
Contemporary Mathematics

A Selective History of the Stone-von Neumann Theorem

Jonathan Rosenberg

Abstract. The names of Stone and von Neumann are intertwined in what

is now known as the Stone-von Neumann Theorem. We discuss the origins of
this theorem, the contributions to it of Stone and von Neumann, the ways the

theorem has been reformulated, and some of the varied mathematics that has
grown out of it. At the end we discuss certain generalizations or analogues of
the Stone-von Neumann Theorem which are still subjects of current research,
such as a new C∗-algebra attached to the canonical commutation relations of
quantum field theory, and supersymmetric versions of the theorem.

Introduction

As this volume is dedicated in honor of the hundredth birthdays of Stone and
von Neumann, it seems totally appropriate to consider the history of the one theo-
rem that bears both of their names. This history turns out to involve a surprisingly
large swath of 20th century mathematics: from quantization to group represen-
tations, operator algebras, and even number theory. For other points of view on
topics related to the Stone-von Neumann Theorem, I would recommend [24] and
[59]. I want to thank Bob Doran and Dick Kadison for organizing a fascinating
session in Baltimore and for originating the idea of this volume.

Some of the original sources analyzed here, especially in sections 1 and 2, are
in German, and some of the sources in section 4 are in French. To make this paper
understandable to as wide an audience as possible, I have translated some of the
relevant passages in footnotes. Any mistakes in the translations are clearly my
responsibility.

1. The early history of quantum mechanics,

and origins of the problem

I am not competent to explain in detail the early history of quantum mechan-
ics, though there is no doubt that this is a fascinating chapter in the history of
science. So this section will be very brief, and will concentrate just on the problem
that motivated Stone and von Neumann. This problem concerns the “Heisenberg
commutation relations.” The name is a bit of a misnomer; the relations were in fact
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2 JONATHAN ROSENBERG

first formulated in their modern form not by Heisenberg but by Born and Jordan1

[4, equation (38)] and by Dirac [8, equation (11)] in the one-dimensional case, and
in the “Dreimännerarbeit”2 by Born, Heisenberg, and Jordan [5, Chapter 2] and by
Dirac in [8, equation (12)], [9] in the multi-dimensional case. However it is true that
they grew out of the original ground-breaking work of Heisenberg [20] (received by
the journal July 29, 1925), though one would have to examine Heisenberg’s paper
very carefully to find anything remotely suggesting the commutation relations.

Nowadays we tend to think of quantum mechanics as a single subject, with the
contributions of the various pioneers, such as Heisenberg and Schrödinger, blurred
together. However, back in the 1920’s, the mathematical foundations of the subject
were still not worked out, and it was not clear if “matrix mechanics” (as developed
by Heisenberg, Born, Dirac, and others) and “wave mechanics” (as developed pri-
marily by Schrödinger) were equivalent. In a paper in 1926, Schrödinger alluded to
this confusion and wrote [50, p. 735]: “Im folgenden soll nun der sehr intime innere

Zusammenhang der Heisenbergschen Quantenmechanik und meiner Undulations-
mechanik aufgedeckt werden. Vom formal mathematischen Standpunkt hat man
ihn wohl als Indentität (der beiden Theorien) zu bezeichnen. Der Gedankengang
des Beweises ist folgender.”3

Similarly, in Heisenberg’s book [21], published in 1930 and based on lectures
given in 1929, in the concluding section entitled “Der mathematische Apparat der
Quantentheorie,”4 Heisenberg writes (pp. 109–110): “Die Tatsache, daß Partikelbild
und Wellenbild zwei verschiedene Erscheinungsformen ein- und derselben physikalis-
chen Realität sind, bildet das zentrale Problem der Quantentheorie.”5

The work of Stone and von Neumann grew out of the mathematical challenge
implicit in these statements of Schrödinger and Heisenberg. However, before we
get to Stone and von Neumann, it is necessary to mention the important work
of Weyl, and especially the 1928 edition of his famous book Gruppentheorie und

Quantenmechanik 6 [65], cited by Stone as motivation for his work.

1Heisenberg does give the usual formulation in a letter to Pauli [43, #98, pp. 236–241], dated
September 18, 1925, but he says there: “Die mir z. Z. sehr am Herzen liegende Quantenmechanik

hat inzwischen, hauptsächlich durch Born und Jordan, entschiedene Fortschritte gemacht, die
ich Ihnen, schon um mir selbst klar zu werden, was ich glauben soll, im Folgenden erzählen

werde.” Translation: “In the meantime the quantum mechanics which is currently very dear to

my heart has made some crucial progress, largely through Born and Jordan . . ..” When Heisenberg
writes down the commutation relation a few paragraphs later, he calls it “eine sehr gescheite Idee
von Born,” “a very clever idea of Born.” The paper of Born and Jordan was received by the

Zeitschrift für Physik on the 27th of September, only 9 days later, so it must have been basically

complete by the date of Heisenberg’s letter to Pauli, and Heisenberg already knew about it. The

“Dreimännerarbeit” was received by the same journal on November 16, only about 2 months later.
2Translation: “three-man work.” This nickname is an allusion to the fact that before World

War II, collaborations involving more than two people were quite unusual in mathematics or

theoretical physics.
3The italics are original. Translation: “In the following, only the very close inner connection

between Heisenberg’s quantum mechanics and my wave mechanics will be uncovered. From a

formal mathematical point of view, one really has to prove the identity of the two theories. The
train of thought of a proof follows.”

4Translation: “The mathematical apparatus of quantum theory.”
5Translation: “The fact that the particle picture and the wave picture are two different aspects

of one and the same physical reality forms the central problem of quantum theory.” The wave

picture corresponds to Schrödinger’s wave mechanics, the particle picture to matrix mechanics,
which as Dirac pointed out, is founded on a formalism derived from Hamiltonian mechanics.

6Translation: Group Theory and Quantum Mechanics.
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Let us begin with the Heisenberg commutation relations, say for a free particle
with one degree of freedom:

(1) PQ−QP = −i~.
Here P and Q are supposed to be self-adjoint operators on a Hilbert space H,
representing momentum and position, respectively.7 (Stone replaces −i by i; this
clearly has no significance, as the laws of the universe should be invariant under
Gal(C/R), but we’ve retained the physicists’ usual sign convention.)

The first observation to make is that (1) has no solutions if H is finite-dimen-
sional and ~ 6= 0, since the trace of any commutator must vanish, but Tr(−i~) =
−i~ dimH does not. But (1) also has no solutions with either P or Q bounded.8 (P
and Q play symmetrical roles, since interchanging them amounts to replacing −i
by i, i.e., to selecting a different square root of −1, or to acting by Gal(C/R).) A
simple way to prove this is to introduce the Weyl integrated form of the relations,
which first appears in [65, 1st ed., §45, or 2nd ed., Ch. IV, §14].

Namely, we assume that P and Q can be exponentiated to one-parameter uni-
tary groups Uτ = exp(iτP ) and Vτ = exp(iτQ), respectively (τ real). (This is
possible by “Stone’s Theorem” [57] if P and Q are self-adjoint.) Now (1) implies
certain algebraic relations for Uτ and Vτ . For example, we obtain formally

(2)

UτQU−τ = Ad
(
exp(iτP )

)
Q

= ead(iτP )(Q) = Q+ iτ [P, Q] +
(iτ)2

2!
[P, [P, Q]] + · · ·

= Q+ τ~ (since [P, Q] = −i~ is a scalar),

so Q is unitarily equivalent to Q+ τ~ for any real τ . (This formal calculation can
be justified pointwise when applied to a vector in the range of a spectral projection
of Q.) Thus if ~ 6= 0, (2) then proves the spectrum of Q must consist of the whole
real line, and in particular, Q is unbounded.

