPU(H), which is a K(Z, 3)-space, or in other words by H 3(X, Z).Alternatively, the
bundles are classified by H 1(X, PU(H)), the sheaf cohomology of the sheaf PU(H)

of germs of continuous PU -valued functions on X, where the transition functions of the
bundle naturally live. But because of the exact sequences in sheaf cohomology

0 = H 1(X, U(H)) → H 1(X, PU(H)) → H 2(X, T) → 0

and

0 = H 2(X, R) → H 2(X, T) → H 3(X, Z) → H 3(X, R) = 0,

the bundles are classified by H 2(X, T) ∼= H 3(X, Z) [35, §1]. Hence stable isomorphism
classes of continuous-trace algebras over X are classified by the Dixmier-Douady class
in H 3(X, Z). It turns out that continuous-trace algebras over X, modulo Morita equiva-
lence over X, naturally form a group under the operation of tensor product over C0(X),
called the Brauer group Br(X), and that this group is isomorphic to H 3(X, Z) via the
Dixmier-Douady class.

Given an element δ ∈ H 3(X, Z), we denote by CT (X, δ) the associated stable
continuous-trace algebra. (Thus if δ = 0, this is simply C0(X, K).) The (complex topo-
logical) K-theory K•(CT (X, δ)) is called the twisted K-theory [35, §2] of X with twist

1 Except in Sect. 6 below, all C∗-algebras and Hilbert spaces in this paper will be over C.
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δ, denoted K−•(X, δ). When δ is torsion, twisted K-theory had earlier been consid-
ered by Karoubi and Donovan [18]. When δ = 0, twisted K-theory reduces to ordinary
K-theory (with compact supports).

Now recall we are assuming X is equipped with a free T -action with quotient X/T =
Z. (This means our theory is “compactified along tori” in a way reflecting a global sym-
metry group of X.) In general, a group action on X need not lift to an action on CT (X, δ)

for any value of δ other than 0, and even when such a lift exists, it is not necessarily
essentially unique. So one wants a way of keeping track of what lifts are possible and
how unique they are. The correct generalization of Br(X) to the equivariant setting is
the equivariant Brauer group defined in [14], consisting of equivariant Morita equiva-
lence classes of continuous-trace algebras over X equipped with group actions lifting
the action on X. By [14, Lemma 3.1], two group actions on the same stable continu-
ous-trace algebra over X define the same element in the equivariant Brauer group if and
only if they are outer conjugate. (This implies in particular that the crossed products are
isomorphic.) Now let G be the universal cover of the torus T , a vector group. Then G

also acts on X via the quotient map G � T (whose kernel N can be identified with the
free abelian group π1(T )). In our situation there are three Brauer groups to consider:
Br(X) ∼= H 3(X, Z), BrT (X), and BrG(X). It turns out, however, that BrT (X) is rather
uninteresting, as it is naturally isomorphic to Br(Z) [14, §6.2]. Again by [14, §6.2],
the natural “forgetful map” (forgetting the T -action) BrT (X) → Br(X) can simply be
identified with p∗ : Br(Z) ∼= H 3(Z, Z) → H 3(X, Z) ∼= Br(X).

Finally, we can summarize what we are interested in.

Basic Setup 3.1. A spacetime X compactified over a torus T will correspond to a
space X (locally compact, finite-dimensional homotopically finite) equipped with a free
T -action. The quotient map p : X → Z is a principal T -bundle. The NS 3-form
H on X has an integral cohomology class δ which corresponds to an element of
Br(X) ∼= H 3(X, Z). A pair (X, δ) will be a candidate for having a T -dual when
the T -symmetry of X lifts to an action of the vector group G on CT (X, δ), or in other
words, when δ lies in the image of the forgetful map F : BrG(X) → Br(X).

4. Structure of the Equivariant Brauer Group and T-Duality

Throughout this section, the above Basic Setup 3.1 will be in force. We let n = dim T ,
the dimension of the tori involved.

4.1. Review of the case n = 1. The case n = 1 was treated in [31, Theorem 4.12], from
a purely C∗-algebraic perspective, in [5], from a combined mathematical and physi-
cal perspective, and in [6] from a more physical point of view. In this case, G = R,
T = T = R/Z, and N = Z. By [14, Cor. 6.1], the forgetful map F : BrG(X) → Br(X)

is an isomorphism, and thus every δ ∈ H 3(X, Z) is dualizable, in fact in a unique way. It
is proven in [5] that the T-dual of the pair (p : X → Z, δ) is a pair (p# : X# → Z, δ#),
where X# is another principal circle bundle over Z and δ# ∈ H 3(X#, Z). Furthermore,
there is a beautiful symmetry in this situation. Principal T-bundles over Z are classified
by their Euler class in H 2(Z, Z), or equivalently by the first Chern class of the associ-
ated complex line bundle. So let [p], [p#] ∈ H 2(Z, Z) be the characteristic classes of
the two circle bundles. One has

p!(δ) = [p#], (p#)!(δ
#) = [p], (1)



T-Duality via Noncommutative Topology 709

where p! and (p#)! are the push-forward maps in the Gysin sequences of the two bun-
dles. At the level of forms, p! and (p#)! are simply “integration over the fiber,” which
reduces the degree of a form by one.

