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We give a simple necessary and sufficient condition for the group C*-algebra 
of a connected locally compact group to have a TI primitive ideal space, i.e., 
to have the property that all primitive ideals are maximal. A companion result 
settles the same question almost entirely for almost connected groups. As a 
by-product of the method used, we show that every point in the primitive ideal 
space of the group C*-algebra of a connected locally compact group is at least 
locally closed. Finally, we obtain an analog of these results for discrete finitely 
generated groups; in particular the primitive ideal space of the group C*- 
algebra of a discrete finitely generated solvable group is Tl if and only if the 
group is a finite extension of a nilpotent group. 

1. Let G be a locally compact group and let C*(G) be its 
group C*-algebra [6, 13.9.11. We denote by Prim(G) the space 
of primitive ideals of C*(G), endowed with the hull-kernel topology, 
and refer to this simply as the primitive ideal space of the group G. 
If G is type I, the dual space G can be canonically identified with 
Prim(G); even when G fails to be type I so that (at least in the 
separable case) G is no longer smooth, Prim(G) is still a reasonable 
space, and there is increasing evidence that Prim(G), rather than G, 
is a more interesting and appropriate object of study. 

One problem in representation theory of considerable interest is 
to determine when G (or equivalently C*(G)) is CCR or liminary, 
which means that for every irreducible unitary representation rr 
of G and for every CELL, 

4f) = s, 44 f(x) dx 
is a compact operator. It is known that a group or a C*-algebra 
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is CCR if and only if it is type I and has a TI primitive ideal space. 
The TI separation axiom in this context means of course that every 
primitive ideal of the C*-algebra is maximal. It is natural therefore 
to divide the above problem into two subproblems: (i) when is G 
type I ?, and (ii) when is Prim(G) T,? One of the principal results 
of this paper is a complete answer to (ii) when G is connected, 
generalizing the results in [2, Chap. v] for type I solvable Lie groups, 
and the results of L. Pukanszky [30] for general solvable Lie groups. 
Additionally we give a nearly complete solution for almost connected 
groups, that is groups for which G/G,, is compact, where G,, is the 
connected component of the identity in G. Since this work was 
completed we have learned [32] that Pukanszky has obtained many 
of the same results independently and has also made considerable 
progress on problem (i). 

As an ingredient in the proof of our results, and as a result of 
some independent interest, we show that all points of Prim(G) 
are always locally closed, i.e., open in their closures, for connected G. 
In a rather different direction, we are able to characterize those 
finitely generated discrete solvable groups G for which Prim(G) 
is T,, thus providing an exact analog for discrete groups of the 
results for solvable Lie groups. Let us turn to the precise statements 
of our results. 

Let G be a Lie group with a finite number of components and 
with connected component G, . Let g be the Lie algebra of G (or G,) 
and let r be its radical. Recall that G is said to be type R if for every 
g E G, the eigenvalues of Ad(g) on g are of modulus 1. This is equiva- 
lent by [27] to saying that the adjoint action of G on g is distal. We 
say that G is trpe R 012 its radical if the eigenvalues of Ad(g) 1,. on 
r are of absolute value one for all g E G. This means that Ad(G) II is 
distal or equivalently that g is the Lie algebra direct sum of a semi- 
simple algebra and a Lie algebra of type R. (A Lie algebra h is said 
to be of type R if it is the Lie algebra of a finitely connected Lie 
group of type R, or equivalently if ad(X), for X E h, has only purely 
imaginary eigenvalues.) For connected groups we have the following 
result. 

THEOREM 1. If G is a connected locally compact group, all points 
of Prim(G) are locally closed. Moreover G has a TI primitive ideal 
space if and only if it is a projective limit of (connected) Lie groups 
each of which is type R on its radical. 

Remark. Note that this implies that for G a connected Lie group, 
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whether or not Prim(G) is TI depends only on the Lie algebra of G. 
In contrast, Dixmier has shown [S] that there exist two connected 
groups with the same Lie algebra, one of which is type I and the 
other of which is not. 

Since any connected group is a projective limit of Lie groups 
and since the TI property or local closure of points of Prim(G) 
is inherited by quotient groups of G, it is enough by [28, Proposi- 
tion 2.21 (cf. [22] also) t o p rove the theorem for Lie groups. In the 
“only if” direction of the second part (which was obtained by the 
first-named author some years ago1 and also independently by 
J. Dixmier) one passes to a quotient group of a given G not satisfying 
the condition where the structure is sufficiently simple so that one 
can produce a more or less specific nonmaximal primitive ideal. 
For the other direction, the idea is to reduce to the case of a locally 
algebraic group by using a consequence of the work of Pukanszky 
[31, Sect. 11. Specifically, if G is a connected and simply connected 
Lie group and if L = [G, G], Pukanszky defines a group z‘ which 
is a connected, simply connected Lie group whose Lie algebra is 
the same as that of the algebraic hull of G in some locally faithful 
matrix representation of G. We have that L C G C G and e/L is 
abelian; (r operates on the dual e of L. The following result will 
give the remainder of Theorem 1. 

THEOREM 2. If G is a connected and simply connected Lie group, 
any point of Prim(G) is locally closed (open in its closure) in Prim(G); 
moreover, any primitive ideal of C*(G) associated (in the sense of [31]) 
to a closed orbit of G on L is maximal. 

This result has some interesting consequences of its own which 
will be discussed along with its proof. 

In order to treat Prim(G) for disconnected Lie groups as well 
as for discrete groups, one needs what one might think of as “coming 
up” and “going down” theorems for the TI property, which enable 
one to go up or down by finite extensions. These are analogs of 
[27, Lemmas 4.1 and 4.21. 