Also, from (1) we immediately obtain that Uτf(Q)U−τ = f(Q + τ~), for any
real analytic function f on the spectrum of Q, and in particular, we have

(3)
UτVσU−τ = Uτe

iσQU−τ

= exp(iσ(Q+ τ~)) = eiστ~Vσ,

the multiplicative form of the commutation relations discovered by Weyl [65, 1st
ed., §45, (113)]. Equation (3) is the starting point for the work of Stone and von
Neumann. Weyl claims (in both editions of his book):

Das Postulat der Irreduzibilität bewirkt es, daß aus den Heisen-
bergschen Vertauschungsrelationen der besondere Ansatz mit
Notwendigkeit folgt.9

Standards of proof are certainly not the same in physics and mathematics, and
one can see this when comparing Weyl’s book, which is full of heuristic arguments
that can be made into proofs, even if they are not what mathematicians would call

7The idea of specifically requiring a Hilbert space, rather than an arbitrary complex vector

space, seems to be due to von Neumann [61].
8This fact is implicit in the work of Weyl [65], though he never stated it formally. Proofs

were later given by Wielandt [66] and Wintner [67].
9Translation: The assumption of irreducibility guarantees that from the Heisenberg commu-

tation relations, the desired form [of the solution] necessarily follows.
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proofs, with the later paper of Stone, where it is asserted [57, p. 175] that “The
significance of the last two theorems [the quote above and the earlier assumption
that a self-adjoint operator can be exponentiated to a one-parameter unitary group]
for the quantum mechanics has been pointed out by Weyl, who made no attempt
to prove them.” In the second edition of [65], published shortly after the work of
Stone and von Neumann, Weyl adds a footnote:

Ein strenger Beweis dieses Satz im unendlich-dimensionalen
Raum wurde angekündigt von M. H. Stone [57]; durchgeführt ist
ein solcher Beweis auf anderer Grundlage, wie ich einer brieflich-
en Mitteilung entnehme, kürzlich von J. v. Neumann.10

2. The work of Stone and von Neumann

The beginnings of what we now call the Stone-von Neumann Theorem are in
[57], which bears the date “communicated January 10, 1930.” The section of this
paper which is relevant for us consists only of one short paragraph (in which we’ve
corrected one misprint), followed by the statement of a theorem:

A second question of group theory, to which we can apply the
operational calculus, is raised by the Heisenberg permutation
relations connecting the self-adjoint transformations Pk, Qk, k =
1, . . . , n. For convenience, we write these relations in the form

PkQl −QlPk = iδklI, PkPl − PlPk = 0,

QkQl −QlQk = 0, k, l = 1, . . . , n.

In quantum mechanics, these transformations refer essentially
to the coördinates and momenta of a dynamical system of n
degrees of freedom. The content of these permutation rela-
tions must be made precise by expressing them in terms of the

one parameter groups of unitary transformations U
(k)
τ and V

(k)
τ

generated by iPk and iQk, respectively. We have U
(k)
σ V

(k)
τ =

e−iστV
(k)
τ U

(k)
σ , and U

(k)
σ V

(l)
τ = V

(l)
τ U

(k)
σ when k and l are differ-

ent, for k, l = 1, . . . , n; we also have U
(k)
σ U

(l)
τ = U

(l)
τ U

(k)
σ and

V
(k)
σ V

(l)
τ = V

(l)
τ V

(k)
σ for k, l = 1, . . . , n. We prove the following

theorem:11

Theorem 2.1. If the family of transformations

U (1)
σ1

· · ·U (n)
σn
V (1)

τ1
· · ·V (n)

τn

is irreducible in H, there there exists a one-to-one linear iso-

metric correspondence or transformation which takes H into Hn,

the space of all complex-valued Lebesgue-measurable functions

f(x1, . . . , xn), −∞ < x1 < +∞, . . . ,−∞ < xn < +∞, for

which the integral
∫ +∞

−∞

· · ·
∫ +∞

−∞

|f(x1, . . . , xn)|2 dx1 . . . dxn

10Translation: A strict proof of this theorem in infinite dimensions was announced by M. H.
Stone [57]; such a proof based on other principles has recently been carried out by J. v. Neumann,

as I’ve learned from a letter. [Note Weyl’s implicit distinction between “proof” and “strict proof.”]
11I have numbered the theorem. In the original paper, it is unnumbered.
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exists, such that

SPkS
−1f(x1, . . . , xn) = i

∂

∂xk
f,

SQkS
−1f(x1, . . . , xn) = xkf.

Stone then proceeds to give only the barest hint of a proof, based on the operators

Tk = QkPkQk − Pk, Sk = (Qk − i)/(Qk + i).

Stone says:

The principal difficulty lies in showing the transformations Tk

are self-adjoint. The determination of their spectra, under the
hypothesis of irreducibility, can then be effected and leads easily
to the construction of the desired transformation S by means
of a device previously employed by J. v. Neumann in a rather
different connection.12

Von Neumann’s contribution to the subject may be found in his paper [62], en-
titled “Die Eindeutigkeit der Schrödingerschen Operatoren.” Unlike Stone’s paper,
it contains complete proofs. Because of the paper’s significance, we reproduce here
the first paragraph13 (by kind permission of the copyright holder, Springer-Verlag
GmbH & Co.) :

12Stone here has a footnote to von Neumann’s work on the Cayley transform of an unbounded

self-adjoint operator.
13Translation: The so-called commutation relation (1) is of fundamental importance in the

new quantum theory [5] [8]; here R [an obvious typo—he means Q] is the coordinate operator and
P is the momentum operator. Mathematically speaking, the following assumptions are implicit:

P and Q are hermitian operators on a Hilbert space, which up to a rotation of the Hilbert

space, i.e., up to conjugation by a unitary transformation, are uniquely determined. It’s required

that we impose an extra condition: that P and Q should form an irreducible system. If we

now, as in Schrödinger’s particularly convenient formulation of the quantum theory, interpret the
Hilbert space as a function space — the simplest being the space of all complex functions f(q),

−∞ < q < ∞, with
R

|f(q)|2dq < ∞ — then we have following Schrödinger [50] a particularly
simple solution of the commutation relation, namely

Q : f(q) 7→ qf(q), P : f(q) 7→ −i~
d

dq
f(q).
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Von Neumann then goes on to ask:

Sind nun dies die im wesentlichen einzigen (irreduziblen) Lösung-
en der Vertauschungsrelation?14

· · ·
Es bliebe daher zu zeigen, daß die einzigen irreduziblen Lö-

sungen der Weylschen Gleichungen die Schrödingerschen sind.
Beweisansätze heifür gab Stone an, jedoch ist bisher ein Beweis
auf dieser Grundlage, wie mir Herr Stone freundlichst mitteilte,
nich erbracht worden.