Furthermore, the crossed product CT (X, δ) � R is isomorphic to CT (X#, δ#), and
CT (X#, δ#) � R is isomorphic to CT (X, δ). In fact, the R-action on CT (X#, δ#) may
be chosen to be the dual action on the crossed product. If one takes the crossed product
CT (X, δ) � Z by the R-action restricted to Z = ker(R → T), or the similar crossed
product CT (X#, δ#) � Z, the result is

CT
(
X ×Z X#, p∗(δ#) = (p#)∗(δ)

)
.

Thus one obtains a commutative diagram of principal T-bundles

X ×Z X#

p∗(p#)

�����������
(p#)∗(p)

�����������

X

p
������������ X#

p#
������������

Z .

(2)

Finally, we get the desired isomorphisms of twisted K-theory and of twisted homol-
ogy by using the above results on crossed products and applying Connes’Thom isomor-
phism theorem [11] and its analogue in cyclic homology, due to Elliott, Natsume, and
Nest [19]. The final result, found in [5], is a commutative diagram

K•+1(X, δ)
T!

∼=
��

Ch
��

K•(X#, δ#)

Ch
��

H •+1(X, δ)
T∗
∼=

�� H •(X#, δ#).

(3)

Here Ch is the Chern character, which is an isomorphism after tensoring with R, and
homology should be Z/2-graded (i.e., we lump together all the even cohomology and
all the odd cohomology). Since this duality interchanges even and odd K-theory, it also
exchanges type IIa and type IIb string theories.

4.2. Features of the general case. We return again to the Basic Setup 3.1, but now with
T a torus of arbitrary dimension n, so G ∼= R

n. When n > 1, it is no longer true that
the forgetful map F : BrG(X) → Br(X) is an isomorphism. However, some facts about
this map are contained in [14] and in [28]. We briefly summarize a few of these results,
specialized to the case where G is connected (which forces G to act trivially on the
cohomology of X). So as to avoid confusion between cohomology of spaces and of
topological groups, we have denoted by H •

M(G, A) the cohomology of the topological
group G with coefficients in the topological G-module A, as defined in [26]. This is
sometimes called “Moore cohomology” or “cohomology with Borel cochains.”

Theorem 4.1 ([14, Theorem 5.1]). Suppose G is a connected Lie group and X is a
locally compact G-space (satisfying our finiteness assumptions). Then there is an exact
sequence
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BrG(X)
F �� ker(d2)

d3 �� H 3
M(G, C(X, T))/ im(d ′

2) ,

where

d2 : H 3(X, Z) → H 2
M(G, H 2(X, Z))

and

d ′
2 : H 1

M(G, H 2(X, Z)) → H 3
M(G, C(X, T)).

In addition, there is an exact sequence

H 2(Z, Z)
d ′′

2 �� H 2
M(G, C(X, T))

ξ �� ker F
η �� H 1

M(G, H 2(X, Z)).

Fortunately, since in our situation G is a vector group and is thus contractible,
H •

M(G, A) vanishes when A is discrete, thanks to:

Theorem 4.2 ([38, Theorem 4]). If G is a Lie group and A is a discrete G-module,
then H •

M(G, A) is canonically isomorphic to H •(BG, A) (the sheaf cohomology of the
classifying space BG with coefficients in the locally constant sheaf defined by A).

Corollary 4.3. If G is a vector group and if A is a discrete abelian group on which G

acts trivially, then H •
M(G, A) = 0 for • > 0.

Proof. Since the action of G on A is trivial, the sheaf A is constant and can be replaced
by A. Since BG is contractible, H •(BG, A) = 0.

Substituting Corollary 4.3 into Theorem 4.1, we obtain (since our finiteness assump-
tion on X implies H 2(X, Z) is countable and discrete):

Theorem 4.4. Suppose G ∼= R
n is a vector group and X is a locally compact G-space

(satisfying our finiteness assumptions). Then there is an exact sequence:

H 2(X, Z)
d ′′

2 �� H 2
M(G, C(X, T))

ξ �� BrG(X)
F �� H 3(X, Z)

d3 �� H 3
M(G, C(X, T)).

This still leaves one set of Moore cohomology groups to calculate, namely

H •
M(G, C(X, T)), • = 2, 3.

For purposes of doing this calculation, it is convenient to use the exact sequence of
G-modules:

0 → H 0(X, Z) → C(X, R) → C(X, T) → H 1(X, Z) → 0. (4)

This is just the start of the long exact cohomology sequence for the exact sequence of
sheaves

0 → Z → R → T → 0.