THEOREM 3. Let G, be any open normal subgroup of Jinite index 
in the separable locally compact group G; then if Prim(G) is TI , 
Prim(G,) is aZso TI . If further G/G, is solvable and Prim(G,) is TI , 

1 A preliminary version of the “only if” part of Theorem 1 for type I Lie groups 

and the complete theorem for algebraic groups were announced in an invited hour 
address at the San Diego regional meeting of the AMS in November 1966. 
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then Prim(G) is Tr . Under the same hypothesis, if all points of Prim(G,) 
are locally closed, so are all points of Prim(G). 

The restriction of solvability in the second part is a nuisance 
and almost surely unnecessary, but a proof in general of this “almost 
obvious” result has eluded us. This result combined with Theorem 1 
yields a result for almost connected groups. 

THEOREM 4. If G is almost connected and Prim(G) is TI , then 
G is a projective limit of (finitely connected) Lie groups each of which 
is type R on its radical. If G/G,, ’ p as rosolvable (i.e., a projective limit 
of finite solvable groups) the converse is valid, and all points of Prim(G) 
are locally closed. 

Our final result concerns discrete finitely generated groups. The 
correct analog of a type R solvable group is a finitely generated 
solvable group which has a nilpotent subgroup of finite index. Such 
groups are polycyclic, and are precisely the finitely generated solvable 
groups which have polynomial growth (cf. [24, 341). The following 
is then a natural analog of the results for solvable Lie groups. 

THEOREM 5. Let G be a $nitely generated discrete solvable group. 
Then Prim(G) is TI if and only if G has a nilpotent subgroup of finite 
index. 

A possible generalization of Theorem 1 to this context appears 
to be blocked by the fact that SL,(Z), the group of two-by-two 
integral unimodular matrices, has a non-T, primitive ideal space, 
as we shall demonstrate. 

The outline of the paper is as follows: Section 2 is devoted to 
the proof of the “only if” part of Theorem 1, Section 3 to the proof 
of Theorem 2, Section 4 to the proof of the rest of Theorem 1, 
Section 5 to the proofs of Theorems 3 and 4, Section 6 to the proof 
of Theorem 5, and Section 7 to some concluding remarks. 

2. To prove the “only if” part of Theorem 1, we may, as 
noted in Section ..l, reduce to the case of a connected Lie group. 
We argue by contradiction and so assume that Prim(G) is Tr but 
that G is not type R on its radical. Since Prim(G’) is TI for any 
quotient group G’ of G we are free to replace G by any quotient 
group (which of course must also fail to be type R on its radical 
if we are to get a contradiction). Let R be the radical of G, which 
is closed, let N be the nilradical of R (the maximal connected nilpotent 
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subgroup), and let K be a maximal compact subgroup of N, we can 
write K (which is necessarily abelian) as exp(i) for a subalgebra f 
of the Lie algebra n of N. The kernel of the exponential map in f 
is some lattice L, and by looking at the universal covering group 
of G, we see that L is centralized by the adjoint action of G. Thus 
f is also centralized and so K is central in G. Since G/K is evidently 
not type R on its radical, as K is central, we can as noted above 
replace G by G/K (which has nilradical N/K) and hence assume 
that the nilradical of our group G is simply connected. 

Now let NI = [N, N] = exp([n, n]) be the commutator subgroup. 
Since any vector space complement V to [n, n] in n generates n as 
Lie algebra [1], it follows that any eigenvalue of Ad(g) on n is a 
product of some of its eigenvalues on n/[n, n]. Thus G/[N, N] is 
not type R on its radical and by the same argument as above has 
nilradical N/[N, NJ; thus we may and shall assume that the nilradical 
N of our group G is a vector group. 

We consider the adjoint action of G on N, or equivalently on n. 
This is a linear representation in which N acts trivially so that G/N, 
which is a reductive group, acts. This representation is non-type R 
in that some eigenvalue of some group element is not on the unit 
circle. This is a general remark; being type R on the radical r is 
the same as being type R on the nilradical n since G operates trivially 
on the quotient r/n. The following proposition is now applicable. 

PROPOSITION 2.1. If G is a connected reductive group and p a 
non-type R representation on a vector space V, then p has an irreducible 
quotient representation which is also not type R. 

Proof. We may take G C GL( V). Let G” be the algebraic hull 
of G, which is connected as an algebraic group. Our assumption 
on G is that its radical R is central in G, and this implies that the 
radical of Ga (which is the algebraic hull of R) is central in G”, 
or equivalently the unipotent radical of G” (as algebraic group) 
is central. Moreover G is type R when acting on V if and only if 
G” is. The “if” part is clear, and for the converse we observe that 
[27, Theorem 21 displays explicitly any connected group which 
is type R on V as a subgroup of an algebraic group which is also 
type R on V. Also G and G” have the same invariant subspaces 
so we may assume that G is in fact algebraic. Then G = S * U, 
where S is a reductive algebraic group, U unipotent and central. 
By duality it will suffice to find an irreducible subspace which is 
not type R for G. Since U is unipotent, we know that G is type R 
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iff S is so; since S is reductive we may find an S-irreducible subspace 
WC V so that the action of S is not type R on IV. Now let V,, be 
the common fixed point set of U, equivalently the common null 
space of the linear transformations in the Lie algebra u of U. Now 
if TJ E V, we claim that there is some t in the associative algebra A 
generated by u so that 0 # t(v) E V,, (since A(o) is a U-invariant 
subspace which therefore contains nonzero fixed vectors). In particular 
let us pick v E W, then as t commutes with S, and W is irreducible, 
we see that t(W) C V, and that t is an S-intertwining isomorphism 
of W onto an isomorphic irreducible S subspace IV,, of V, . Then 
IV,, is the desired G-irreducible non-type R subspace. 

Note. It is easy to construct counterexamples to the above if G 
is not required to be reductive. 