Im folgenden soll der genannte Eindeutigkeitsatz bewiesen
werden.15

Now let’s analyze in modern terms what Stone and von Neumann did. We
start with the Canonical Commutation Relations:

(4) [Pj , Pk] = 0, [Qj , Qk] = 0, [Pj , Qk] = −iδjk~,

Pj , Qk self-adjoint, 1 ≤ j, k ≤ n. The unbounded operator problems are substan-
tial, since the P ’s and Q’s are not everywhere defined, while the right-hand side of
each equation is a scalar. (In fact there is a substantial literature on solutions of
the commutation relations that do not necessarily integrate to unitary groups, and
for these the Stone-von Neumann Theorem breaks down completely, but this is a
subject for a different paper.) We bypass these difficulties by going to the Weyl
integrated form. In other words, assume we have unitary representations U , V of
Rn, obtained by “integrating” the P ’s and Q’s, respectively. Thus the result can
be phrased as follows:

Theorem 2.2. Consider pairs (U, V ) of unitary representations of Rn on a

Hilbert space H, satisfying the commutation rule

(5) U(x)V (y) = exp(iω(x, y))V (y)U(x),

14Translation: Are these now the essentially unique (irreducible) solution of the commutation

relation?
15Translation: It remains therefore to show that Schrödinger’s solution is the unique irre-

ducible solution of the Weyl equations. Stone has previously given hints of a proof, but a proof

based on these principles, as Mr. Stone has in a friendly way communicated to me, has not been

completed. In what follows, the desired uniqueness theorem will be proven.
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ω : Rn × Rn → R bilinear and non-degenerate. Such pairs are all equivalent to

multiples of the standard Schrödinger representation on L2(Rn).

Note that we can combine U and V into a projective unitary representation
of R2n, or equivalently into a unitary representation of what is usually called the
Heisenberg group16

H =








1 x1 · · · xn z
0 1 · · · 0 yn

0 0
. . . 0

...
0 0 · · · 1 y1
0 0 · · · 0 1




: xj , yk, z ∈ R





with specified central character z 7→ ei~z.
Since it will be relevant later, let’s briefly sketch a proof of Theorem 2.2

along the lines of von Neumann’s paper. To begin with, note that since any non-
degenerate bilinear skew-symmetric form on R2n is equivalent to the standard form

given by

(
0n 1n

−1n 0n

)
, this formulation is really equivalent to Stone’s in Theorem

2.1. So without loss of generality, we may assume the relations reduce to saying
that

U(x)V (y) = ei〈x,y〉V (y)U(x),

with 〈 , 〉 the usual Euclidean inner product on Rn.
The key observation is then that given any representation of the relation (5)

on a Hilbert space H, one obtains a large number of self-adjoint projections on H
of the form

(6) Pϕ =

∫∫
U(x)V (y)ϕ(x, y) dx dy,

ϕ ∈ S(R2n) (the Schwartz space of rapidly decreasing functions). Indeed, if Pϕ is
given by (6), then the required relations Pϕ = P ∗

ϕ = P 2
ϕ are satisfied if

ϕ(−x,−y) = e−i〈x,y〉ϕ(x, y)

and ∫∫
ϕ(x, y)ϕ(u− x, v − y)ei〈x−u,y〉 dx dy = ϕ(u, v).

Furthermore, von Neumann proves (by Fourier analysis) that the operator Pϕ can
vanish only if ϕ ≡ 0. As noticed by von Neumann, if

ϕ(x, y) =
1

(2π)n
e−i〈x,y〉/2e−(|x|2+|y|2)/4,

then the conditions for Pϕ = P ∗
ϕ = P 2

ϕ are satisfied. Furthermore, one finds with this
choice that PϕU(x)Pϕ and PϕV (y)Pϕ agree with Pϕ up to scalar factors depending
of course on x and y. Thus if the representation of the U(x)’s and V (y)’s on
H is irreducible, Pϕ must be a rank-one projection.17 Theorem 2.2 follows, since
given two irreducible representations of (5) on H and H′, respectively, the map

16As should be clear by now, this is not Heisenberg’s invention, so the name is a bit of a
misnomer. The central extension of R2n by the circle group T, a non-simply connected Lie group

with H as its universal cover, was really discovered by Weyl.
17If rk Pϕ > 1, then we can write Pϕ as the sum of two proper subprojections, and one can

check that these will generate proper invariant subspaces of H, contradicting irreducibility.
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sending a unit vector in the range of Pϕ on H to a unit vector in the range of the
corresponding operator P ′

ϕ on H′ will extend uniquely to a unitary intertwining
operator. Variations on this argument will play a crucial role in section 5 below.

At this point we can return to the original questions of Schrödinger and Heisen-
berg, concerning the equivalence of matrix and wave mechanics, or of the particle
and wave pictures. The Stone-von Neumann Theorem answers these questions af-
firmatively in the case of a single free particle, in the sense that all irreducible
representations of the fundamental relations (4), whether on configuration space
(the “particle picture”), momentum space (the “wave picture”), or some other ab-
stract Hilbert space (“matrix mechanics”), are unitarily equivalent to one another.

3. Mackey’s version

The next major step in the history of the Stone-von Neumann Theorem was
taken by George Mackey in his ground-breaking paper [36]. Incidentally, to my
knowledge, the name “Stone-von Neumann Theorem” can be traced back to the
title of this paper of Mackey.

Theorem 3.1 (Mackey [36]). Let G be a locally compact group. Then any

covariant pair of representations of G and C0(G) on a Hilbert space H is a multiple

of the standard representation on L2(G). (A covariant pair is (π, α), where π is

a unitary representation of G on H, α is a ∗-representation of C0(G) on H, and

π(g)α(f)π(g)∗ = α(g · f), g · f(h) = f(g−1h).)

Mackey was aware that the Fourier transform makes it possible to identify
unitary representations of a locally compact abelian group with representations of
the algebra of functions on the Pontrjagin dual. Since Rn is self-dual, we can use this
principle to convert the representation V of Rn in Theorem 2.2 to a representation
α of C0(R

n). The situation of Stone and von Neumann is thus the case of G = Rn.
In general, for G abelian, a covariant pair as in Theorem 3.1 is the same as a pair

(π, σ) with π a representation of G, σ a representation of Ĝ, and

(7) π(g)σ(ĝ)π(g)∗ = 〈g, ĝ〉σ(ĝ),

which one recognizes as an obvious generalization of the commutation relation (5).
Theorem 3.1, often called the Stone-von Neumann-Mackey Theorem, was the

first step in a long series of papers by Mackey (e.g., [37], [38], [39]) on induced
representations. Mackey’s Imprimitivity Theorem, the foundation of this work, can
be stated in way that immediately generalizes Theorem 3.1:

Theorem 3.2 (Mackey [37]). Let G be a locally compact group, H a closed sub-

group. Then any covariant pair (π, α) of representations π of G and α of C0(G/H)
on a Hilbert space H is induced from a unitary representation σ of H on a Hilbert

space Hσ. In other words, we may identify H with the Hilbert space of measurable

functions f : G→ Hσ such that

f(gh) = σ(h)−1f(g),

∫

G/H

|f(gH)|2dġ <∞,

and g acts on this space by left translation: π(g)f(x) = f(g−1x). (For simplicity,

we’re tacitly assuming here that G/H has a G-invariant measure dġ. The square-

integrability condition then makes sense because |f(g)|2 is constant on cosets of H,

even though f itself is not, because of the covariance condition and unitarity of σ.
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If G/H does not have a G-invariant measure, the formulas are similar, but one

needs to use a quasi-invariant measure and insert various modular functions.)

Note that Theorem 3.1 is indeed a special case of Theorem 3.2, since ifH = {1},
any representation σ ofH is a multiple of the trivial one-dimensional representation,
and thus any representation of G induced from H is a multiple of the standard
representation of G on L2(G).

The original approach of Mackey to Theorems 3.1 and 3.2 depended on a fair
amount of measure theory, and required G to be second countable (or “separable”).
Subsequent simplifications in the proof of the Imprimitivity Theorem (see, e.g., [3]
and [42]) have made it possible to do away with the measure theory and with the
separability hypothesis.