Our finiteness assumption on X implies that the cohomology groups of X are count-
able and discrete. So by Corollary 4.3 again, H 0(X, Z) and H 1(Z, Z) are cohomologi-
cally trivial (for H •

M(G, —)), and thus

H •
M(G, C(X, T)) ∼= H •

M(G, C(X, R)), • > 1. (5)

Finally, for computing the latter we can use another result from [38]:
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Theorem 4.5 ([38, Theorem 3]). If G is a Lie group and A is a G-module which is
a topological vector space, then H •

M(G, A) agrees with “continuous cohomology”
H •

cont(G, A), the cohomology of the complex of continuous cochains.

On the other hand, “continuous cohomology” for modules which are topological
vector spaces is well studied, so we can apply:

Theorem 4.6 (“Generalized van Est” [23, Cor. III.7.5] or [29]). If G is a connected
Lie group and A is a G-module which is a complete metrizable topological vector space,
then H •

cont(G, A) agrees with the relative Lie algebra cohomology H •
Lie(g, k; A∞), where

g is the Lie algebra of G, k is the Lie algebra of a maximal compact subgroup K , and
A∞ is the set of smooth vectors in A (for the action of G).

Corollary 4.7. If G is a vector group with Lie algebra g, and if A is a G-module which
is a complete metrizable topological vector space, then H •

cont(G, A) ∼= H •
Lie(g, A∞). In

particular, it vanishes for • > dim G.

Proof. For a vector group, K is trivial. Lie algebra cohomology is computed from the
complex Hom(

∧• g, A∞), which vanishes for • > dim G.

4.3. Calculations for the case n = 2. We now specialize our Basic Setup 3.1 to the case
where n = 2, i.e., p : X → Z is a principal T

2-bundle, and now G = R
2. We apply

Theorem 4.4. But since H 3
M(G, C(X, T)) ∼= H 3

M(G, C(X, R)) (by Eq. (5)), to which
we can apply Theorem 4.5 and Corollary 4.7, we obtain:

Proposition 4.8. If G = R
2 and X is a G-space as above, then H 3

M(G, C(X, T)) van-
ishes and the forgetful map F : BrG(X) → H 3(X, Z) is surjective.

Furthermore, we can also explicitly compute H 2
M(G, C(X, T)), because of the fol-

lowing:

Lemma 4.9. If G = R
2 and X is a G-space as in the Basic Setup 3.1, then the maps

p∗ : C(Z, R) → C(X, R) and “averaging along the fibers of p”
∫

: C(X, R) →
C(Z, R) (defined by

∫
f (z) = ∫

T
f (g · x) dg, where dg is Haar measure on the torus

T and we choose x ∈ p−1(z)) induce isomorphisms

H 2
M(G, C(X, R)) � H 2

M(G, C(Z, R)) ∼= C(Z, R)

which are inverses to one another.

Proof. We apply Theorem 4.6. Note that the G-action on C(Z, R) is trivial, so every
element of C(Z, R) is smooth for the action of G. But since dim G = 2, we have for
any real vector space V with trivial G-action the isomorphisms

H 2
M(G, V ) ∼= H 2

Lie(g, V ) ∼= H 2
Lie(g, R) ⊗ V ∼= V,

since H 2
Lie(g, R) ∼= (

∧2 g)∗ ∼= R.
Clearly

∫ ◦ p∗ is the identity on C(Z, R), so we need to show p∗ ◦ ∫
induces an

isomorphism on C(X, R). The calculation turns out to be local, so by a Mayer-Vietoris
argument we can reduce to the case where p is a trivial bundle, i.e., X = (G/N) × Z,
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with N = Z
2 and G acting only on the first factor. The smooth vectors in C(X, R) for

the action of G can then be identified with C(Z, C∞(G/N)). So we obtain

H 2
M

(
G, C(X, R)

) ∼= H 2
Lie

(
g, C(Z, C∞(G/N))

) ∼= C
(
Z, H 2

Lie

(
g, C∞(G/N)

))
,

with the cohomology moving inside since G acts trivially on Z. However, by Poincaré
duality for Lie algebra cohomology,

H 2
Lie

(
g, C∞(G/N)

) ∼= HLie
0

(
g, C∞(G/N)

)
,

which is the quotient of C∞(G/N) by all derivatives X · f , X ∈ g and f ∈ C∞(G/N).
This quotient is R by the de Rham theorem, sincef (g) dvol(g) is exact onT exactly when
f is constant. And it’s easy to check that the isomorphism H 2

M

(
G, C(X, R)

) ∼= C(Z, R)

is induced by
∫

.