We can now apply the proposition to the action of G/N on N 
and assume by going to a quotient that G operates irreducibly on N; 
however in this quotient the nilradical may have become larger. 
Let the new nilradical be N’; we kno,w at least that G operates trivially 
on N’/N. We can repeat our first two steps of dividing out by the 
maximal compact subgroup of N’ and then abelianizing N’; we 
assume this is done. We now pass to an irreducible quotient of the 
Lie algebra n’ of N’ upon which the action of G is non-type R. 
By the above the image of n in this quotient is the same as the image 
of n’ (and is isomorphic to n), and then this image is the (Lie algebra 
of the) nilradical. Thus we have reduced further to the case when 
G operates irreducibly on the Lie algebra of its nilradical. 

It follows that the radical t of g acts semisimply on n and has at 
most one nonzero root. If this root is real, R acts as scalars times 
the identity, and if not, there is a unique (up to conjugation) complex 
structure so that R acts by complex scalars. Since R/N is central 
in G/N it follows that in this case the action of G also preserves 
this complex structure. 

We now need to know the following structural fact: 

PROPOSITION 2.2. The group G is globally the semidirect product 
of N and a reductive group H. 

Proof. We first show that the Lie algebra g of G is the semidirect 
product of n and a reductive algebra I& Let g = r + s (semidirect) 
where .s is a semisimple Levi factor. We then choose an s-invariant 
vector space complement a to n in t. If [a, a] = 0, then we can take 
b = s + a and we are done. If [a, a] # 0, it is necessarily s-invariant 
and contained in n. But the set of s-invariant vectors in n is g-invariant 
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and by irreducibility, s acts trivially on n and hence on r. Thus 
g = r + s is a direct sum of ideals. Moreover if [a, a] # 0, a is 
two dimensional and r acts on n by all complex scalars so that r 
is in fact an algebraic Lie algebra and r = n + a’ (semidirect) 
for some a’. Then let h = a’ + 5 and the infinitesimal part of the 
result is proved. 

Now let H be the analytic subgroup of G with Lie algebra h, 
and let H be its closure. Since G = HN, H is irreducible on n, 
but log@ n N) C n is clearly H-invariant, and hence must be zero 
or all of N. If the latter is the case, it follows by standard Lie theory 
that n is centralized by h, contrary to the assumption that G is not 
type R on n. Thus H n N = {e}, and as G = HN we conclude 
that H = H and that G is the semidirect product of N and H, and 
we are done. 

The following allows us to complete the argument. 

PROPOSITION 2.3. There exists f E n* (the dual of n) and Y E lj 
(notation as above) such that f(t) = Ad*(exp(tY))(f) --+ 0 as t + co 
and such that the stabilizer off(t) in G is independent of t. 

Proof. If r is not type R on n or equivalently n*, we select YE a 
and let f be any vector in n *. Then Ad*(exp(tY))f = exp(--(Y)t)f = 
f(t), where (Y is not purely imaginary. Then f(t) -+ 0 as t -+ co 
provided Re(ol(Y)) > 0, which we can achieve by replacing Y by 
- Y if necessary. In any case f(t) is a complex multiple of f and 
the action of G is complex linear as noted so the stability group 
off(t) is independent of t. 

If r is type R, then 5 (notation as above) acts noncompactly on n 
and we choose a split Cartan subalgebra b of 5 and YE b so that 
ad(Y) is nonzero on n. The eigenvalues of ad(Y) on n and n* are 
necessarily real and we choose f to be an eigenvector with negative 
eigenvalue. The argument proceeds just as before with f(t) a real 
multiple off, and we are done. 

Now the element f E n* above defines a one dimensional unitary 
representation X of N and f(t) d fi e nes a representation h(t) which 
is the result of conjugating X = X(0) by the one parameter group 
g(t) = exp(tY) of the last proposition. 

Let K be the isotropy group of h(0) in G, which by the last proposi- 
tion is also the isotropy group of h(t). Since K 1 N and G is the 
semidirect product of H and N, K is the semidirect product of N 
and K, = K n H. We know that g(t) Kg(t)-l = K and since g(t) E H, 
it follows that g(t) also normalizes KO . Now any element of K can 
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be written as k = n . k, (n E N, k, E K,) and we extend h = h(0) 
and x(t) to one-dimensional representations o(t) of R by o(t)(n * K,) = 
h(t)(n). It is clear that u(t) = g(t) * a(O), where this denotes the 
result of conjugating o(O) by g(t). N ow let n(t) be the representation 
of G induced by u(t). According to the “Mackey machine” r = z-(t) 
is irreducible and independent of t. 

Moreover since o(t) --+ lK, the identity representation of K, 
in the sense of the Fell topology, it follows by continuity of induction 
[8, Theorem 4.21 that n weakly contains the representation T of G 
induced by 1, of K. Finally T and hence r weakly contains at least 
one irreducible representation 7,, , which must necessarily vanish 
on the normal subgroup N. Since 7~ does not vanish on iV, 70 cannot 
weakly contain 7. Thus the kernel of r in C*(G) cannot be maximal. 
This contradiction completes the proof of the “only if” part of 
Theorem 1. 

3. Proof of Theorem 2. Let G, G, and L = [G, G] be as in 
Theorem 2. We use the notation of Pukanszky [31]. In particular, 
if H is a closed subgroup of the locally compact group K, and if (T 
is a unitary representation of H, IndHrK cr denotes the induced repre- 
sentation of K. This notation will also be used in the rest of this 
paper, except that we omit the subscripts when H and K are clear 
from the context. Also here and throughout this paper, the kernel 
of a unitary representation of a locally compact group is understood 
to mean the kernel of the associated representation of the group 
C*-algebra. When confusion will not result, we sometimes identify 
a representation with its unitary equivalence class. 