4. The Shale-Weil representation

Let F be a self-dual locally compact field, e.g., Fq, R, C, or Qp. Self-duality
means that if we regard F as a locally compact abelian group under addition and fix
a non-trivial character χ : F → T, then χ enables us to identify the Pontrjagin dual

F̂ with F itself, in that every continuous character of F is of the form x 7→ χ(xy),
for some y ∈ F. Slightly more accurately, if V is a finite-dimensional vector space

over F, then once χ is fixed, we have a natural identification of V̂ with the vector
space dual V ∗ of V , in that every character of V can be written uniquely as χ ◦ λ,
λ ∈ V ∗. Now let (V,B) be a symplectic vector space of dimension 2n over F.
The symplectic form B identifies V ∗ with V . So by Mackey’s generalization of the
Stone-von Neumann Theorem,18 there is a unique irreducible representation π of
the commutation relation

(8) π(v)π(w) = χ(B(v, w))π(w)π(v), v, w ∈ V.

(We are applying the theorem to V , regarded as an additive group.) There are of
course many ways to realize this irreducible representation, but the simplest is the
Schrödinger model, which goes back to the original ideas of the founders of quantum
mechanics. Namely, we fix a polarization of (V,B), that is, a decomposition V =
X ⊕ Y with X and Y both isotropic for B (and thus, by dimension-counting,
maximal isotropic). Then it suffices to find a covariant pair of representations of
X and of Y as in Theorem 2.2, and we can realize the representation on L2(X)
(which we can think of as “functions on configuration space”), with X acting by
translation and with Y acting by multiplication by characters.

Since Sp(V,B) preserves the relation (8), Schur’s Lemma implies there is a
projective representation ω of Sp(V ) on the Hilbert space of the Schrödinger rep-
resentation, given by

(9) ω(g)π(v)ω(g)∗ = π(g · v).
(Equation (9) says ω(g) is an intertwining operator between two irreducible repre-
sentations, and thus by Schur’s Lemma it is uniquely determined up to a constant.)

Theorem 4.1 ([53, Theorem 5.1]; Weil [64]). The representation ω lifts to a

true representation of a double cover of Sp(V ).

18The original formulation of Stone and von Neumann applies precisely to the case F = R, V

the phase space (the direct sum of configuration space and momentum space) of a free particle.
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In fact, the work of Shale and Weil is more precise, and leads to explicit formulas
for the cocycle defining this double cover. (Very readable “modernized” accounts
are in [34, Part I] and in [47].) For a few fields, such as C or finite fields of odd
characteristic (see [22]),19 the cocycle is a coboundary and ω can be regarded as a
true representation of Sp(V ), but this is more the exception than the rule.

As pointed out by Weil [64], the same theory also goes through not just locally
but over the adèles AK , K a number field. (AK is the restricted direct product∏′

v Kv of all completions Kv of K, both non-archimedean (finite extensions of Qp

for primes p) and archimedean (copies of R and C coming from the real and complex
embeddings of K). K embeds in AK as a discrete cocompact subgroup.) Let V
be a symplectic vector space over K and let V (AK) = AK ⊗K V . Then fixing a
non-trivial additive character χ of AK , trivial on K, defines a Weil representation ω
of a double cover of Sp(V (AK)). Furthermore, the inclusion Sp(V ) ↪→ Sp(V (AK))
has a unique lifting into this double cover, so ω restricts to a (true) representation
of Sp(V ).

This Shale-Weil representation of the double cover of the symplectic group,
also called (especially by Roger Howe) the oscillator representation, plays a fun-
damental role in representation theory and number theory. In fact, most of the
correspondences in the theory of automorphic forms are derived from special cases
of the theta correspondence based on this representation. This is not the place to go
into details on this vast subject, so we will just give a few hints of what is involved
and let the reader look elsewhere (e.g., in [23], [34], [26], [41], and [45]) for more
information.

The theory of the theta correspondence is based on the notion of a reductive dual

pair, introduced by Howe in [23]. This is a pair (G,H) of reductive subgroups of the
symplectic group Sp(V ) which are each other’s commutants inside the symplectic
group. (Just as an aside, this was motivated in part by von Neumann’s Double
Commutant Theorem for operator algebras.) For example, if V = V1 ⊗ V2 with B1

a non-degenerate symmetric bilinear form on V1, B2 a symplectic form on V2, and
B = B1 ⊗ B2, then we can take G = O(V1, B1), H = Sp(V2, B2). The restriction
of the oscillator representation ω to [the double cover of] G×H decomposes, and
the decomposition gives a correspondence between representations [possibly living
on a double cover] of G and those of H. (Roughly speaking, a representation π of
G corresponds to a representation σ of H if π × σ occurs in this decomposition.)
If one works in the correct categories of representations, then this correspondence,
while only partially defined, is known (if one leaves aside a few special cases still
being investigated) to be injective ([26], [41], [63]).

The name “theta correspondence” comes from a relationship between automor-
phic forms, associated to this correspondence of representations. This relationship
is connected to the theory of theta functions, hence the name. In this context it is
worth recalling the opening sentences of Weil’s paper [64]:

À force d’habitude, le fait que les séries thêta définissent des
fonctions modulaires a presque cessé de nous étonner. Mais
l’apparition du groupe symplectique comme un deus ex machina

19One can even prove something about F2r if one excludes a small number of cases.
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dans les célèbres travaux de Siegel sur les formes quadratiques
n’a rien perdu encore de son caractère mystérieux.20

We will content ourselves here with mentioning just one example. The standard
classical theta function (that arises, for example, in the theory of the heat equation
and in elliptic function theory) is

θ(z) =
∞∑

n=−∞

eπin2z.

This series converges uniformly on compacta to an analytic function on the upper
half-plane H, is clearly periodic of period 2, and, by an application of the Poisson
summation formula, satisfies the functional equation

θ
(
− 1

z

)
=

√
−iz θ(z),

with the choice of the branch of the square root with
√
−iz > 0 for z on the positive

imaginary axis. From this, the periodicity, and a little more work, one can prove
[34, Theorem 2.4.13] that θ obeys a transformation law of the form

(10)

θ
(

az+b
cz+d

)
= λ

(
a b
c d

) (
cz + d

)1/2
θ(z),

(
a b
c d

)
∈ SL(2,Z), ac ≡ 0 mod 2, bd ≡ 0 mod 2,

with λ a certain character taking values in the 8th roots of unity. The function θ
is also important in number theory since

θ(z)k =
∞∑

n1=−∞

· · ·
∞∑

nk=−∞

eπi(n2
1+···+n2

k
)z =

∞∑

n=0

ane
πinz,

with an the number of ways of representing the non-negative integer n as a sum of
k squares.

The connection of the function θ with the oscillator representation is related to
the following important fact:

Theorem 4.2 (Howe, [23, Theorem 4.1]). Let K be a number field, (V,B) a

symplectic vector space over K. Then (V,B) defines a Heisenberg group

H = H(V,B) = V ⊕K (as a set), with group operation

(v, s) · (v′, s′) = (v + v′, s+ s′ +B(v, v′)/2).

Fix a non-trivial additive character χ of AK trivial on K and let ρ be the associated

Stone-von Neumann representation of H(AK) with central character given by χ.

Let ω be the associated oscillator representation of the double cover of Sp(V (AK)).
Let Sρ be the space of C∞ vectors for ρ. (This is a restricted tensor product of

Schwartz spaces.) Then Sρ is also the space Sω of C∞ vectors for ω, and there

is a distribution (i.e., continuous linear functional) Θ on Sρ, unique up to scalar

multiples, which is invariant under ρ(H) and under ω(Sp(V (K))).