Theorem 4.10. In Basic Setup 3.1 with n = 2, there is a commutative diagram of exact
sequences:

H 0(Z, Z)

��

0

��
H 2(X, Z)

d ′′
2 �� H 2

M(G, C(X, T))
ξ ��

a

��

ker F
η ��

��

0

C(Z, H 2
M(Z2, T))

h

��

BrG(X)
M��

��
H 1(Z, Z)

��

H 3(X, Z)
p!��

��
0 0

Here M : BrG(X) → C(Z, H 2
M(Z2, T)) ∼= C(Z, T) is the Mackey obstruction map

defined in [28], and h : C(Z, T) → H 1(X, Z) is the map sending a continuous function
Z → S1 to its homotopy class. The definitions of the dotted arrows will be given in the
course of the proof.

Proof. Most of this is immediate from Theorem 4.4 together with Proposition 4.8. There
are just a few more things to check. First we define the dotted arrows in the diagram.
The arrow p! : H 3(X, Z) → H 1(Z, Z) is “integration over the fibers” of the bundle

T 2 → X
p→ Z; more specifically, it is the projection of H 3(X, Z) onto E

1,2∞ in the Serre
spectral sequence of p. Since E

1,2∞ ⊆ E
1,2
2 = H 1(Z, H 2(T 2, Z)), we can think of the

image as lying in H 1(Z, Z). In fact,

E1,2
∞ ⊆ E

1,2
3 = ker d2 : H 1(Z, H 2(T 2, Z)) → H 3(Z, H 1(T 2, Z)) ∼= H 3(Z, Z

2),

and this map d2 can be identified with the cup product with [p] ∈ H 2(Z, Z
2).
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Next we define the downward dotted arrow a using Lemma 4.9. It is simply the
following composite:

H 2
M(G, C(X, T))

eq. (5)−−−→∼=
H 2

M(G, C(X, R))
Lemma 4.9−−−−−−→∼=

C(Z, R)
exp−→ C(Z, T).

Exactness of the middle downward sequence

H 0(Z, Z) → H 2
M(G, C(X, T))

a→ C(Z, T)
h→ H 1(Z, Z)

follows immediately from (4) with X replaced by Z.
We still need to check commutativity of the squares. As far as the upper square is

concerned, the key fact is that the restriction map

R ∼= H 2
M(R2, T) → H 2

M(Z2, T) ∼= T

is surjective and can be identified with the exponential map (see the Hochschild-Serre
spectral sequence

H
p
M(R2/Z

2, H
q
M(Z2, T)) ⇒ H •

M(R2, T)

of [25] for a method of calculation). To check commutativity for the upper square,
choose a Borel cocycle ω ∈ Z2

M(G, C(X, T)) representing a class in H 2
M(G, C(X, T)).

By Lemma 4.9, we may assume ω takes its values in functions constant on T -orbits,
i.e., pulled back from C(Z, T) via p∗. As in [14, Theorem 5.1(3)], choose a Borel map
u → UM(C0(X, K)) satisfying

usτs(ut ) = ω(s, t)us+t , s, t ∈ G.

(Here τ is the action of G on X.) Then by the prescription in [28], ξ([ω]) is given by
C0(X, K) with the G-action s �→ (Ad us)τs . We need to compute the Mackey obstruc-
tion for the restriction of the action to N = Z

2. But this is just given by z �→ M(uz), the
Mackey obstruction of the projective unitary representation of N defined by u over a point
z ∈ Z. But as the cocycle of the representation is just ω restricted to z (this makes sense
since we took ω to have values constant on G-orbits), we can use the above fact about
restricting the Moore cohomology from G to N to deduce that M(ξ([ω])) = a([ω]).

Finally we need to check commutativity of the bottom square. This amounts to show-
ing that if we have an action α of G on CT (X, δ) representing an element of BrG(X),
then h◦M(α) = p!(δ). (In the case where M(α) is trivial, this is basically in [28].) First
of all, we note that h ◦ M(α) can only depend on δ, not on the choice of the action α

on CT (X, δ). The reason is that any two different actions differ by an element of ker F ,
which by the rest of the diagram is in the image of H 2

M(G, C(X, T)) ∼= C(Z, R). By
commutativity of the upper square, this only changes M(α) within its homotopy class.
Since we already know BrG(X) → H 3(X, Z) is surjective, it follows that h◦M induces
a homomorphism from H 3(X, Z) → H 1(Z, Z). This map is trivial on p∗(H 3(Z, Z)),
since this part of H 3(X, Z) is represented by G-actions where N = Z

2 acts trivially
[14, §6.2]. And of course when N acts trivially, there is no Mackey obstruction.

Next we show that the map H 3(X, Z) → H 1(Z, Z) induced by h ◦ M vanishes
on the E

2,1∞ subquotient of the spectral sequence. This consists (modulo classes pulled
back from H 3(Z, Z)) of classes pulled back from some intermediate space Y , where

X
p1−→ Y

p2−→ Z is some factorization of the T 2-bundle p : X → Z as a composite of
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two principal S1-bundles. But given such a factorization and a class δY ∈ Y , there is an
essentially unique action of R on CT (Y, δY ) compatible with the S1-action on Y with
quotient Z, because of the results of Sect. 4.1. Pulling back from Y to X, we get an
action of R × T on CT (X, p∗

1δY ), or in other words an action of G factoring through
R × T. Such an action necessarily has trivial Mackey obstruction.