We must show that if Ji E Prim(G), then there is a closed ideal 
Ii of C*(G) strictly containing J1 , such that any primitive ideal 
of C*(G) strictly containing Ji contains I1 as well. (If J1 is maximal, 
we will have 1, = C*(G).) We claim I1 can be constructed as 
Ji + (the kernel of Ind,,, n), where II is a representation of L 
with kernel I = ker(&\E,), El the G-orbit in L associated with Ji . 
(Here “ker” is to be taken in the hull-kernel sense. By convention, 
when El is closed so that &\E, = 0, 17 is the zero representation of L.) 

To see this, let Jz E Prim(G) with Ji C Jz . By [31, Sect. 11, we 
can choose factor representations Tl = T(pl) and T2 = T(pz) as in 
[31, Lemma 1.1.41 with ker Tl = Ji , ker T, = Js . Then Tl weakly 
contains Tz and by [g, Lemma 5.11, ker( Tl 1 L) C ker(T, 1 I,). Let 
rrj=pjjL(j= 1,2).Ben TiILlivesonG~JC&j=_Eiandis 
weakly equivalent to Gni , 
hull-kernel topology of L. 

so GR-~ C G C E1 and E, C El in the 
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Now the orbit space f;/G is TO , so either E, = E, or else Es 5 Er . 
(No distinct orbits can have the same closure.) In the first case, 
K1 = K, = K (notation of [31]) and again by [8, Lemma 5.11, -- 
ker( TI 1 K) C ker( T, 1 K). This means Gp2 C Gpl , so by [31, Lemmas 
1.1.6 and 1.1.1 I], pz 7 p1 and Jr = ker(Ind,?, pI) = ker(Ind,,, pz) = 

J2 . 
Consider the second case where Es $ Ei . E, and E, are distinct 

G-orbits in L, hence E1 n Ez = o and E, C i?,\E, . Since E1 is 
locally closed in e, &\E, is closed in l and is the hull of some closed 
ideal I in C*(L), and & C i&\E, . This means that with 17 as above, 
H weakly contains (Tz 1 L). We must show that Ind,?, 17 weakly 
contains T, . But T2 = IndKzTG p2, where p2 ex2 extends some 
~2 E E, , and clearly 7r2 is weakly contained in II. Since K,/L is 
abelian, hence amenable, Corollary 1 to [8, Lemma 4.21 shows that 
p2 is weakly contained in IndLcrK,(p2 i L) = IndLTK, r2, hence a fortiori 
is weakly contained in IndLTK, H. Since Ind,,, H g IndKzt,(Ind,T,Z H), 
an application of [8, Theorem 4.21 shows that T, is weakly contained 
in Ind,?, H, i.e., J2 1 Ii . The proof shows that if E, is closed, 
then Ji is maximal, so to complete the argument, we need only 
check that Ii # Ji . However, this is clear since Ii C Ji would imply 
(by continuity of restriction again) that i& C &\E, , which is 
ridiculous. So the proof is complete. 

COROLLARY 1. In the situation of Theorem 2, if all the orbits 
of (? on f, are closed, then Prim(G) is TI . 

Proof. Immediate. 

COROLLARY 2. If G is any connected Lie group (not necessarily 
simply connected), the points of Prim(G) are locally closed. 

Proof. Let H be the universal covering group of G, q: H -+ G 
the canonical map. As is well known, v induces a map on representa- 
tions that enables us to identify Prim(G) with a closed subspace of 
Prim(H). So the corollary is evident. 

COROLLARY 3. If G is any connected locally compact group, then 
points of Prim(G) are locally closed. (This is the Jirst assertion of 
Theorem 1.) 

Proof. Any such G may be written as proj lim, G, , with G, = 
G/H,, a connected Lie group and H, a compact subgroup of G. 
By the lemma of Moore cited earlier [28, Proposition 2.21, Prim(G) 
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may be identified with uoI Prim(G,), and by the same observation 
as in the proof of Corollary 2, Prim(G,) is closed in Prim(G). So 
the result follows from Corollary 2. 

Corollary 3 shows that, in a certain sense, the C*-algebras of 
connected groups are unusually “nice.” The same is not valid even 
for countable solvable groups, as was demonstrated by Guichardet 
[14]. Specifically, Guichardet showed that a certain semidirect 
product of the integers and the additive group of dyadic rationals 
has the property that its group C*-algebra is primitive but that 
the zero ideal is a non-locally closed point in the primitive ideal 
space. We shall return to discrete groups in Section 6. 

Of course, the primitive ideal space of a type I group or C*-algebra 
is almost HausdorfI in the sense that every nonempty closed subset 
contains a nonempty relatively open Hausdorf? subset (see [6, 
theoreme 4.4.51). S o f or such a group or C*-algebra, an easy exercise 
in general topology shows that the result of Corollary 3 is automatic. 

4. In this section, we prove that if G is a connected Lie 
group which is type R on its radical, then Prim(G) is T1. Since 
the condition on G depends only on its Lie algebra, it must hold 
for the universal covering group of G as well. Hence we may assume 
G is simply connected, since the property we are trying to prove 
is inherited by quotient groups. 

At several points in the argument, we need to make use of a simple 
fact which is certainly well known. However, as there seems to be 
some confusion about this point in the literature, it seems best 
to state it as a lemma. 

LEMMA 4.1. Let (G, X) b e a topological transformation group 
(with no separation axioms assumed), and suppose K is a compact 
subset of G and C is a closed subset of X. Then K * C is closed in X. 

Proof. Let {K,) and {cJ be nets in K and C, respectively, with 
K,c, + x in X. By compactness of K, we may pass to a subnet and 
assume that K, -+ k in K. Then by joint continuity of the map 
G x X -+ X, c, + k-lx. Since C is closed, k-lx E C and x = 
k * k-lx E K * C. So K + C is closed in X. 