20Translation: Out of force of habit, the fact that theta series define modular functions has

almost ceased to surprise us. But the appearance of the symplectic group as a deus ex machina in

the celebrated work of [C. L.] Siegel on quadratic forms hasn’t at all lost its mysterious character.
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Now let’s specialize to the case K = Q, dimV = 2, B given by

(
0 1
−1 0

)
.

Then the symplectic group can be identified with SL(2). At the archimedean place
v = ∞, Sρ becomes S(R), with Θ giving a tempered distribution that is supposed to
be invariant under translation by Z and multiplication by e2πit (since these generate
ρ(HZ), assuming χ is suitably normalized). Since e2πit 6= 1 unless t ∈ Z, Θ must be
supported on the integer lattice, and thus it is obvious that Θ must be given (up
to a scalar multiple) by the formula

Θ(f) =
∑

n∈Z

f(n).

But now let ξ(t) = e−πt2 , so that ξ certainly lies in S(R). Consider ϕ(g) =

Θ(ω(g)ξ), for g ∈ S̃L(2,R), the double cover of SL(2,R). If gt is the usual lift

of the one-parameter multiplicative group

(
t 0
0 t−1

)
, t > 0, in SL(2,R), then we

compute that

(11)

ϕ(gt) = Θ(ω(gt)ξ)

=
∑

n∈Z

ft(n)
(
ft(s) = ω(gt)ξ(s) =

√
t e−π(ts)2

)

=
√
t

∑

n∈Z

e−πn2t2 =
√
t θ(it2),

which explains the connection between Θ and classical theta series.
As far as the “correspondence” aspect is concerned, the main idea is that if

we have a reductive dual pair (G,H) in Sp(V ), then we can use the distribution Θ
to “lift” automorphic forms from G to H or vice versa. More precisely, suppose ξ
lies in the Schwartz space on which the oscillator representation ω acts, and f is

an automorphic form for G (meaning that f is a smooth function on G̃(K)\G̃(AK)
satisfying a suitable decay condition and generating an irreducible representation

of G̃(AK) under right translation), then the integral

θξ(f)(h) =

∫

eG(K)\ eG(AK)

Θ
(
ω(gh)ξ

)
f(g) dġ,

when it converges, gives a well-behaved function on H̃(K)\H̃(AK), that is, an au-

tomorphic form on H. (We are using the fact that Θ is invariant under S̃p(V (K)),

and thus under G̃(K) × H̃(K), by Theorem 4.2.) This can be used to “lift” au-
tomorphic forms from G to H (or vice versa). This kind of lifting turns out to

be closely related to the local correspondence (between representations of G̃v and

representations of H̃v) discussed earlier.

5. Rieffel’s work and the notion of Morita equivalence

The “modern” approach to the Stone-von Neumann Theorem, which is some-
what more algebraic, is due to Rieffel [48]. The key observation of Rieffel is that
the theorem is really about an equivalence of categories of representations, or in
the language of ring theory, a Morita equivalence. For example, the rings C and
Mn(C) are Morita equivalent; each of these has the property that every represen-
tation is a multiple of the unique irreducible representation. In a similar way, the
category of (Weyl integrated forms) of representations of the commutation relations
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is equivalent to the category of representations of C. Rieffel, following von Neu-
mann’s method of proof using the projections Pϕ of (6), showed this directly, and
concluded that on any Hilbert space representation of the Heisenberg commutation
relations, there is a natural action of lim−→Mn(C), or of its completion, the compact
operators K.

To explain this in a little more detail, the Morita theorems (see for example
[27, §3.12] or [33, §18]) say that two rings A and B have equivalent categories
of (left) modules if and only if there are bimodules X (for A acting on the left,
B acting on the right) and Y (for B acting on the left, A acting on the right)
such that the equivalences in the two directions are implemented by the functors
M 7→ Y ⊗A M (M a left A-module) and N 7→ X ⊗B N (N a left B-module), with
X ⊗B Y ∼= A (as an A-A bimodule) and Y ⊗A X ∼= B (as a B-B bimodule). For
example, when A = C and B = Mn(C), one can take X = Cn (viewed as row
vectors, B acting by right matrix multiplication) and Y = Cn (viewed as column
vectors). Rieffel adapted the same machinery, but with modifications appropriate
for ∗-algebras and representations on inner product spaces. This modification was
originally called strong Morita equivalence, but we will drop the adjective “strong”
since this is the only kind of Morita equivalence we will be interested in for C∗-
algebras.

The simplest case of a Morita equivalence (both in the algebraic setting and
in Rieffel’s theory), which in fact is almost21 the most general, is that of a full

corner.21 We say B is a full corner of A if there is a projection p in the multiplier
algebra22 M(A) of A such that B = pAp and A = ApA. (In the purely algebraic
theory, we usually require A and B to be unital, p ∈ A an idempotent. In the
C∗-context, the algebras can be non-unital and p is required to be self-adjoint.)
The equivalence bimodule AXB is then Ap. This situation clearly applies to the
context of von Neumann’s proof: A is the C∗-algebra generated by all operators∫∫

U(x)V (y)ψ(x, y) dx dy, p is the specific idempotent Pϕ constructed by von Neu-
mann, and B is one-dimensional, hence isomorphic to C. Thus we obtain the desired
Morita equivalence. We also see that A ∼= K, the algebra of compact operators on
an infinite-dimensional separable Hilbert space.

Rieffel [49] went on to explain the Stone-von Neumann-Mackey Theorem, as
well as the Mackey Imprimitivity Theorem, in similar terms. Covariant pairs of
representations of G and of C0(G/H), or in Mackey’s language, systems of imprim-

itivity based on G/H, can be identified with representations of a crossed product
algebra C0(G/H) o G which is Morita equivalent (now in the C∗-algebra sense)
to the group C∗-algebra C∗(H). The associated correspondence of representations
matches induced representations Indσ of G (which come with systems of imprimi-
tivity) with the inducing representations σ of H.

Morita equivalence for C∗-algebras has proved to be an extremely fruitful no-
tion, as will be obvious from looking at the other papers in this volume.

21The meaning of “almost the most general” (in the C∗ context) is that if A and B are

C∗-algebras, then they are Morita equivalent if and only if they can be simultaneously embedded

as full corners in another C∗-algebra [6, Theorem 1.1].
22The multiplier algebra M(A) is the largest (C∗-)algebra in which A embeds as an essential

ideal. Of course, if A is unital, then M(A) = A.



14 JONATHAN ROSENBERG

6. Non-perfect pairings and the work of Pukánszky and

Baggett-Kleppner

Recall that when G is locally compact abelian, the Stone-von Neumann-Mackey

Theorem deals with covariant pairs of representations of G and Ĝ satisfying (7):

π(g)σ(ĝ)π(g)∗ = 〈g, ĝ〉σ(ĝ).

One can ask what happens if Ĝ is replaced by some other abelian group H with a
non-degenerate (but not perfect) pairing

〈 , 〉 : G×H → T,

T the circle group. This pairing can also be characterized by a continuous ho-

momorphism H → Ĝ; non-degeneracy of the pairing means this map is injective.
The simplest example is G = H = Z with a dense embedding H ↪→ T sending
the generator to e2πiλ, λ /∈ Q. The associated C∗-algebra is called an irrational

rotation algebra or noncommutative torus. (The term noncommutative torus also
encompasses the more general situation of the twisted group C∗-algebra C∗(Zn, ω),
with ω a 2-cocycle (which we can take [30] to be given by a skew-symmetric bilinear
form) on Zn with values in T. The irrational rotation algebras correspond to taking
n = 2, ω defined by ω(a, b) = e2πiλ(a1b2−a2b1).)