So it follows that the map induced by h◦M factors through the remaining subquotient
of H 3(Z, Z), i.e., E1,2∞ . That says exactly that the map factors through p!. By naturality,
it must be a multiple of p!, and we just need to compute in the case of a trivial bundle to
verify that the multiple is 1. Thus the proof is completed with the following Proposition
4.11.

Proposition 4.11. Let p : X = Z × T
2 → Z be a trivial T

2-bundle, let β ∈ H 1(Z, Z),
and let δ = β × γ ∈ H 3(X, Z), where γ is the usual generator of H 2(T2, Z) ∼= Z.
Then there is an action α of G = R

2 on CT (X, δ), compatible with the free T
2-action

on X, for which h ◦ M(α) = β.

Proof. Choose a function f : Z → T with h(f ) = β. Let H = L2(T) and for z ∈ Z,
consider the projective unitary representation ρf (z) : Z

2 → PU(H) defined by sending
the first generator of Z

2 to multiplication by the identity map T → T ↪→ C, and the
second generator to translation by f (z) ∈ T. Then the Mackey obstruction of ρf (z) is
f (z) ∈ T ∼= H 2(Z2, T). We can view ρ as a spectrum-fixing automorphism of Z

2 on
C(Z, K(H)), which is given at the point z ∈ Z by Ad ρf (z). We now let (A, α) be the
C∗-dynamical system obtained by inducing up

(
C(Z, K(H)), ρ

)
from Z

2 to R
2. More

precisely,

A = IndR
2

Z2 (C(Z, K(H)), ρ)

= {
f : R

2 → C(Z, K(H)) : f (t + g) = ρ(g)(f (t)), t ∈ R
2, g ∈ Z

2
}
.

Since ρ acts trivially on the spectrum Z of the inducing algebra and A is an algebra of
sections of a locally trivial bundle of C∗-algebras with fibers isomorphic to K, A is a
continuous-trace algebra having spectrum Z × T

2. There is a natural action α of R
2 on

A by translation, and by construction, M(α) = f . We just need to compute the Dixmier-
Douady invariant of A. We get it by “inducing in stages”. Let B = IndR

Z
C(Z, K(H))

be the result of inducing over the first copy of R. Since the first generator of Z
2 was

always acting by conjugation by multiplication by the identity map T → T on L2(T),
one can see that B is a trivial continuous-trace algebra, viz., B ∼= C0(Z × T, K(H)).
We still have another action of Z on B coming from the second generator of Z

2, and
A = IndR

Z
B, where we induce over the second copy of R to get A. The action of Z acts

on B is by means of a map σ : Z × T → PU(H) = Aut K(H), whose value at (z, t) is
the product of multiplication by t with translation by f (z). Thus the Dixmier-Douady
invariant of A is then [σ ] × c, where [σ ] ∈ H 2(Z × T, Z) is the homotopy class of
σ : Z × T → PU(H) = K(Z, 2) and c is the usual generator of H 1(S1, Z). But [σ ] is
now h(f ) × c, so the Dixmier-Douady class of A is β × c × c = β × γ .

4.4. Applications to T-duality. Now we are ready to apply Theorem 4.10 to T-duality in
type II string theory. First we need a definition.

Definition 4.12. Let p : X → Z be a principal T -bundle as in the Basic Setup 3.1, and
let δ ∈ H 3(X, Z). We will say that the pair (p, δ) has a classical T-dual if there is an
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element [A, α] of BrG(X), with A a continuous-trace algebra over X with Dixmier-
Douady class δ, and with α an action of G on A inducing the given free action of
T = G/N on X, such that the crossed product A � G is again a continuous-trace alge-
bra over some other principal torus bundle over Z, with the dual action of Ĝ inducing
the bundle projection to Z.

This definition is essentially equivalent to that in [7]; we will say more about this
later in Remark 4.15.

The following is the main result of this paper.

Theorem 4.13. Let p : X → Z be a principal T
2-bundle as in the Basic Setup 3.1. Let

δ ∈ H 3(X, Z) be an “H-flux” on X. Then:

1. If p!δ = 0 ∈ H 1(Z, Z), then there is a (uniquely determined) classical T-dual to
(p, δ), consisting of p# : X# → Z, which is a another principal T

2-bundle over Z,
and δ# ∈ H 3(X#, Z), the “T-dual H-flux” on X#. One obtains a picture exactly like
Eq. (2).

2. If p!δ �= 0 ∈ H 1(Z, Z), then a classical T-dual as above does not exist. However,
there is a “nonclassical” T-dual bundle of noncommutative tori over Z. It is not
unique, but the non-uniqueness does not affect its K-theory.