COROLLARY. Suppose further that X is a T,-space and that G 
is compact. Then the G-orbits in X are closed. 

Proof. Let C = (x} for some x E X, and let K = G. 
This will be applied in the situation where G is a locally compact 
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group and X = H for some closed normal type I subgroup H of G 
-as is well known (see for instance [12], Lemma 1.3), (G, X) is a 
topological transformation group. We take this opportunity to note 
that this provides an easy proof of [7, Proposition S(iii)]. (The 
argument given there has a gap in it since an orbit 19 which is compact, 
hence separated in its relative topology, is not known a priori to 
consist of points separated in O-.) 

To return to our main argument, assume G is connected, simply 
connected, and type R on its radical. Then we may easily construct 
G as in Theorem 2 with the same properties. Let L = [G, G] = 
[G, G]. By Corollary 1 to Theorem 2, it is enough to show that the 
orbits of G onL are closed. Hence we may replace G by G and assume 
that G is locally algebraic. Since G is simply connected and type R 
on its radical, we may write G = G, x G, , where G, is noncompact 
semisimple (or else trivial) and G, is type R. Then L = [G, G] = 
G, x [G, , G,] and L = G, x [G, , G,]^ as a topological space. 
So G will have closed orbits on l if and only if G, has closed orbits 
on [G, , G,]^. (The orbits in G, are just single points, which are 
closed since G, is CCR, a fact which follows from [16, Theorem 51.) 
Without loss of generality, we may replace G by G, and assume G 
is type R. Furthermore, the action of G on f, is the same as that 
of the algebraic group H = Ad,(G), where I is the Lie algebra of L. 
Let U be the unipotent radical of H. Since G is type R, H = K . U 
(semidirect product) with K compact. By the lemma, it is enough 
to prove that U has closed orbits on e. 

Suppose VT, p EL and {un> is a sequence in U with u,rr --+ p in the 
topology of J?. We must show that p E U * 7~. 

Let N be the nilradical of L, so that N CL and L/N is compact 
(by the type R condition). The restrictions of 7r and p to N must 
live on some L-orbits in N (N is regularly embedded in L by [7, 
Lemma 71, for instance), say L * u and L . h respectively, with 
a, X EN. Now U acts on fi as well as on f, (since Ad(G) acts on N), 
and the actions of U and L on m commute. (To see this, recall that 
[L, rad(G)] C N and that N acts trivially on N.) So u,~ IN lives on 
L * U,O. By [8, Lemma 5. I], the operation of restricting representations 
of L to N preserves weak containment, and since U,~T + p, L * X E 
((J, L * U,(T)-. (The - denotes closure in N.) Hence there is a sequence 
{ZJ in L such that &u,u -+ h. By compactness of L/N and the 
corollary to the lemma (applicable since N is nilpotent, hence CCR, 
and thus rci is T,), we may pass to a subsequence and suppose that 
Z;‘A + Z-IX for some 1 EL. Replacing h by Ih, we then have that 
U,U -+ h (by joint continuity of the actions on @). However, a repeti- 
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tion of the proof of [30, Lemma 311 shows that U has closed orbits 
on fl, and so X = uu for some u E U. Let U,, be the stabilizer of u 
in U. Since the natural map U/U, --+ U * a is a homeomorphism 
(see for instance [ll, Theorem I] or [33, Proposition 7.4]), u,-+u 
modulo U,, . Replacing u, by u-~u, , we may as well assume that 
U,O + u, and then u,o;l ---f e (the identity element of U) for suitable 
v, E U,, . Since U,VT = (u,v;‘) VET -+ p, we have V,?T -+ p, and now 
VET IN lives on a constant L-orbit in N. In the notation of [7], 
v,~ EJ?~.~ for all n, and also p ELM.,, . By [7, Proposition S(ii)], &L.0 
is a discrete space; hence the sequence {v,~) must be eventually 
constant and p = lim v,~ E U. 7~. This completes the proof of 
Theorem 1. 

5. We turn now to the proof of Theorems 3 and 4. By, say, 
[25, p. 1751, 1 a most-connected groups (even if not separable) are 
projective limits of finitely connected Lie groups. By applying 
[28, Proposition 2.21 again, we see that Theorem 4 follows from 
Theorem 3 so we concentrate on the former. We assume, for the 
rest of this section only, that all groups are separable. We have an 
open normal subgroup G, of finite index in G, and we suppose 
first that Prim(G) is Tl . We want to show that Prim(G,) is also. 
Let p, and pa be two primitive ideals in C*(G,) with p, 3pz, and 
let ur and ua be irreducible representations of G, with kernels p, 
and pa . Then by definition u1 < ua where for rest of this section < 
will mean (not necessarily proper) weak (or Fell) containment and 
N will mean weak equivalence. Let ni = Ind(u,) be the induced 
representations of G; by continuity of induction z-r < rr2 . By 
elementary results, vi and ~a are finite sums of irreducible representa- 
tions of G; let @’ and vim) be the distinct irreducible summands. 
But now any v$’ is weakly contained in the finite sum ZT$‘, and 
then since Prim(G) is a topological space r:i’ is weakly contained 
in a single summand 7ra . U’ Since Prim(G) is Tl it follows that vY’ 
is weakly equivalent to z$‘, and hence their restrictions to G, are 
weakly equivalent [8, Lemma 5.11. However the restriction of @ 
or n.$j) to Gr is a direct sum with multiplicities of the finite number 
of conjugates of ur and ug respectively. In particular it follows that 
ua is weakly contained in a finite direct sum of the conjugates g . (or 
k E GIG,) of ‘~1. Again as Prim(G,) is a topological space, ~2 is 
then weakly contained in one such summand g * ur . Thus we have 
u1 -==c u2 <g - u1, and if n is the order of g in G,‘G, , we obtain by 
iteration weak containments of the form ui < u2 < g . u1 < g2 . u1 < 
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-*- <g” . u1 = pi . Thus or is weakly equivalent to ~a and p, = p, 
so that Prim(G,) is Tl . 