In the situation of a dense but non-closed embedding H ↪→ Ĝ, the Morita
equivalence with C breaks down, but a vestige of it remains. A precise statement
is as follows:

Theorem 6.1. Let H and G be locally compact abelian groups, and suppose

ψ : H ↪→ Ĝ is a continuous embedding with dense but non-closed range. Then the

universal C∗-algebra C∗(G,H,ψ) generated by covariant pairs of unitary represen-

tations π of G and σ of H satisfying the commutation relation

(12) π(g)σ(h)π(g)∗ = ψ(h)(g)σ(h)

is simple and has a faithful lower-semi-continuous semifinite trace τ , and τ is unique

up to scalar multiples.

The history of this theorem is a bit complicated. Many cases are included
in [17], [10], and [68], all of which take a very different point of view from the
one in this paper. The very important special case where G and H are compactly
generated abelian Lie groups (products of finitely generated discrete abelian groups,
tori, and vector groups) was treated in detail by Pukánszky [46], who used this
as a basis for his entire theory of non-type I representations of solvable (or even
completely general) connected Lie groups. Baggett and Kleppner [1] obtained the
general simplicity criterion for twisted group C∗-algebras of abelian groups, of which
this is a special case, and Kleppner [31] stated the unique trace property, but his
proof was incomplete. A complete proof of this theorem was finally given by Green
[15], who also showed how to use this result as a building block in a structure
theory for C∗-algebras of connected Lie groups.

The upshot of this theorem is that while C∗(G,H,ψ) has many non-equivalent

irreducible representations, it has a unique quasi-equivalence class of traceable fac-
tor representations (of type II), which should be viewed as the good replacements
for the Schrödinger representation in the Stone-von Neumann Theorem.
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7. Supersymmetry and analogues of Stone-von Neumann

We conclude by mentioning some other analogues or generalizations of the
Stone-von Neumann Theorem. The Heisenberg commutation relations (or canonical

commutation relations, usually abbreviated CCR) are appropriate for free bosons.
One can equally well consider the canonical anticommutation relations (CAR), ap-
propriate for free fermions, or a more realistic mixture of both bosons and fermions.
This is a necessary prerequisite for studying what physicists call supersymmetry,
which is a kind of symmetry allowing mixing of the two kinds of particles. We
will consider first the analogues of the Stone-von Neumann Theorem for fermionic
systems with finitely many degrees of freedom, then the CAR and CCR with in-
finitely many degrees of freedom, needed for quantum statistical mechanics and
quantum field theory, and then finally mixed systems of both bosons and fermions,
and supersymmetry.

7.1. Fermionic systems with finitely many degrees of freedom. The
canonical anticommutation relations (or CAR) are given by

(13) ajak + akaj = 0, aja
∗
k + a∗kaj = δjk, j, k ≤ m,

where m is the “number of degrees of freedom,” which we allow to be a positive
integer or ℵ0. These relations arise from the study of systems of m fermions, parti-
cles (like electrons) obeying the Pauli exclusion principle, and were first formulated
by Jordan and Wigner [28]. They arise, for example, if the aj ’s are the “creation
operators” or “annihilation operators” of a fermion field (in quantum field theory).
The operators aj are supposed to be closed, densely defined operators on a Hilbert
space H; since (13) implies that aja

∗
j + a∗jaj = 1, they are bounded with norm

≤ 1, and in fact aj + a∗j and i(aj − a∗j ) are each self-adjoint with square 1 and
anticommute. Thus the aj + a∗j and i(aj − a∗j ), j ≤ m generate (if m < ∞) a
Clifford algebra over C on 2m generators, isomorphic (as a C∗-algebra) to the ma-
trix algebra M2m(C), or to

⊗m
j=1M2(C). We can call this the CAR algebra with m

degrees of freedom. So again one has a Morita equivalence with C, i.e., the analogue
of Stone-von Neumann holds for fermions.

One can formulate things in a slightly more canonical way by getting rid of the
implicit choice of basis in (13). Let V be a finite-dimensional complex Hilbert space
of dimension m, and for f ∈ V , suppose one has an operator a(f), with f 7→ a(f)
linear, satisfying the relations

(14) a(f)a(g) + a(g)a(f) = 0, a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉, f ∈ V.

These are exactly the relations one gets from (13) upon defining a (
∑
λjej) =∑

λjaj , for {ej} an orthonormal basis of V . Then a(f) − a(f)∗ is skew-adjoint,
and

(15)
{
a(f) − a(f)∗, a(g) − a(g)∗

}
= −〈f, g〉 − 〈g, f〉 = −2Re〈f, g〉,

where {a, b} = ab + ba denotes the anticommutator. Thus if VR denotes the “re-
alification” of V , a real Hilbert space of dimension 2m which as a vector space
over R coincides with V and has real inner product (f, g) = Re〈f, g〉, we see that
the b(f) = a(f) − a(f)∗ satisfy {b(f), b(g)} = −2(f, g), the relations for the real
Clifford algebra Cliff(VR) (with the generators b(f) skew-adjoint). Furthermore,
the real orthogonal group O(VR) acts on VR, preserving all these relations. The
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complex structure on V induces a canonical orientation on VR, so the special or-
thogonal group SO(VR) thus plays the same role for fermions that the symplectic
group Sp(2m,R) plays for a system of m free bosons. We can now formulate the
fermionic analogue of the Stone-von Neumann and Shale-Weil theorems as follows:

Theorem 7.1. Let V be a complex Hilbert space of finite dimension m, and

consider representations on complex Hilbert spaces H of the canonical anticommu-

tation relations (14) based on V (with f 7→ a(f) linear) as above. Then all such

representations are multiples of a unique irreducible representation on a Hilbert

space H0 of dimension 2m, and the projective representation of SO(VR) on H0 de-

fined by (9) lifts to a true representation of the double cover Spin(VR) (the spin

representation).

I am not sure how early the close analogy with the Stone-von Neumann The-
orem was appreciated, but certainly it is made explicit in [13] and in [53]. The
analogy is discussed in detail in [25].

7.2. The CAR and CCR with infinitely many degrees of freedom. In
the case of infinitely many degrees of freedom, Stone-von Neumann no longer holds
for either bosons or fermions, but an analogue of the Baggett-Kleppner theorem
still holds; one sometimes gets a simple C∗-algebra with unique trace.

For systems with infinitely many degrees of freedom, the theory of representa-
tions of the CAR is somewhat easier than that for the CCR. Investigation of this
case goes back to [12] and [54]. Shale and Stinespring consider representations
of the Clifford algebra Cliff(VR) as above, but now with V a separable infinite-
dimensional Hilbert space. In particular, they characterize the states of this alge-
bra which are invariant under the unitary group U(V ). These form a 1-parameter
family Et, −1 ≤ t ≤ 1, t = 0 corresponding to the tracial state (see below), t = 1
corresponding to the “vacuum state,” and t = −1 corresponding to the “anti-
vacuum state.” The vacuum state is described already in [12]; it corresponds (as
the name suggests) to the “zero particle” vector in the Fock representation, which
in turn was defined rigorously by Cook [7], following the ideas of Fock [11]. (The
vacuum vector is characterized up to scalar multiples by the properties that it is
annihilated by all the annihilation operators, and that iterated products of the cre-
ation operators acting on it generate the whole space.) The anti-vacuum state is
similar, but corresponds to interchanging the creation operators with their adjoints,
the annihilation operators.