Proof. By Theorem 4.10, the map F : BrG(X) → H 3(X, Z) is always surjective. This
will be the key to the proof.

First consider the case when p!δ = 0 ∈ H 1(Z, Z). This case is considered in [7], but
we will redo the results using Theorem 4.10. By commutativity of the lower square, we
can lift δ ∈ H 3(X, Z) to an element [CT (X, δ), α] of BrG(X) with M(α) homotopically
trivial. Then by using commutativity of the upper square in Theorem 4.10, we can perturb
α, without changing δ, so that M(α) actually vanishes. Once this is done, the element
we get in BrG(X) is actually unique. On the one hand, this can be seen from [28, Lemma
1.3] and [28, Cor. 5.18]. Alternatively, it can be read off from Theorem 4.10, since any
two classes in ker M mapping to the same δ ∈ H 3(X, Z) differ by the image under ξ of
something in ker a. Thus they differ by the image under ξ of an Z-valued cocycle, which
is trivial since such a cocycle exponentiates to the trivial cocycle with values in T, and
this is all that is used in the construction of ξ in [14]. Finally, if [CT (X, δ), α] has trivial
Mackey obstruction, then as explained in [28, §1], CT (X, δ)�α G has continuous trace
and has spectrum which is another principal torus bundle over Z (for the dual torus, Ĝ

divided by the dual lattice).
Now consider the case when

p!δ �= 0 ∈ H 1(Z, Z). (6)

It is still true as before that we can find an element [CT (X, δ), α] in BrG(X) cor-
responding to δ. But there is no classical T-dual in this situation since the Mackey
obstruction can’t be trivial, because of Theorem 4.10. In fact, since any representa-
tive f : Z → T of a non-zero class in H 1(Z, Z) must take on all values in T, there
are necessarily points z ∈ Z for which the Mackey obstruction in H 2(Z2, T) ∼= T

is irrational, and hence the crossed product CT (X, δ) �α G cannot be type I. Nev-
ertheless, we can view this crossed product as a non-classical T-dual to (p, δ). The
crossed product can be viewed as the algebra of sections of a bundle of algebras (not
locally trivial) over Z, in the sense of [15]. The fiber of this bundle over z ∈ Z will
be C(p−1(z), K(H)) � G ∼= C(G/Z

2, K(H)) � G ∼= Af (z) ⊗ K(H), which is Morita
equivalent to the twisted group C∗-algebra Af (z) of the stabilizer group Z

2 for the
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Mackey obstruction class f (z) at that point. In other words, the T-dual will be realized
by a bundle of (stabilized) noncommutative tori fibered over Z. (See Fig. 1.)

The bundle is not unique since there is no canonical representative f for a given
non-zero class in H 1(X, Z). However, any two choices are homotopic, and the resulting
bundles will be in some sense homotopic to one another.

As expected, our notion of T-duality comes with isomorphisms in twisted K-theory
and (periodic cyclic) homology:

Theorem 4.14. In the situation of Theorem 4.13, if X is a manifold, H is an integral
3-form representing δ (in de Rham cohomology), and we choose a smooth model for
CT (X, δ) (by taking a smooth bundle over X with fibers the smoothing operators), we
have a commutative diagram

K•(X, H)
T!−−−−→∼=

K•(CT (X, δ) � R
2)

ChH

�
�Ch

H •(X, H)
T∗−−−−→∼=

HP•(CT (X, δ)∞ � R
2)

(7)

where the horizontal arrows are isomorphisms, ChH is the twisted Chern character and
Ch is the Connes-Chern character [12].

When p!δ = 0 and there is a classical T-dual, this reduces to a diagram like Eq. (3),
except that there is no degree shift since the tori are even-dimensional.

Proof. This is done almost exactly as in [5], so we will be brief. We have the isomor-
phisms in K-theory

K•(X, H) ∼= K•(CT (X, δ))
∼= K•(CT (X, δ) � R

2) (Connes-Thom isomorphism [11]).

We can also consider the smooth subalgebra CT (X, δ)∞ � G. The fiber at z ∈ Z is
given by C∞(p−1(z), K∞(H)) � G ∼= C∞(G/Z

2, K∞(H)) � G ∼= A∞
f (z) ⊗ K∞(H),

X

Z
z

p

A
f(z)

Fig. 1. In the diagram, the fiber over z ∈ Z is the noncommutative torus Af (z), which is represented by
a foliated torus, with foliation angle equal to f (z)
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where K∞(H) is the algebra of smoothing operators on H and A∞
f (z) is the smooth

noncommutative torus with multiplier equal to f (z).
Then we have the isomorphisms

H •(X, H) ∼= HP•(CT (X, δ)∞)
∼= HP•(CT (X, δ)∞ � R

2) (ENN-Thom isomorphism [19]).