For the other direction of Theorem 3 we shall need three elementary 
propositions. 

PROPOSITION 5.1. Let X be a T,, space and let A and B be jkite 
subsets which are each Tl in their relative topologies. Then if A = B, 
we have A = B. 

The simple proof is omitted. Now let G, be an open normal 
subgroup in G of finite index. 

PROPOSITION 5.2. If rr is an irreducible representation of G, its 
restriction to G, is a Jinite sum of irreducible representations. 

Proof. This can be seen in several different ways. One method 
is to combine the theorem of [I91 with [6, 18.9.91. Alternatively, 
this follows directly from [13, Theorem 2.31, which asserts that rr 
is strictly contained in Indcl,, u for some irreducible representation cr 
ofG,. 

It now follows from the above proposition, just as in the Mackey 
little group method, that the restriction of any n E G to G, is the 
direct sum, with multiplicities, of the (finite number) of irreducible 
representations of Gi belonging to some G-orbit 0 in G, . We say 
then that rr is associated to the orbit 0. It follows from the little- 
group method again that there are finitely many rr E G associated 
to a fixed orbit 0 C G, . Let P(0) be the finite set of primitive ideals 
in C*(G) which are kernels of some r E G associated to 0. We have 
the following fact: 

PROPOSITION 5.3. Suppose that for each G-orbit 0 in e,, P(0) 
is Tl in its relative topology. Then (i) if Prim(G,) is Tl , so is Prim(G), 
(ii) if every point of Prim(G,) is locally closed, the same is true for 
Prim(G). 

Proof. (i) Let p, and pz be primitive ideals in C*(G) with p, 1 pz 
and let 7rJ be irreducible representations with kernels p, . Let ui E GI 
be elements of the G-orbits Oc in G, to which rri is associated. We 
are given that 7~~ < rz and hence the same is true of their restrictions. 
It follows just as in the argument of the first part of the theorem 
that u1 is weakly contained in some conjugate g * us of ua , and then 
by assumption we know that u1 is weakly equivalent to g . us . Let 
h, and X, be the representations of G induced by ui and ua (equivalently 
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g . 0%). Then h, is weakly equivalent to h, by continuity of induction. 
But now by Frobenius reciprocity [26], & is the sum with multiplicities 
of all the representations associated to the orbit Oi for i = 1,2. 
The assertion that h, - - - ha then translates into the assertion that 
P(0,) = P(0,). N ow by our assumption and Proposition 5.1, it 
follows that P(0,) = P(0.J. But p, E P(0,) so pi E P(0,) which is 
T1 in the relative topology. Thus p, lpz implies that p, = p, and so 
Prim(G) is Tl as desired. 

(ii) Suppose now that every point in Prim(G,) is locally closed. 
As in (i), let ?~i , 7~~ E G have kernels p, 3 p, in Prim(G) and choose 
ui E 0%) Oi the G-orbit is G, associated to rri . As before, we get 
o1 < g * (TV for some g E G. If in fact u1 N g * ua , the argument of (i) 
shows that p, = p, . So assume u *g, < u1 . We proceed more or 
less as in the proof of Theorem 2. Let ql, q2 be the kernels of ul, 
g * u2 , respectively, in Prim(G,). Then q1 E {q2)-\{q2), which is 
closed since {qa} is locally closed. Applying the action of G (on 
Prim(G,), where G acts as a topological transformation group), it 
is easy to see that G * pi C (G * q,)-\G * pz . By hypothesis, continuity 
of induction, and Proposition 5.1, the set P(O), 0 a G-orbit in G, , 
depends only on the image of 0 in Prim(G,). Let Ii be the intersection 
in C*(G) of the elements of P(O), as 0 runs over G-orbits in G, whose 
image in Prim(G,) is contained in the closed set (G . q,)-\G * q2 , 
and let I = p, + 1, . We have seen that p, 3 p, implies that pi 3 Ii 
and hence that p, 1 I. So I is a minimal closed 2-sided ideal of C*(G) 
containing p, . To see that { pz} is locally closed in Prim(G), it is 
enough to show that I # p, under the assumption that G * q2 is 
not closed. (When G * q2 is closed, we saw in (i) that {pa) is closed.) 
But if this is false, we have I Cpa , i.e., { pz} is in the closure of the 
set of primitive ideals lying over (G * q,)-\G * q2 . Using continuity 
of the operation of restricting representations to Gi (this is [8, 
Lemma 5.11 again), we get G * q2 C (G * q,)-\G * qz , which is absurd. 
So (pz) is locally closed. 

We proceed to the proof of the other direction in Theorem 3. 
Specifically we assume that Prim(G,) is Tl or that all its points are 
locally closed and that G/G, is solvable. We wish to show that 
Prim(G) is Tl or that all its points are locally closed. Our argument 
will go by induction on the order of G/G, where we assume that 
the result is true for all G and G, when 1 G/G, / < n. If G/G, is 
not cyclic of prime order, we can find a normal subgroup H with 
G&H,cG. By induction Prim(H) has the desired property and 
again by induction Prim(G) has the desired property. 

584243-3 
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Therefore we assume that G/G, is cyclic of prime order. By 
Proposition 5.3 it suffices to show that P(0) is Z!‘r in the relative 
topology for every G-orbit 0 in Gr . There are two possibilities; 
either 0 = {uO) is a single point or 0 has cardinality equal to the 
order of G/G, and G/G, acts freely. In the latter case, the Mackey 
method tells us that there is only one irreducible representation of G 
associated to 0, namely Ind(a) for any u E 0. Thus P(0) consists 
of one point and is Tl in its relative topology. 