A more convenient way to deal with the CAR uses UHF algebras, introduced
by Glimm in [14]. As we have seen, the CAR with m degrees of freedom gen-
erate a finite-dimensional C∗-algebra isomorphic to M2m(C) ∼=

⊗m
j=1M2(C). If

we consider the effect of increasing the number of degrees of freedom by one, this
corresponds to a unital mapping M2m(C) ↪→ M2m+1(C) ∼= M2 (M2m(C)) which is

equivalent to a 7→
(
a 0
0 a

)
. On passage to the limit, we get an infinite-dimensional

unital C∗-inductive limit A = lim−→M2m(C) of matrix algebras, or a UHF algebra

(this stands for “uniformly hyperfinite”), as studied in [14]. This particular alge-
bra is called the 2∞ UHF algebra or the fermion UHF algebra, sometimes just the
CAR algebra, and can be written heuristically as

⊗∞
j=1M2(C). Guichardet [18]

put this “infinite tensor product” point of view on a rigorous basis, and made the
connection between the work of Shale-Stinespring and that of Glimm. The algebra
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A is simple, nuclear, and has a unique (finite) trace, which is the Shale-Stinespring
state E0. One possible substitute for the Stone-von Neumann Theorem for systems
of infinitely many fermions is thus that A has a unique quasi-equivalence class of
traceable factor representations. The algebra A does have a huge number of unitar-
ily inequivalent irreducible representations, which can be viewed as corresponding
to physically inequivalent systems. However, Powers proved that there is a sense in
which all of these are equivalent to one another, and one can view this as a deeper
analogue of the Stone-von Neumann Theorem:

Theorem 7.2 ([44, Corollary 3.8, p. 157]). Let A be a UHF algebra, or in

particular the fermion UHF algebra. Then the ∗-automorphism group of A acts

transitively on the set of pure states of A.

The theory of representations of the CCR with infinitely many degrees of free-
dom, which more directly corresponds to the situation of the Stone-von Neumann
Theorem, is substantially more complicated, largely because there is no obvious
choice of a C∗-algebra whose representations correspond to those of the relations.
We may explain the issues involved as follows. The Stone-von Neumann Theorem
comes from quantizing a finite-dimensional symplectic vector space. Thus to study
the CCR with infinitely many degrees of freedom, we may consider a separable
infinite-dimensional complex Hilbert space V with inner product 〈 , 〉. As above,
the realification VR of V is a real Hilbert space, but it also carries a non-degenerate
alternating bilinear form B(f, g) = Im〈f, g〉. A representation of the CCR based
on V (again we use the “Weyl integrated form”) is given by a map W from V (or
at least a dense subspace) to the unitaries on a complex Hilbert space H satisfying
the analogue of (5) and (8):

(16) W (z1)W (z2) = eiB(z1,z2)/2W (z1 + z2),

with B as above the imaginary part of the complex inner product. One also needs
to impose some continuity or measurability conditions on the map W , at least that
its restriction to each finite-dimensional subspace should be strongly continuous. In
other words, we want a projective representation of VR (with respect to a suitable
topology) with cocycle defined by eiB/2.

Initial studies of the representations of the CCR were undertaken in [13],
[7], [51], and [53]. These authors did for the CCR pretty much what had been
done for the CAR. For instance, Cook [7], again following Fock [11], defined the
Fock representation, and all these authors showed that there are a large number of
other inequivalent irreducible representations. A particularly interesting result is a
uniqueness theorem of Segal:

Theorem 7.3 ([52, Theorem 3]). Suppose W is a continuous representation

on a Hilbert space H of the CCR (16) based on V . Also assume that there is

a continuous one-parameter unitary group U(t), t ∈ R on V , whose self-adjoint

generator is non-negative, with no point spectrum at 0. Suppose there is a continu-

ous one-parameter unitary group Γ(t), t ∈ R on H, whose self-adjoint generator is

non-negative23 and satisfies

Γ(t)W (z)Γ(t)∗ = W
(
U(t)z

)
, z ∈ V, t ∈ R.

23In practice this is supposed to be the Hamiltonian. The one-parameter unitary group Γ(t)

gives the time evolution of the system.
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Finally, suppose there is a unit vector ξ ∈ H which is cyclic for W and invariant

under all Γ(t). Then W is unitarily equivalent to the Fock representation.

Attempts to systematize the work on representations of the CCR by analyz-
ing the structure of various related C∗-algebras may be found in [29], [40], [55].
Unfortunately VR is not locally compact, so the usual techniques of group represen-
tation theory do not all apply here. As Kastler points out carefully in [29], there
is no single “CCR algebra” with all of the properties one would want (separabil-
ity, covariance with respect to U(V ), etc.). Perhaps the best of the alternatives
proposed there is the algebra which Kastler (in our notation) calls K(VR, B). This
is the universal C∗-algebra completion of the subalgebra of the measure algebra
of VR generated by all absolutely continuous measures on finite-dimensional sub-
spaces. The multiplication here is given by twisted convolution of measures, the
twist coming from the 2-cocycle eiB/2.

Here I would like to suggest a new approach to representation theory of the
CCR, motivated by the work of Strătilă and Voiculescu on representations of
infinite-dimensional unitary groups [58]. This sacrifices something in terms of
canonicity (compared to the approaches of Kastler, Manuceau, and Slawny), but it
has the advantage of providing a very concrete algebra whose representation theory
we can analyze in detail using the theory in [2]. Namely, consider representations
W of the CCR modeled on VR (as in (16)), where V is an infinite-dimensional
separable Hilbert space V , and fix an orthonormal basis {ek} for V . For each pos-
itive integer n, let Vn be the C-span of e1, · · · , en, and let Xn be the R-span of
e1, · · · , en. Then V1 ⊂ V2 ⊂ · · · and Vn ↗ V . By the Stone-von Neumann Theo-
rem (and its proof), W |Vn

, integrated against Schwartz functions on Vn, generates
a C∗-algebra isomorphic to K(L2(Xn)), the compact operators on the space of the
Schrödinger representation. Thus if we follow the idea of Kastler and consider the
image of the measure algebra of V generated by absolutely continuous measures
on finite-dimensional subspaces, but take these finite-dimensional subspaces to be
non-zero and only from the flag V1 ⊂ V2 ⊂ · · · , we obtain a C∗-algebra which is
the C∗-inductive limit of the algebras An, where

An = K(L2(Xn)) + K(L2(Xn−1)) ⊗ 1L2(R) + · · · + K(L2(X1)) ⊗ 1L2(Rn−1),

and
B(L2(Rn)) ⊃ An ↪→ An+1 ⊂ B(L2(Rn+1))

via a 7→ a ⊗ 1. Furthermore, An+1 ⊃ K(L2(Xn+1)) and the image of An splits
the quotient map An+1 � An+1/K(L2(Xn+1)). We see, therefore, that An is

(for each n) a type I C∗-algebra with finite spectrum; in fact, Ân is a space with
n linearly ordered points, with the T0 topology determined by this order. Let
A = lim−→An, the inductive limit being computed with respect to the maps An →
An+1 just defined. Then we call A the C∗-algebra of the CCR based on the flag

{Vn}. Note that (unlike the CCR algebras considered in [29], [55], and [40]) A is
separable. We will completely determine its structure. In the notation of [2], An

is a lexicographic direct sum of elementary C∗-algebras indexed by the ordered set
{−n+1, · · · , 0} (with its usual ordering). Thus A is the lexicographic direct sum of
elementary C∗-algebras indexed by the ordered set −N (the non-positive integers).
Thus application of the results of [2] leads to the following classification theorem:

Theorem 7.4. Let A be the C∗-algebra of the CCR based on an infinite flag,

as above. Then A is an AF (approximately finite-dimensional) algebra, and the
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ordered group K0(A) is isomorphic to the lexicographic direct sum Z(−N) lex. The

algebra A is primitive and is not postliminary. In terms of the classification theorem

in [2, Theorem 4.13], A is characterized by its “defector” d ≡ +∞.