It is well known that the Chern character is compatible with the isomorphisms in
K-theory and cohomology, from which the commutativity of the diagram in (7) follows.

Remark 4.15. The reader might wonder what happened to the dual H-flux H # in the
context of Theorem 4.13(2). It doesn’t really make sense as a cohomology class or
differential form since the nonclassical T-dual is not a space; rather, it is subsumed in
the noncommutative structure of the dual.

Now let us describe the relationship between our Definition 4.12 and Theorem 4.13
and the corresponding notions in [7]. If the pair (p : X → Z, δ) is T-dualizable in the
sense of [7], that means δ is represented by a closed 3-form H , such that ι�H = p∗F̂ (�),
for some integral closed 2-form F̂ with values in the dual of g, the Lie algebra of T ,
and for all � ∈ g. This essentially means that when we integrate H over the fibers

of p1, where X
p1−→ Y

p1−→ Z is a factorization of p into two circle bundles, then the
resulting 2-form is pulled back from Z. This implies in turn that integrating H over the
fibers of p gives 0, which is the condition p![H ] = 0. (We do not need to worry about
torsion in cohomology since p!δ lies in H 1(Z, Z), which is always torsion-free.) Thus
the condition in our Theorem 4.13(1) is satisfied.

Conversely, suppose our condition p!δ = 0 is satisfied, so we have a classical T-dual
(p# : X# → Z, δ#). The condition of [7] that ι�H = p∗F̂ (�), for some closed integral
2-form F̂ with values in the dual of g and for all � ∈ g, will follow from the fact that
since p!δ = 0 (and we can divide out by trivial cases where δ is pulled back from Z), δ

comes from the E
2,1∞ subquotient of H 3(X, Z).

5. Examples: Torus Bundles and Noncommutative Torus Bundles over the Circle

A famous example of a principal torus bundle with non T-dualizable H-flux is provided
by T

3, considered as the trivial T
2-bundle over T, with H given by k times the volume

form on T
3, k �= 0. H is non T-dualizable in the classical sense since p![H ] �= 0. Alter-

natively, there are no non-trivial T
2-bundles over T, since H 1(T, T

2) ∼= H 2(T, Z
2) = 0,

that is, there is no way to dualize the H-flux by a (principal) torus bundle over T.
This example is covered by Theorem 4.13(2) and by Theorem 4.14. The T-dual is real-

ized by a bundle of stabilized noncommutative tori fibered over T. In fact the construction
of the non-classical T-dual in this case is a special case of the construction in the proof
of Proposition 4.11, but we repeat the details since we can make things more explicit.
Let H = L2(T) and consider the projective unitary representation ρθ : Z

2 → PU(H)

given by the first Z factor acting by multiplication by zk (where T is thought of as the
unit circle in C) and the second Z factor acting by translation by θ ∈ T. Then the Mackey
obstruction of ρθ is θk ∈ T ∼= H 2(Z2, T). Let Z

2 act on C(T, K(H)) by α, which is
given at the point θ by ρθ . Define the C∗-algebra

B = IndR
2

Z2 (C(T, K(H)), α)

= {
f : R

2 → C(T, K(H)) : f (t + g) = α(g)(f (t)), t ∈ R
2, g ∈ Z

2
}
.
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That is, B (with an implied action of R
2) is the result of inducing a Z

2-action on
C(T, K(H)) from Z

2 up to R
2. Then B is a continuous-trace C∗-algebra having spec-

trum T
3, having an action of R

2 whose induced action on the spectrum of B is the trivial
bundle T

3 → T. The crossed product algebra B � R
2 ∼= C(T, K(H)) � Z

2 has fiber
over θ ∈ T given by K(H) �ρθ Z

2 ∼= Aθ ⊗ K(H), where Aθ is the noncommutative
2-torus. In fact, the crossed product B � R

2 is Morita equivalent to C(T, K(H)) � Z
2

and is even isomorphic to the stabilization of this algebra (by [22]). Thus B � R
2 is

isomorphic to C∗(HZ) ⊗ K, where HZ is the integer Heisenberg-type group,

HZ =








1 x 1

k
z

0 1 y

0 0 1



 : x, y, z ∈ Z




 ,

a lattice in the usual Heisenberg group HR (consisting of matrices of the same form, but
with x, y, z ∈ R). Then we have the isomorphisms in K-theory

K•(B) = K•(T3, k dvol) (definition)
∼= K•(B � R

2) (Connes-Thom isomorphism)∼= K•(C∗(HZ)) (above identification)
∼= K•(HR/HZ) (special case of the Baum-Connes conjecture2)
∼= K•+1(HR/HZ) (Poincaré duality for HR/HZ).

where we observe that the Heisenberg nilmanifold HR/HZ (which happens to be the
classifying space BHZ) is a circle bundle over T

2 with first Chern class equal to kdx∧dy.
Notice that as far as K-theory is concerned, the T-dual of (T 3, k dvol) can also be

taken to be the nilmanifold HR/HZ with the trivial H -field. This is a non-principal
T 2-bundle over S1. But a better model for a non-classical T-dual is simply the group
C∗-algebra of HZ.