In the former case, we again apply the Mackey method. Since 
G/G, is cyclic, the Mackey obstruction vanishes and (TV extends to a 
representation u of G. The irreducible representations of G associated 
to the orbit 0 are exactly those of the form u @ h where h is a one- 
dimensional representation of G/G, lifted up to G. We have to 
check that there are no proper weak containment relations between 
these representations. If we had one, we could change the extension u 
so that we had a weak containment of the form u Q X < u for some 
X f 1. Since tensoring with X is weakly continuous [9, Theorem 21, 
we have, as before, ~=aOX~<aOh”-l(...(uOh<u, 
where n is the order of A. Thus u N u @ X and the proof of Theorem 3 
is complete. 

Theorem 4 follows immediately from Theorems 1 and 3. 

Remarks. One would hope that the hypothesis of solvability in 
Theorem 3 could be eliminated but this has eluded us. One might 
ask moreover if Theorem 3 is true when we simply assume that 
G/G, is compact instead of finite. We know of no counterexamples, 
and in fact if G, were type I and had a Tl primitive ideal space, 
then G, would be CCR, and then it is standard (see [7, Sect. lo]) 
that G would also be CCR and hence have a Tl primitive ideal 
space. Thus the going up part of the result is true for compact 
extensions when the group G, is type I. The going down theorem 
is open even for type I groups in this context. However it is somewhat 
suspect because a natural extension of it is (somewhat surprisingly) 
false. Namely we could consider instead of the group G, , a separable 
C*-algebra A, together with a compact group H of automorphisms 
of A, . We form the C*-crossed product of A, and H which we call A. 
This plays the role of G and H the role of G/G, . If A, is CCR it is 
easy to see that A is also. For going down type I-ness may fail, 
but even so if A is CCR one might ask if A, has necessarily a Tl 
primitive ideal space. This is false even with A, type I. Specifically 
let H = T be the circle group and let A, be C*-algebra consisting of 
compact operators plus multiples of the identity on the Hilbert 
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space L2(U). We let H = T act on A, via conjugation of operators 
by the regular representation of T. Then A, is type I but not CCR, 
and an elementary calculation shows that the crossed product of A, 
by U with this action is CCR. 

6. We turn now to the proof of Theorem 5. First suppose 
that G is a discrete solvable finitely generated group which is a 
finite extension of a nilpotent subgroup. We must show that Prim(G) 
is TI . By the “going up” part of Theorem 3 it suffices to show this 
for some subgroup of finite index so in particular we may take G 
nilpotent. Moreover G is polycyclic and has a faithful matrix repre- 
sentation (cf. [34]) and so by Selberg’s theorem (cf. [34]) G has a 
torsion-free subgroup of finite index which will still be finitely 
generated; hence we may take G to be torsion free. R. Howe [17] 
has singled out among such groups those which he calls elementary 
exponential (e.e.). In order to define these recall that G may be 
embedded as a discrete cocompact subgroup in a (unique) connected 
and simply connected nilpotent Lie group N with Lie algebra tt. 
Then L = log(G) C n is a discrete set whose span over the rational 
numbers Q is a Lie algebra which is a rational form for it [I, Chaps. I 
and IV]. One says that G is e.e. if first L is a group under addition 
(in which case one says that G is a lattice group), and moreover if L 
is a Lie ring over the integers such that [L, L] C k!L, where k is the 
nilpotent length of G. Howe [17, p. 291 shows that any G contains 
an e.e. subgroup of finite index and so we may assume that G is e.e. 
But now one of the major results in [17, Theorem 21 is that (passing 
again perhaps to a subgroup of finite index) Prim(G) is T, in this 
case (in fact Howe gives a kind of Kirillov description for Prim(G)) 
and this completes the proof in one direction. 

For the other direction one could mimic the argument we gave 
in the continuous case, at least for polycyclic groups, but there is 
in fact a simpler technique available making use of results in [23]. 
So we let G be a finitely generated solvable (or merely amenable) 
group with Prim(G) TI . We let FI be the normal subgroup con- 
sisting of FC-elements, elements with finite conjugacy classes, and 
we define by induction the (transfinite) upper FC-series {Fe}. F,,, is 
specified by the condition that Fu+JFn is the subgroup of FC-elements 
in G/F,, ; for a limit ordinal & FB = lJa+ F, . This series eventually 
stabilizes and F = lim, F, is called the FC-hypereenter of G. It is 
normal and G/F = G, has no elements other than the identity 
with finite conjugacy classes. But now the regular representation 
of G, is a factor representation and since G,, is amenable, the regular 
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representation is faithful on C*(G,). Thus the zero ideal in C*(G,) 
is the kernel of a factor representation, and so [6, 3.9.lc] is primitive 
since G, is countable. 

Since Prim(G) and hence Prim(G,) are given to be TI , C*(G,) 
is simple. However the one-dimensional trivial representation of G, 
has kernel an ideal of codimension one. Thus Gs = (e>; that is 
G = F is FC-hypercentral. Now [23, Theorem 21 says that G is a 
finite extension of a nilpotent group since it is finitely generated. 
This completes the proof of Theorem 5. We note from the proof 
that if the solvability hypothesis could be deleted from Theorem 3, 
then we could replace “solvable” by “amenable” in the statement 
of Theorem 5. 