Every representation of the CCR based on V gives rise to a representation of

the C∗-algebra A of the same type, and conversely, every factor representation of

A not factoring though a postliminary quotient gives rise to a representation of the

CCR based on lim−→Vn ⊂ V . (It will extend to a representation of the CCR based on

V itself if a suitable continuity requirement is satisfied.)

Proof. Since each An is a lexicographic direct sum of elementary C∗-algebras
and the inclusion An ↪→ An+1 is compatible with the inclusion of ordered sets
{−n + 1, · · · , 0} ↪→ {−n,−n + 1, · · · , 0}, it follows by passage to the limit that A
is a lexicographic direct sum of elementary C∗-algebras indexed by the ordered set
−N. By [2, Theorem 2.8], A is then AF. Since −N does not have the descending
chain chain condition, it follows by [2, Theorem 2.8] that A is not postliminary, and
it follows from the description of the ideals of A in [2, Theorem 2.2] that A is prime
(or equivalently, primitive). The calculation of the defector is obvious: d ≡ +∞
since each elementary subquotient of A has dimension ℵ0. (See the remark in [2,
top of page 264].)

The final statements about the relationship between representations of A and
representations of the CCR follows from the way A was constructed and from
density of lim−→Vn in V . �

Note, as in the work of Strătilă and D. Voiculescu in [58], that A also car-
ries some “uninteresting” exceptional representations, those factoring through some
quotient isomorphic to An for some n. But the very concrete nature of the algebra
A makes it possible to recover many results on concrete representations of the CCR
more simply. For example, from the fact that A is not postliminary, we immedi-
ately deduce that the family of representations of the CCR based on lim−→Vn is not

countably separated, which strengthens the results of G̊arding and Wightman [13]
on existence of many inequivalent irreducible representations.

7.3. Supersymmetry and the Stone-von Neumann Theorem. The ob-
servable universe includes both bosons and fermions, so it has been a goal of physi-
cists, ever since the appearance of [28], to find a way to treat mixed systems in a
way that puts both kinds of particles on an equal footing. This makes it possible
to contemplate supersymmetries, symmetries that mix the two kinds of particles.
Supersymmetry puts constraints on the kinds of field theories that can be contem-
plated, and has thus served as a useful filter in narrowing the search for a unification
of gravity and quantum mechanics.

A basic tenet of supersymmetric theories is that algebras of observables should
be Z/2-graded, with “even” elements corresponding to bosons and “odd” elements
corresponding to fermions. Supersymmetries are encoded in actions of “super Lie
algebras” and “super Lie groups.” There is some dispute in the physics literature
about the best way to codify these, but a reasonable formalism was given and
developed by Kostant in [32]. For present purposes, a “super Lie algebra” will
mean a Z/2-graded Lie algebra g = g0 + g1 (over R or C), where g0 is an ordinary
Lie algebra, g1 is a g0-module, and there is a symmetric bilinear bracket [ , ] : g1×
g1 → g0. The graded Jacobi identity has to be satisfied. (For a simple example,
start with a Z/2-graded associative algebra g and take the bracket to be the usual
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commutator on g0 × g0, g0 × g1, and g1 × g0, but the anticommutator on g1 × g1.)
A “super Lie group” will be given by a pair (G, g), where g is a super Lie algebra
and G is a Lie group with Lie algebra g0, so that g1 has a G-module structure
compatible with its g0-module structure. (This is not Kostant’s definition but
is basically equivalent to it, at least when G is connected—see [32, Corollary to
Theorem 3.7]. There is no reasonable way to “exponentiate” the odd part of g.)
For example (see [32, Remark 5.3.4] or [35]), there is a “super” version (H, h) of
the Heisenberg group (for m bosonic and n fermionic degrees of freedom) with H
the usual Heisenberg group of dimension 2m + 1, h0 its Lie algebra, and h1 a real
vector space of dimension 2n with a (possibly indefinite) symmetric inner product
B.24 The bracket h1 × h1 → h0 takes its values in the center z of h0 and is given by
[x, y] = B(x, y)z, where z is a basis element for z.

Now we are ready to state and prove supersymmetric versions of the Stone-von
Neumann and Shale-Weil Theorems. These results seem to have been part of the
folk literature for some time, so I have not been able to find definitive attributions
for them. They may be found essentially in the version stated here in [35, pp.
2744–2745], as well as in [19].

Theorem 7.5. For any non-negative integers m and n, there is a unique uni-

tary equivalence class of irreducible unitary representations µ of the super-Heisen-

berg group (H, h) (for m bosonic and n fermionic degrees of freedom), assuming we

have fixed the central character of the representation on z, z 7→ i~. Here “unitary”

means that µ is a continuous unitary representation of H and is a ∗-representation

of the CAR, (13), for the fermionic generators.

Proof. By the Stone-von Neumann Theorem and its fermionic analogue (The-
orem 7.1), there is one and (up to unitary equivalence) only one unitary represen-
tation µ of H with the correct central character, namely the (outer) tensor product
of the Schrödinger representation of H with the unique irreducible representation
of Cliff(h1).

24
�

Now acting by automorphisms on the above super-Heisenberg group is a clas-
sical (simple) super Lie group

(
Sp(2m,R) × Spin(2n), osp(2m | 2n)

)
([56, p. 147],

[25, Theorems 4 and 5]). The following result can be called the “super Shale-Weil
Theorem.” Related results may be found in [16] and in [25].

Theorem 7.6. Let µ, as in Theorem 7.5, be the unique unitary representa-

tion of the super-Heisenberg group (H, h) (for m bosonic and n fermionic degrees

of freedom). Assume µ acts on a Hilbert space H. Then H carries a compat-

ible unitary representation of the supersymmetry super Lie group
(
Mp(2m,R) ×

Spin(2n), osp(2m | 2n)
)
. Here Mp(2m,R), often called the metaplectic group, is

the double cover of the symplectic group.

Proof. If we combine the results of section 4 and subsection 7.1, we see that
(9) gives a unitary representation of Mp(2m,R) × Spin(2n) on H. So we just need
a compatible action of the odd part of osp(2m | 2n) on H. As in [25] and in
[35, p. 2741], the odd part of osp(2m | 2n) is canonically isomorphic to (h0/z) ⊗
h1. It therefore acts on H by the span of products of dµ(Pj) or dµ(Qj) with

24It isn’t necessary to have h1 even-dimensional to define the super Lie algebra, but that’s

the case we are interested in for purposes of generalizing the Stone-von Neumann Theorem. Even

dimensionality of h1 means Cliff(h1) has a unique irreducible (complex) representation.
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dµ(ak) or dµ(ak)∗. Now (as is well known) the infinitesimal action of sp(2m) in
the oscillator representation is by the second symmetric power of the action of h0,
and the infinitesimal action of s0(2n) in the spin representation is by the second
exterior power of the action of h1. (See [35, p. 2743], [25], or [19].) But S2(h/z)
is isomorphic to osp(2m | 2n) as a super Lie algebra [35, p. 2741], so the action
of the odd part that we have just defined is compatible with the super oscillator
representation of sp(2m)× so(2n), and we get an action of all of osp(2m | 2n). �
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