We can also consider the smooth subalgebra B∞ of B defined by

B∞ = IndR
2

Z2 (C∞(T, K∞(H)), α)

= {
f : R

2 → C∞(T, K∞(H)) : f (t + g) = α(g)(f (t)), t ∈ R
2, g ∈ Z

2
}
,

where K∞(H)) denotes the algebra of smoothing operators on T. Note that B∞
�R

2 ∼=
C∞(T, K∞(H)) � Z

2 has fiber over θ ∈ T given by K∞(H) �ρθ Z
2 ∼= A∞

θ ⊗K∞(H),

where A∞
θ is the smooth noncommutative torus and the tensor product is the projective

tensor product. In this case, the crossed product B∞
� R

2 ∼= S(HZ) ⊗ K∞(H), where

2 This is not as complicated as it sounds. The Baum-Connes conjecture (for torsion-free groups) says
that the “index map” or “assembly map” K•(B�) → K•(C∗

r (�)) should be an isomorphism for an arbi-
trary discrete torsion-free group � [4]. Here B� is the classifying space of �, which if � is a torsion-free
cocompact discrete subgroup of a connected Lie group G can be taken to be K\G/�, K a maximal
compact subgroup of G, and C∗

r (�) denotes the reduced group C∗-algebra, i.e., the C∗-algebra gener-
ated by the left regular representation of � on �2(�). If � is amenable, this coincides with the full group
C∗-algebra, or in other words the universal C∗-algebra whose ∗-representations correspond to unitary
representations of �. When �, like HZ, is a poly-Z group, i.e., has a composition series with infinite
cyclic composition factors, then this is easy to prove by induction on the length of the composition series,
using the Pimsner-Voiculescu exact sequence [30] for the K-theory of a crossed product by an action of
Z. Finally, the Pimsner-Voiculescu sequence can be deduced from Connes’ Thom isomorphism theorem
(see [11]) by inducing the action of Z to an action of R.
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S(HZ) is the rapid decrease algebra. Then we have the isomorphisms

HP•(B∞) = H •(T3, k dvol) (definition)
∼= HP•(B∞

� R
2) (ENN-Thom isomorphism)∼= HP•(S(HZ)) (above identification)∼= H•(HR/HZ) (Cyclic homology Baum-Connes conjecture)

∼= H •+1(HR/HZ) (Poincaré duality for HR/HZ)

where HP• denotes periodic cyclic homology, which is stable under the (projective) ten-
sor product with K∞(H) and H•, H • denote the Z2-graded homology and cohomology
respectively.

Finally, T-duality can be expressed in this case by the following commutative dia-
gram,

K•(T3, k dvol)
T!−−−−→ K•(C∗(HZ))

ChH

�
�Ch

H •(T3, k dvol)
T∗−−−−→ HP•(S(HZ))

(1)

where H = k dvol, ChH is the twisted Chern character and Ch is the Connes-Chern
character [12].

6. Concluding Remarks

In this paper, we have only dealt with complex C∗-algebras and complex K-theory,
which are relevant for type II string theory. In principle, most of what we have done
should also extend to the type I case, which involves real K-theory. However, one has
to be careful. Since T -duality is related to the Fourier transform, and since the Fourier
transform of a real function is not necessarily real, a theory of T-duality in type I string
theory necessarily involves KR-theory, or Real K-theory in the sense of Atiyah [3]. The
correct notion of twisted KR-theory is that of K-theory of real continuous-trace algebras
in the sense of [35, §3]. What complicates things is that such algebras are built out of
continuous-trace algebras of real, quaternionic, and complex type (locally isomorphic
to C(X, KR), C(X, KH), and C(X, KC), respectively). Even if one’s original interest
is in algebras of real type, passage to the T-dual will often involve algebras of the other
types.

One possibility suggested by the example in Sect. 5 is that there is a good theory
of T-duality for arbitrary torus bundles with H-fluxes, that doesn’t require going to a
category of noncommutative bundles, but that it is necessary to include the possibility
of non-principal bundles. We have seen that there is a sense in which the Heisenberg
nilmanifold (with trivial H -field) can be viewed as a T-dual to T 3 with a non-trivial
H -field. (This is literally true in the sense of [5] if we think of both manifolds as T-bun-
dles over T 2, rather than as T 2-bundles over S1.)

It is of course a little disappointing that our main theorem only applies when the
fibers of the torus bundle are 2-dimensional. From Theorem 4.4, it is not even clear if the
map BrG(X) → H 3(X, Z) is surjective when n = dim G > 2. However, the methods
of this paper should apply on the image of this map.
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