Theorem 5 is indeed the exact analog of the results in [2, Chap. V] 
and in [30] since a finite solvable extension of a nilpotent group 
is the discrete analog of a type R solvable Lie group. (We shall 
discuss this further in Sect. 7.) In view of this we might ask if there 
are discrete analogs of Theorem 1. The first case to consider would 
be a discrete subgroup r of a semisimple Lie group G such that 
G/r has finite volume, or is compact. If the analogy held, Prim(r) 
would be T, but we shall show that this is false for I’ = S&(Z), 
the group of 2 x 2 integral unimodular matrices. 

We first prove the following. 

PROPOSITION 6.1. Let I’ = IF, be the free group on n generators 
(n an integer 22) and I’ w its second deriwed group. Then Prim(r/r(2)) 
and hence Prim(r) are not TI . 

Proof. The first derived group r(l) of IF, is known to be a free 
group on infinitely many generators [20, Ch. IX]. Thus r/rt2) is a 
finitely generated solvable group whose first derived group is not 
finitely generated. So r/rt2) is not polycyclic [34, Proposition 4.11 
and by Theorem 5 Prim(r/r(2)) is not TI . 

Remark. In fact, Prim((F,) does not even have locally closed 
points. One can easily see this by noting that Guichardet’s group 
(mentioned above at the end of Sect. 3) is generated by two elements, 
hence is a quotient of IF, (n >, 2). 

PROPOSITION 6.2. No subgroup of SL,(BB) commensurable with 
SL,(Z) has a T, primitive ideal space. 

Proof. Let r be such a subgroup; by definition r n SL,(Z) 
is of finite index in r and in SL,(E). By the coming down part of 
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Theorem 3 we may assume that r C SL,(Z). But IF, is isomorphic 
to a subgroup of finite index in SL,(H) and again we may assume 
that FCff,. Now r/(r n b-i2’) is a finitely generated two-step 
solvable group of finite index in lF2/ffh2’ which by Theorem 3 and 
the last proposition cannot have a T, primitive ideal space. 

7. To conclude, we would like to rephrase some of our results 
and compare them with others in the literature. We should mention 
first of all that it is immediate from Theorem 4 that any almost- 
connected locally compact group G with a 7’r primitive ideal space 
(or which in particular is CCR) is necessarily unimodular. Since a 
quotient of G by some compact normal subgroup is a Lie group, 
it is enough to observe this for Lie groups. But unimodularity of a 
finitely connected Lie group G depends only on the universal 
covering group of the connected component of the identity in G, 
and when Prim(G) is Tl, this is a direct product of a semisimple 
group and of a type R group (with either factor possibly missing). 
But as is well known, semisimple and type R groups are unimodular, 
hence so is a product of two such. 

Secondly, we would like to point out that the type R condition 
for Lie groups has arisen in other contexts which seem somewhat 
connected with representation theory in ways that so far are not 
totally understood. For instance, Guivarc’h [15] and Jenkins [18] 
have shown that an almost-connected Lie group has polynomial 
growth (that is, for any compact set K in the group, the Haar measure 
of Kn grows like a polynomial function of n) if and only if it is type R. 
It is in this sense (recall [24, 341) that type R solvable groups are 
the analogs of finitely generated discrete solvable groups which 
are nilpotent-by-finite. Furthermore, Azencott [3], following work 
of Furstenberg [lo], has defined a property T for locally compact 
groups (transitivity of the group on the Poisson spaces of all its eta16 
probability measures) which has now been shown ([4, 291) for con- 
nected Lie groups to be equivalent to the “type R on the radical” 
condition, provided that the quotient of the group by its radical 
has finite center. However, the condition on the center is necessary 
[29] so property T and the condition of being type R on the radical 
are not quite the same. Yet we see that for a connected Lie group, 
Prim(G) is Tl if and only if the adjoint group of G has property T; 
this fact still seems rather mysterious. 

Finally, we note that our characterization of general connected 
groups and of certain almost connected groups with Tl primitive 
ideal spaces can be put in perhaps more elegant form if we make 
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use of the Lie algebra of such a group as defined by Lashof [21]. 
Recall that if G = proj lim G, , where {G,} is an inverse system of 
finitely connected Lie groups, then the Lie algebra g of G is the 
induced projective limit of the Lie algebras ga of the G, . Furthermore, 
g is independent (up to isomorphism of topological Lie algebras) 
of the choice of the approximating Lie groups G, , and depends 
only on G. If we let r, = rad(g,), it is easy to see that proj lim r, 
exists and defines a closed Lie subalgebra of g, also independent 
of the choice of the G,‘s, which we call the radical r of g. By [21, 
Corollary 4.241, g is of the form $ x a x 5, where I$ is a finite 
dimensional Lie algebra, a is a (possibly infinite) direct product of 
one dimensional Lie algebras, and I is a product (again possibly 
infinite) of compact semisimple Lie algebras. Hence if 3 is the center 
of g, 3 C r and r/3 is finite dimensional. The adjoint action of g on 
r/3 is defined as usual, and we can define g (or G) to be type R on 
its radical if for every X E g, the eigenvalues of ad(X) on ri3 are 
purely imaginary. It is easy to see that this will be the case if and 
only if each ga is type R on r, . In addition, an easy application of 
[21, Lemma 3.12 and Theorem 3.51 shows that the adjoint actions 
of G on g and on r/3 can be defined as for Lie groups, and that g 
is type R on its radical if and only if the eigenvalues of Ad(g) on r,‘3 
are of modulus one for all g E G. Putting all this together with [27] 
again, we get the following restatement of Theorem 4: 

THEOREM 4’. Let G be an almost connected locally compact group, 
and let g, r, and 3 be as above. Consider the following conditions: 

(i) Prim(G) is TI , 

(ii) g is type R on its radical, and 

(iii) G acts distally ( via the adjoint representation) on r/3. 

Then (ii) and (iii) are equivazent and (i) implies (ii) and (iii). If 
G/G,, is prosolvable, then (ii) and (iii) imply (i). 
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